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ABSTRACT

This paper deals with quantification of a two-dimensional (2-D) sampling process by pixel array. The idea is based
on transformation of the Wigner-Seitz cell, which defines the sampling lattice in the spatial domain, into a "bandwidth cell"
in the spatial frequency domain. The area of the bandwidth cell is a quantitative measure of the sampling process. On this
basis a description of the oversampling process is developed. We compare different configurations of the sampling pixel
array.
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L INTRODUCTION
One of the most important influence parameters in imaging systems is the spatial sampling rate of

the imaging sensor. Recently these have been enormous improvements in developing sensors and scene projectors for the
infrared (IR) Focal Plane Arrays (FPA). However the number of pixels in the two dimensional (2-D) FPA is lower than the
number of pixels in the display. The number of pixels in the FPA is much lower than the number of pixels in the visible
sensor (CCD). Therefore the phenomena of aliasing is much more noticeable in the IR than in the visible. The spatial
sampling rate is the most important resolution limitation of these sensors. One of the solutions that had been suggested to
this problem is to perform oversampling with the projector pixel array. However this solution is expensive and very difficult
to implement. We developed a procedure to know how much oversampling is needed and what are the improvements that
we expect to obtain in the image quality as result of oversampling.
In this paper the oversampling process will be quantified in terms of image quality. The bandwidth area around a point in
the spatial frequency domain is identified, defining a quantitative measure for the sampling process. Oversampling
simulation for different lattice configurations of sampling grids is presented, including the rectangular lattice and the
hexagonal lattice.

2. AVERAGE SAMPLING MTF

In the case of sampling by two-dimensional array of finite-sized pixels there are two distinct MTF contributions
involved : one for the sampling process associated with the finite spacing between samples, and one for the spatial-
averaging process associated with the finite size of the pixels. We assume that these two MTFs multiply to yield an
aggregate MTF for the sampling - and - averaging process. The multiplication of MTFs is dependent upon assumptions of
linearity and shift invariance. The definition 1 of the sampling MTF in terms of an average over all possible positions of the
scene with respect to the sampling locations essentially defines a shift-invariant sampling MTF.

The MTF contribution of finite-sized pixels is already well known. For a one-dimensional rectangular pixel, the
pixel MTF is given by the sinc - function formula
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pixe1 =sinc( p) (1)

where sinc(x) = (sin tx)I(izx) , is the image spatial frequency, and p is the pixel size. The square pixel is the most
common shape for imaging-array applications, although other shapes are possible such as circular, hexagonal2 or tapered

. As shown in refs. 2 and 3, the pixel MTF is in general two dimensionaL
The MiT in Eq. 1 does not take into account the spatial distance between the samples or the sampling rate. The exact

mathematical process for driving the MTF in terms of the sampling rate is given elsewhere4,5,6, The derivation of the

sampling MTF is based on statistical treatment of the intensity sampled by the array of pixels.The final result is given as

the sinc-function,
MTFsamp = Sinc( .L) (2)

where z 5 the distance between the samples. The overall MTF is given by multiplication of these two functions,

MTFtotai = MTFpjel MTFsamp Sin c( .p ) . sinc( . ) (3)

Equation 3 shows that two parameters determines the quality of the sampling image, the pixelsize p , and the distance

between the pixel in the array, which is the pixel pitch -i . Decreasing both of these parameters will improve the total MTF

where in the limit when p and i approach to zero, the MTF approaches unity and the sampled signal approach to a
continuous signal.

A similar statistical analysis can be applied in the case of 2-D array. The analytical derivation for this case is

given in details in Ref. 2. The two parameters for the l-D casep and i replaced by twoother parameters which suitable for

the 2-D case. Instead ofp , the normalized pixel function p(x) is used and it defines with respect to a pixel centered at the

origin of the lattice:

— Ji I A for x inside pixel9
p(x) — for x outside

(4)

where x is defined as a 2-D position vector.
Instead of using the distance between samples as in the case of 1-D sampling, we use a different definition which is taken

from crystallography ,' theWigner-Seitz cell. "A Wigner-Seitz cell about a lattice point is the region of space that is closer

to that point than to any other lattice point" '. The normalized Wigner-Seitz function is defined with respect to the lattice

point at the origin:
Ii / A for x inside Wigner -Seitz cell,

w(x)= . (5)
0 for x outside.

where Aw is defined as the Wigner-Seitz cell area.

In Figs la and lb the Wigner-Seitz cell is shown for the rectangular and the hexagonal lattice respectively.
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Fig. 1 (a) The Wigner-Seitz cell for a hexagonal lattice (b) The Wigner-Seitz cell for a rectangular lattice.

