
Zernike-based matrix model of deformable
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The actuator influence functions of a typical deformable mirror are expanded in a Zernike polynomial
decomposition. This expansion is then extended to a matrix formalism that describes the modal
operation of the mirror. The size of the aperture over which the Zernikes are defined affects the accuracy
of the expansion. The optimum size of this aperture is found by minimizing the variance of the
wave-front error.
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Introduction
Zernike polynomials have been used widely for describ-
ing optical wave fronts. 1 2 They are used when the
aperture of an optical instrument shows a circular
symmetry.3 They are also directly related to wave-
length-independent optical aberrations.

An orthogonal decomposition of the incoming wave
front is a powerful tool for analyzing the performance
and operation of deformable mirrors (DM's). 4 -6

DM's can be operated in either a zonal or a modal
fashion.7 When they are operated in the zonal way,
the surface of the mirror and the actuator stroke
correct the topography of the incoming wave front.
Modal driving is conceptually more involved. First,
it is necessary to choose a proper set of polynomials to
expand the mirror and the wave-front functions.
Then the wave front is decomposed in terms of the
polynomial set. Finally the mirror is driven so that
the displacements of the actuators resemble the
desired polynomial expansion.

In this paper we investigate the expansion of each
of the actuator influence functions into a set of
Zernike polynomial functions. This decomposition
permits us to calculate the fitting between the Zernike
polynomials and the surface of the DM. The size of
the aperture over which the Zernikes are defined
affects the accuracy of the expansion. The optimum
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size of this aperture is found by minimizing the
variance of the wave-front error.

To treat a realistic case, we performed our calcula-
tions for a DM with 21 actuators arranged in a square
grid as shown in Fig. 1.

Matrix Representation of Modal Driving
Two alternative approaches represent the operation
of adaptive-optics systems. Zonal driving8 has a
simple matrix representation and permits in most
cases a one-dimensional treatment because of the
separability of the problem.9 Modal driving de-
scribes the operation of the mirror in terms of
functions related to the optical aberrations. In addi-
tion the orthogonality properties of the chosen basis
functions also simplify the calculation required for
the treatment of a two-dimensional (2-D) problem.

The surface of a DM with J actuators located in a
2-D grid can be described by a linear superposition of
the influence functions of the mirror:

()m(X, y) = mx, y)aj,
j=1

(1)

where aj is the signal that drives the actuatorj whose
influence function is m(x, y) and w°m is the surface
displacement of the DM.

If the wave front is sampled at discrete locations,
the previous continuous functions for wj and mj also
become discrete and the operation of the mirror can
be described by means of a matrix expression

w)m =Ya, (2)

where a represents the vector containing the driving
signal for each actuator, and X is the matrix contain-
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surface (L)m:

E = - (Om (3)

The total squared error over the DM aperture
provides a convenient summary measure of the correc-
tion achieved by the system. When both the wave
front o and the surface of the mirror w,,, are sampled,
they become discrete arrays. Following a standard
notation in adaptive optics,9 we define the total
squared error as a wave-front error variance under
the assumption that the mean wave-front error is
zero:

UWf2 = tE,

Fig. 1. Arrangement of the 21-actuator deformable mirror. The

total radius of the mirror is approximately four times the distance

between actuators. We have also represented the Gaussian size of

the influence function fl (where the influence function reaches a

value of 1/e the maximum value). Three different aperture sizes

have been plotted: solid curve, s = 1.0; dashed curve, s = 1.5; and

dotted curve, s = 2.0.

(4)

where superscript t denotes the transpose operation.
We can use Eq. (2) to find the driving signal that

best fits an incoming wave front w by minimizing the
variance of the wave-front error9"l0:

a = (tX)-2 tw, (5)

where superindex t denotes the transpose operation.
Therefore Eq. (2) becomes

ing the J influence functions sampled along a 2-D grid
of N sampling points. Because the problem of inter-
est is two dimensional, let us represent Eq. (2) as
shown in Fig. 2, where we have assumed a circular
aperture. Each 2-D vertical slice of the X matrix
contains one influence function sampled along the
2-D grid. They are stacked to form the three-
dimensional array representation of the J influence
functions.