The six sides of the cell bisect the lines joining the central points (the black point) to its six nearest neighboring
points (shown as dashed lines). In two dimensions the Wigner-Seitz cell is always a hexagon (Fig. la) unless the lattice is
rectangular (Fig. ib) .
The final result in the spatial frequency domain for the MiT in 2-D is given by,

MTF = P(f)W(f') . (6)

where f is a 2-D spatial frequency vector, P(f) and W(f) are the Fourier transforms of p(x) w(x), respectively. The MTF
depends not only on the pixel shape, but also on the lattice structure. As for the 1-D case, we find that as the pixel footprint
decreases and the distance between samples decreases, P(f) and W(f) increases respectively. From Fig. 1 we find that the

area of w(x) in the hexagonal case is smaller than the area of w(x) in the rectangular case by factor of'J I 2 for the same
distance between samples. The meaning of this result is that the MTF of the rectangular lattice is poorer than the MTF of
the hexagonal lattice. The equivalent result has been derived in Ref. 2 , where it has been shown that hexagonal pixel
shapes are slightly better than rectangular ones in terms of MTF.

3. DEFINITION FOR BANDWIDTH CELL IN THE SPATIAL FREQUENCY DOMAIN

In this section a new measure in the spatial frequency domain for quantifying the sampling process is suggested.
The idea is to transform the "Wigner-Seitz" cell in the spatial domain into an equivalent "bandwidth cell" in the spatial
frequency domain. Fig. 2 describes the method of deriving the "bandwidth cell" for a rectangular lattice according to the
distance between the center point of the "Wigner-Seitz" cell to its edges points. This distance z represents the possible

resolution in each direction, and it depends on the angle e relative to the horizontal sampling distance A according to,

L0 A/(2 cos(e)). (7)

The parameter Ae can also be treated as the sampling distance at angle 9 relative to the horizontal axis. By the

definition of Eq. 7 it possible to denote the sampling MTF at a given angle 0 by replacing the parameter in Eq. 2 by

O 50 the corresponding MTF is given by,

MTFsamp _ = Sfl c(9 Lt) (8)

The reciprocal of 0 is the location of the first zero of the sinc function, which represents the spatial frequency

bandwidth BW0 of the sampling process in each direction,

BW92cos(9)/E (9)
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The function in Eq. 9 is valid in the angle sector between -45° to 45° and it repeats itself in a 900 sector as it shown in Fig.

2. BW9 a radial function that represents the spatial frequency bandwidth resulting from the sampling process. As seen

in this figure the highest - resolution directions are the horizontal and vertical, while poorer resolution is obtained along the
diagonal axis ( 45° and 135° ) .These results can be explained by referring to Fig. 3 . The number of pixels in a rectangular
array are the same in horizontal axis and the diagonal axis (equal to 6 for this example). However the lengthof the array in

the horizontal direction is shorter than the diagonal distance by factor of , with the result that the sampling interval

A450 is longer by the same factor than the sampling interval A00. Therefore the bandwidth in the horizontal direction

BW00 expected to be higher by than the bandwidth in the diagonal direction BW450 .The same analysis can be

applied on the "Wigner-Seitz" cell of the hexagonal lattice and the result for the "bandwidth cell" is shown in Fig. 4. The
result here is
similar to that of the rectangular lattice. However, the symmetric range of BW0 is within a 60° sector instead of a 90°

sector.

w

Fig. 2 : Derivation of the "Bandwidth cell" BW0 from a Wigner-Seitz cell of a rectangular sampling lattice
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Fig. 3: Comparison between the sampling intervals A00 and A450 for a rectangular array of 6 by 6 pixels.

Fig. 4: The "Bandwidth cell" BWe of a Hexagonal sampling lattice.
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4. AREA MEASUREMENT OF THE BWa FUNCTION

In order to compare between the two lattices it useful to compare the areas that enclosed by the functions BW of the two

lattices. This area represents the total bandwidth that can be obtained after the sampling process. The area thatis bound by

the function BW9 as a function of the maximum value of e forwhich Eq. 9 is valid (9 ) , is given by,

[It It sin(29m)l
S=L;-+-;-.—- a: I

(10)L '• 'max J

for the rectangular lattice 9m 45° fld the enclosed area is equal to,

Srec[+i]
(11)

and for the hexagonal lattice em 30° fld the enclosed area is equal to,

[IC 3'J1
Shex[+j (12)

Sh
The ratio between these two areas is given by

ex = 6 , this result gives an advantage of 1 1 % for the hexagonal
5rec

lattice on the rectangular lattice. A similar result was obtained in Ref. 6 , but with a different approach to the analysis.