The usual rules of matrix multiplication apply here
when the one-dimensional vector a multiplies the
three-dimensional array X to obtain the 2-D slice wm.
Actually this operation can be reduced to the conven-
tional matrix operation if the elements on the slices
are arranged as a long column vector. However, our
representation preserves the geometry of the problem
and allows clearer physical insight.

The wave-front error E is a measure of how good the
fit is between the incoming wave front o and the DM

J actuators

0 J

c m . a

Fig. 2. Three-dimensional representation of the matrix relation

w = Za. Each slice of the matrix R corresponds to the
influence function of each actuator. Therefore the whole stack

contains J slices.

(6)

This problem has been treated, and a transfer
function representation has been found by Lawrence
and Moore.9"0 In Eq. (6) the product Xt% is the
interaction matrix between the individual influence
functions described by Tyson.6 Therefore, when the
influence functions are orthogonal to each other, this
interaction matrix is equal to the unity matrix,

ee tX = (et) )-I = _>, and Eq. (6) transforms into

0.=X Xr (,' (7)

where 2" is the matrix of the orthonormalized influ-
ence functions.

The numerical evaluation of Eqs. (6) and (7) re-
quires many arithmetic operations when a grid with a
large number of sampling points is used, since the
matrix products involved in those equations contain
N x N elements. However, this matrix approach is
well suited to describing the zonal driving mode.

For modal driving the Zernike polynomials are
often used to expand the incoming wave front co and
also to represent the whole surface of the mirror.6

We will use the same functions to decompose the
individual influence functions for each actuator.
If we assume a finite family of Zernike polynomials
with K elements, the decomposition can be approxi-
mately described as

K-1

mj(X, y) = E CjkZk(Xy),
k=O

(8)

where the functional dependence on x and y requires
a change of variables from the usual polar coordinates.
The subscript k denotes the index number of the
Zernike polynomial for a given numbering scheme of
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the family.1 24 Even for influence functions whose
functional forms are identical, each influence func-
tion will have a different representation in terms of
the Zernikes because each actuator has a different
location with respect to the symmetry of the Zernike
set. The coefficients of the expansion are given by

Cjk = - mj(x, y)Zk(x, y)dxdy, (9)

where the area of integration is the circular aperture
S over which the Zernikes are defined.

The matrix version of Eq. (8) is

2 = Z&, (10)

where Z is the array obtained by stacking the K slices
corresponding to the Zernike set. The matrix 
contains J x K elements that describe the decomposi-
tion of the influence functions. Figure 3 is a graphi-
cal representation of Eq. (10) and its transpose ver-
sion X = tZt. If the decomposition in Eq. (10) is
used, Eq. (2) becomes

wm = Zla. (11)

The input wave front can also be represented as a
Zernike decomposition in the following matrix form:

= I, (12)

where I is the vector containing the coefficients of the
decomposition that can be obtained in the same way

J actuators K polynomials

K

= z .

as was done for the coefficients of the influence
functions [see Eq. (9)].

If Eqs. (10) and (12) are substituted into the matrix
relation (6), we obtain the following expression:

= Z ( tZtZ l tZtZI = Z( VF) -' VI,

(13)

where the product ZtZ is equal to the unity matrix _
because of the orthonormality relations of the Zernike
polynomial set. After we apply this property and use
Eq. (11), the following relation gives the driving
signal for each actuator as a function of the modal
decomposition of the incoming wave front:

a = ( t)-1 tI (14)

Equation (14) is the modal version of the zonal
relation given by Eq. (5). The use of one or the other
depends on the type of driving, zonal or modal, that
we choose for the operation of the mirror.

We can combine Eqs. (5) and (14) to find the modal
decomposition in terms of the zonal map of the
incoming wave front X in the following form:

I = ( t)- tl (15)

When Eq. (14) is inverted, the modal composition
that describes the surface of the mirror for a given
actuator driving signal a is given by

1= Wa. (16)

By using the decomposition of the wave front and
the surface of the mirror in terms of the Zernike
polynomials [see Eqs. (11), (12), and (14)], the residual
variance of the wave-front error can be expressed as

0-wf(modal)2 = It[- ( Wn) -1 W (17)

which corresponds with the zonal version of the
variance expressed in terms of the matrix of influence
functions and the incoming wave front Lo:

Uywf(zonal)2 = _ t[.- t2) - 1 t] (18)

......... ....... ........
........... .... :..... ..... _

_...,;:...........
..;..........;......;.....,...... : ..........

................_:_
..... .... ._._._. .

... .. .......... ... *1 K
polynomials

X = 9, 

Fig. 3. Three-dimensional representation of the modal decompo-
sition F = Z 0. Two stacks of a different number of slices are
related by means of the matrix W . The transposed version of this
matrix relation is also represented.

Choice of the Optimum Aperture Size
Equations (8) and (9) show how any influence func-
tion can be expanded in terms of the Zernike set.
The representation of the influence functions will be
more accurate when more polynomials are used in the
summation (see Fig. 4). However, for a fixed num-
ber of polynomials it is more difficult to represent a
spatially narrow function than a spatially broad
function. If the surface of the DM contains many
actuators, the influence function will be narrow with
respect to the total surface of the mirror. The
expansion in terms of the Zernikes will then need a
large number of terms to improve the accuracy of the
restored influence function. However, when the DM
has few actuators, the influence function will be
broader relative to the whole mirror and can be
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n = 8, (45 polynomials)

J2 = 0.0129

a,

'0

(a) W ' _ n = 10. (66 polynomials)

0 = 0.0083

(b) Ad n = 12 (91 polynomials)

9 S o >,2,,/= 0.005~~~n,= 0007

(ca Actual Influence Function

Fig. 4. Gaussian-type influence functions as represented by a

finite set of Zernike polynomials. The representation is more
accurate as more polynomials are used. (a), (b), (c) show the
restoration of the influence function using 45 (up to the eighth
degree, n = 8), 66 (10th degree, n = 10), and 91 (12th degree,
n = 12) Zernike polynomials, respectively; (d) shows the actual
influence function corresponding to the central actuator. These
figures correspond to a scaling factor s = 1. If the scaling factor
increases, the influence function becomes wider and the fitting will
be better.

1.0 1.2 1.4 1.6 1.8 2.0
Scale Factor

Fig. 5. Total variance of the whole actuator array Oinf 2 is repre-
sented as a function of the scale factor s for several decompositions
including 6th- to 12th-degree polynomials. The parameter n is
the maximum degree of the polynomial used in the expansion,
which varies from 6 to 12.

times the interactuator distance (see Fig. 1). We
evaluated the fitting for values of s between 1 and 2.
A scaling factor s = 1 indicates that the circular
aperture radius is 4 times the interactuator spacing.
The value s = 2 indicates that the circular aperture
radius is only twice the interactuator separation.

A parameter that can be used to quantify the
accuracy of fitting of the whole array of actuators is
the combined variance defined as

J
2inf = 2

j=1
(20)

where oj is the variance of the error of the representa-
tion of an individual influence function by means of
Zernike polynomials. To calculate oj we use the
error of the representation given by the following

represented more accurately by means of a finite
Zernike expansion, which is why the method pro-
posed in this paper is well suited for a small mirror
with few actuators. In particular the DM modeled in
this paper has 21 actuators distributed along a square
grid (see Fig. 1). The influence functions of the
actuators are assumed to be equal and have a Gauss-
ian shape with a coupling factor of 13% to the nearest
neighbor.

The relationship between the size of the DM and
the size of the aperture for the Zernike expansion will
affect the accuracy of the fitting. The scaling factor s
represents the relationship between the geometrical
parameters that define the mirror and the aperture
over which the Zernike polynomials are defined:

L
S = X' (19)

aperture

where L is the side of the square grid where the
actuators are located. In our case L is equal to 4

a)

5-

0

5-
a,a,

.a

._
*0

.

0

Q)

0

a,

CH

0=
a,

1.0 1.2 1.4 1.6 1.8 2.0
Scale Factor

Fig. 6. When the circular aperture where the Zernikes are
expanded is reduced, some portions of the outer influence functions
are excluded. We have represented this decreasing in the charac-

terization of the mirror in terms of the equivalent-area number of
influence functions included inside the aperture.

2434 APPLIED OPTICS / Vol. 32, No. 13 / 1 May 1993

r



0.8

0.6

0.4

1.0

0.8

a)
C)
a)

co

0.6

0.4

0.2

1.0 1.2 1.4 1.6 1.8 2.0
Scale Factor

Solid: n=3

Dashed: n=4

- N -

1.0 1.2 1.4 1.6
Scale Factor

Solid: n=5

Dashed: n=6/

1.0

0.8

--- /\

N

NI- - - - -

1.0 1.2 1.4 1.6
Scale Factor

a)
1

1Z
co

0.6

0.4

0.2

0.0
1.8 2.0

Solid: n=7

Dashed: n=8

I

1.0 1.2 1.4 1.6
Scale Factor

1.0
Solid: n=9

0.8 Dashed: n= 10
Solid: n=11

0.8 Dashed: n=12

)

C.