5. QUANTITATIVE MEASURE FOR OVERSAMPLING

The oversampling process can be described as the following. An image falls on and is sampled by a pixel arrayS
This sampled information is first recorded. The image is then shifted by a fraction of the pixel pitch and sampled again.The

information from the second sample is superimposed on that from the first sample to produce an oversampled image.This

process can be done several times, with the number of extra samplesidentified as the degree of the oversampling process.
The amount of improvement that can be obtained by increasing the order of oversampling is obtained for a 2-D

contiguous pixel array with pixel size p and sampling interval A =p in the horizontal and the vertical directions. The

analysis is based on a method that was applied for a 1-D contiguous pixel arraywith pixel size p as in Ref. 4 . The order of

oversampling, n, is defined as the number of extra samples taken. For instance, an orderof 4 means that the array is shifted

consecutively four times by a distance of p15 to obtain four extra samples, giving a totalof five samples. In Ref. 4 the

investigated parameter was the value of MTFt0ta1 (Eq. 3) at the Nyquist spatial frequency, i.e., = 1/(2) = 1/(2p).

Equation (3) then becomes,

MTFtotai sinc(1/2) . sinc(1/2n) (13)

A graph of MTFt0ta1 at Nyquist frequency vs. the order of oversampling is shown in Fig. 5 '. It is clear from the

figure that the greatest improvement in performance is obtained when n is going from zero to first order. The amount of

improvement that can be expected from the oversampling process is reduced rapidlyin subsequent increments of the order.

A similar analysis can be applied to the 2-D pixel array. However, the analysis should include the angle
dependence of the Wigner-Seitz cell (Eq. 8) because of the sampling lattice and the square pixelsize. We calculate the value

of MTFtotai at Nyquist frequency as a function of the angle e. This value depends on the sampling interval and the

pixel size Pe which is measured from the center point to the edge points of the pixel as a function of 0 (see Fig. 6) .The

result of the analysis is the average of MTFtotai at Nyquist frequency over an angle of 2ic. In this analysis we investigate
three types of oversampling process as described in Fig. 7: (a) oversampling in the horizontal direction, (b) oversamplingin
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the horizontal and vertical directions and (c) oversampling along the diagonal axis. A graph of the average MTFtotai at
Nyquist frequency against the order of oversampling is shown in Fig. 8.
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Fig. 5. A graph at the Nyquist frequency is plotted against the order of oversampling for a 1-D contiguous pixel array.
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Fig. 6 Deriving Po as function of the pixel size p and e.
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Fig. 7 Different types of oversampling : (a) horizontal direction (b) horizontal andvertical directions (c ) diagonal direction.

Fig. 8. A graph at the Nyquist frequency is plotted against the order of oversamplingfor three types of 2-D contiguous pixel

array.
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6 RESULTS

From Fig. 8 it is possible to compare the oversampling process for the three different configurations. The most

successful way to perform the oversampling is by moving the sensor at small steps in the diagonal axis e= 45° ,(Fig. 7c).
Oversampling at both horizontal and vertical directions (Fig. 7b) yields lower performance. However, as the orderof the
oversampling process increases the performances of both methods become similar. The third method of sampling in the
horizontal direction (Fig 7a), yields the least improvement of resolution as increasing the order of oversampling. At all
three configurations it is clear from the figure that the greatest improvement in performance is obtained when n is going
from zero to first order, as in the case of oversampling in 1-D. These results can be explained by using our definition for
"Bandwidth cell" at section 3. It can be shown that the area bound by the function BWa for each of the sampling intervals

obtains its maximum value for sampling along the diagonal axis and the minimum value for sampling at the horizontal
direction.

7, CONCLUSIONS

A new quantitative measure for the sampling process by 2-D pixel array was defmed. This measure, the bandwidth
cell in the spatial frequency domain is related to the Fourier transform of the Wigner -Seitz cell in the spatial domain. The
area enclosed by the bandwidth cell is the quantitative measure which allows comparison between different lattices.

According to this measure the hexagonal lattice performance in the sense of average bandwidth is superior to the

rectangular lattice by 1 1%. Three different configurations of the sampling process are considered. The quantitative measure
for this analysis is the average value of MTF at Nyquist frequency. The conclusion from this analysis is that the most
efficient way to perform the sampling process is by shifting the sensor array along the 45° diagonal axis.
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