1.2 1.4 1.6
Scale Factor

1.8 2.0

0.6

0.4

0.2

0.0

1.0 1.2 1.4 1.6
Scale Factor

1.8 2.0

Fig. 7. Variance of the wave-front-error vector between the actual Zernikes and the restoration by the mirror UWf
2 is given in this figure forthe Zernike polynomials for the modal driving procedure. This figure also represents qualitatively the behavior of the variance when themirror is driven in the zonal mode.
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discrete array:

K-1

E = - E CjkZk, (21)
k=O

where both mj and Zk have been sampled along the
sampling grid. Thus the variance is defined as

cr, =Ej Ej. (22)

In Fig. 5 the variance uinf2 is plotted as a function of
the scaling factor s. A family of curves is generated
with the parameter n, which corresponds to the
maximum radial number of the Zernikes used in the
expansion. We note that for any particular n there
is a value of s that minimizes the variance. As n

increases the optimum scale factor decreases (larger
aperture), which allows the narrower influence func-
tions to be represented by the expansion. It should
be noted that as the scale factor increases (the smaller
aperture) a significant portion of the area of the outer
influence functions will be outside the aperture, and
therefore the effect of these actuators is diminished
(see Fig. 6). At this point we could define the
optimum size of the aperture over which the Zernikes
are expanded as the size that minimizes the variance
defined in Eq. (20). However, this gives only informa-
tion about how well the influence function can be
expanded in terms of the Zernikes when all the
influence functions have equal weight. This would
not be a measure of the behavior of the whole mirror
when it is working in a given driving mode, because
the DM is never operated with all the actuators
displaced at their maximum stroke. Thus we should
note that the variance defined in Eq. (20) cUinf 2 does
not represent the fitting in response to any incoming
wave-front function as Eq. (4) does for Uwf

2 It

measures only the accuracy of the expansion of the
influence functions in terms of the Zernikes.

To develop a wave-front-based criterion for the
choice of the aperture size, we reverse the problem
and represent the Zernike polynomials in terms of the
influence functions. This procedure can be ap-
proached in three ways.

First, one applies a zonal fitting where the influ-
ence function tries to represent the polynomial around
its area of influence. In this case we obtain the
driving signal of the actuators by applying a least-
squares fitting method whose general solution is Eq.
(5). The variance of the fitting will be a function of
the scaling factor s.

The second approach to representing the Zernike
polynomials is based on a pure modal way, and the
solution is given in Eq. (14) where all the elements of
the I vector are zero except the one that corresponds
to the Zernike polynomial that we want to represent.
This value of this element of the I vector is equal to
one.

The variance Orwmodal)
2 as a function of the scaling

factor is shown in Fig. 7 for Zernike polynomials up to
the 12th degree.

As we see in Eqs. (17) and (18), the behavior of

Uwfomodal)
2 and Urwfvzona1)

2 is similar. Thus Fig. 7 shows
only Uwqmodal)

2 . The difference between the two repre-
sentations is usually small and occurs for only a few
polynomials. This agreement is seen in Fig. 8, where
we plot the scale factor that gives the minimum
wave-front variance for both the zonal and modal
cases as a function of the Zernike polynomial index k.
It is clear the minimum is located, in the case studied,
around the value s = 1.5 for most Zernike polynomials.
For this value the aperture excludes the equivalent
area of 2.24 influence functions (see Fig. 6). Refer-
ring to Fig. 1, we notice that this exclusion has to be
shared, at least by the eight outer actuators, and
therefore each of them has more than 70% of its
influence function inside the clear aperture. The
cases for which the variance is not minimum around
s = 1.5 correspond to polynomials whose symmetry is
different from the rectangular symmetry of the grid
of actuators.

The value of the coefficients of the decomposition of
the influence functions in terms of the Zernike polyno-
mials is expressed by means of Eq. (9). When we use
the shifting properties of the 8 function, this equation
is simpler when all the influence functions are equal:

Cjk = 8 5(x - xj, y - Yj)[m(x, y) * Zk(x, y)]dxdy,Ir 

(23)

where * denotes the correlation operation.
The analysis of this expression gives us a third way

to represent the Zernike polynomial. When the influ-
ence functions are narrow compared with the aper-
ture size, the correlation gives the following approxi-
mate result:

Zk m * ZK, (24)

and the coefficients of the expansion are approxi-
mately cjk, where

djk = Zk(Xj, Yj) - (25)

These coefficients permit the exact reproduction of

a,

a,

2.0 ' I 

. Zonal represenfation

+ Modal representation

1.6
:* * *** *_ .* . _..**

1.4 *

1.2 0

1.0
025402 .,5 ,4 54 65,
02n5 9 14 20 27 35 44 54 65

Polynomial index

Fig. 8. Value of the scaling factor at which the minimum variance
is reached is plotted in this diagram as a function of the polynomial
index. The different symbols denote the different method of

calculating the fitting: diamonds are the zonal representation;
pluses are the modal representation.
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Local Value Approximation
Representation

Modal Representation

k=5 Nq

n = 2,m = 2

k = 1

n =4, m = 2

k. 18

n = 5. m = 3

k 36

n = 8, m = 

72 = 9. m 3
Fig. 9. DM compared with several Zernike polynomials whose radial numbers n, azimuthal numbers m, polynomial indices k are noted for
each row. The first column is the polynomial that the DM represents. The second column corresponds to modal driving. The zonal
representation has a similar appearance and is not shown separately. The third column is obtained from the local value approximation.
A scale factor s = 1.5 is used throughout. The values for Uwf

2 in each row are as follows from top to bottom: 0.1905 (modal), 0.1907
(zonal), 0.2085 (LVA); 0.1734 (modal), 0.1734 (zonal), 0.2118 (LVA); 0.2083 (modal), 0.2085 (zonal), 0.2477 (LVA); 0.1970 (modal), 0.1964
(zonal), 0.1260 (LVA); 0.1879 (modal), 0.1879 (zonal), 0.1876 (LVA).
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the Zernike polynomial Zk at the points where the
actuators are located if we drive the actuator j with
the driving signal jk. Then the Zernike Zk can be
represented by means of the following arrangement
of influence functions:

J

Zk -o)m= jkmj, (26)
j=1

or in a matrix form

Y = XdiCjkdt. (27)

This behavior, which we call the local value approx-
imation (LVA), can be useful in a first-order analysis
when the influence functions are narrow. This oc-
curs usually when the mirror has a large number of
actuators.

The calculations above allow us to show how the
different approaches work for a given polynomial
term. Figure 9 shows the representation of a few
Zernike polynomials (first column) when we use the
zonal driving (second column) and the LVA (third
column) for the optimum value, s = 1.5, obtained
from the analysis of the modal and zonal driving.
To obtain this representation, we calculated the
driving signal of the actuators a. This driving signal
has been normalized to have values between 0 and 1.
The Zernike polynomial has also been modified so
that its excursion ranges from 0 to 1. The surfaces
of the DM and the Zernike are compared, and the
variance is obtained. The maximum value of the
variance is the unit circle area rr, obtained for the case
of the maximum error of unity occurring over the
whole aperture. In the caption for Fig. 9 we noted
the variance values for the modal, zonal, and LVA
methods. The pictorial representation for modal
driving also applies to zonal driving. We can see that
the representation of the Zernike polynomials is
much better in the center of the aperture where the
spatial frequency of the Zernike is lower. The resto-
ration degrades as we look to the edge of the aperture.
However, the value of the variance does not change
significantly for higher-degree polynomials because
the high-frequency ripples are located in a narrow
interval close to the edge of the aperture.'

Conclusion
Modal driving of a DM has been described by means of
an expansion of the individual influence functions of

the mirror in terms of the Zernike polynomials.
This method is especially appropriate for represent-
ing DM's with a smaller number of actuators, because
the accuracy of the expansion improves when the
influence functions are relatively wide compared with
the total size of the mirror. We optimize the size of
the aperture over which the Zernike polynomials are
defined by minimizing the variance of the recon-
structed wave front. This optimum aperture is found
to encroach just on the outermost actuators of the
DM.
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