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1 Introduction
Deformable mirrors (DMs) have improved the image quality
delivered by optical telescopes and corrected atmospheric
perturbation effects on laser-beam propagation. Large-aperture
DMs that contain many actuators are used, in conjunction
with specially designed computers and signal-processing
systems , most frequently for high-performance applica-
tions. Harvey and Callahan2'3 and Moore and Lawrence4
developed a transfer-function model suitable for large DMs
that considers the spatial-filtering effect of the minor on the
variations of the incoming wavefront. Their model assumes
that edge effects are negligible.

However, when the specifications are lowered and the
applications do not require state-of-the-art technology, smaller
DMs with fewer actuators can be used. The reduced size
increases the importance of the individual performance of
each actuator and increases the effect of the (usually fixed)
edge of the mirror. These effects, which differ from one
mirror to the next, can be included in a transfer-function
analysis of the problem.
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Abstract. Edge effects for small deformable mirrors (DM5) with few ac-
tuators are analyzed by a matrix perturbation approach. An approximate
transfer-function model is developed for spatial-frequency analysis of
DMs, which includes edge effects.
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2 Derivation of System Matrix
In a one-dimensional model, which can be extended to the
two-dimensional and separable case, the resulting surface
of the mirror 0m that compensates for the incoming wave-
front O is given by

(Om(Xj) (1)

where a3 is the actuator driving input and m(x) are the J
influence functions, one for each actuator, measured at the
points x where the wavefront is sensed. This expression
can be written in matrix form because the phase front is
sampled at discrete locations. Equation (1) becomes

wm=Ma (2)

where (0m 5 a column vector with I elements corresponding
to the sampled topography of the mirror and M is the I xJ
matrix that defines the different influence functions, which
are usually assumed to be shift invariant. These influence
functions are represented in a sampled fashion along the J
columns of the matrix M. Finally, a is the column vector
whose elements are the driving signal for each actuator.
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Fig. 1 (a) Graphic representation ofthe matrix equation Wm Ma for
a one-dimensional mirror with five actuators. The column vector Wm
representing the mirror profile is obtained by multiplying the actuators'
driving signal a by the influence function for each actuator m rep-
resented along the columns of the matrix M. The dimension of the
column vector a (number of actuators) is smaller than the dimension
of the column vector Wm (number of sampled points). The element
(0,0) is located in the lower left corner of the matrix. (b) Graphic
representation of the matrix equation Wm — EMa. The effect of the
edge is introduced as a diagonal matrix where the diagonal elements
are the sampled representation of the edge function e(x). The ele-
ment (0,0) is located in the lower left corner of the matrix.

Figure 1(a) is a graphic interpretation of this matrix equa-
tion. Using Eq. (1), the input signal for the actuators that
minimizes the variance of the corrected wavefront5 for a
given input wavefront w, is

a=(MtM)'Mto.
With this driving signal, the figure of the mirror Wm is the
best compensation for the input wavefront o at the sampled
points. By substituting this solution, which minimizes the
variance of the corrected wavefront, into Eq. (2), it is pos-
sible to define a system matrix S that relates the input
wavefront w and the mirror profile Wm as follows:

This transfer matrix between the input wavefront and the
mirror shape is given by

S=M(MtM1Mt.

The matrix S describes the entire behavior of the mirror,
assuming an optimized actuator response given by Eq. (3).
Its characterization as a transfer matrix assumes that the
matrix for a system with perfect wavefront correction would
be a diagonal unit matrix. The deviation of the S matrix
from this ideal indicates to what degree the wavefront var-
iance has been corrected. This variance of the outgoing
wavefront 2 can be defined by using the difference between
the input wavefront and the mirror figure at the sampled
points . The squared modulus of the error vector w —
yields

(6)

(7)

where 1 is the diagonal unit matrix. To obtain Eq. (7), we
applied two useful properties of the transfer matrix: S 5
and 2 S The latter property shows that only one reflec-
tion on the mirror makes all the possible contributions for
reducing the variance of the outgoing wavefront and that
multiple reflections would be redundant unless shifted lat-
erally.

When the DM is very large and there are a large number
of actuators, we can make two simplifying assumptions:
(1) the influence functions are equal and (2) the outer region
of the mirror does not affect the general behavior of the
mirror. However, when the DM is small and the edge con-
tribution must be considered, we can define an edge function
e(x) that depends only on the position along the mirror and
can be applied multiplicatively over all of the influence
functions. Therefore, it can be introduced in the matrix
formulation as

(Om(Xj) ,

(0m = EMa

(8)

(9)

3 Figure 1 (b) is a graphic representation of Eq. (9), and Fig. 2
( ) compares the mirror surface profiles, with and without the

edge function. The edge matrix E is a diagonal matrix,
where the diagonal elements represent e(x) sampled at the
I required points. The diagonal characteristic of E also im-
plies the transposition invariance Et E , where the super-
script t denotes the transpose operation.

Using the edge function e(x), it is possible to retain the
previous assumptions about the influence function because

(4) the perturbative effects will appear in the E matrix.
The variance o.2 must also be minimized when the edge

factor is introduced. The product EM replaces M, just as it
did in passing from Eq. (2) to Eq. (9), so that the system
matrix becomes

(5)

We will refer to Eq. (5) as the zero-order solution because
of edge effects are included. Equation (5) is the solution
found by Moore and Lawrence4 for the case of a large
number of actuators and negligible edge effects. Their so-
lution has a clear interpretation in terms of the spatial-
frequency response of the mirror.

S = EM(MtE2MY 1MtE (10)

We will refer to Eq. (10) as the exact solution. Note that
it includes the edge effect both inside and outside the matrix
inversion operation. The most critical part of Eq. (10) is
the inverse matrix operation (MtE2M) _ I , whose interpre-
tation is the interaction matrix6 of the orthogonalized influ-
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(a)

Wm

which, after using the previous relations, gives

if2 wt(1 St)(1 _ S)w= — (L)tSet)

(b)



ALDA and BOREMAN

Fig. 3 Orthogonalized influence function m'(x) of the mirror for an
influence function m(x) having Gaussian shape and a coupling factor
of 37% between actuators (dashed line), Inclusion of the edge effect
multiplies the orthogonalized function and produces a damping of
the side lobes (solid line).

ence function affected by the edge function. This term does
not have a convenient spatial-frequency representation. To
gain some insight into the nature of the transfer function of
the DM, including the edge effect, it is possible to decom-
pose this factor in the following form:

(MtE2MY1 = (MtM)1+C

where C is the difference between the situation with and
without the edge effect. Although this decomposition may
appear to ignore the edge in the inversion operation, the
edge matrix also appears in the pre- and postmultiplicative
elements of Eq. (10). Using this decomposition, the system
matrix S can be written as

S=EM(MtMY1 MtE+EMCMtE

The solution we refer to as the first-order solution approx-
imates the system matrix S as the first term of Eq. (12),
EM(MtM)_ MtE . We would expect, however, that the con-
tribution of the edge would be somewhat overemphasized
by this first-order solution because the edge matrix appears
only outside the matrix inversion operation, without a com-
pensating term inside the matrix inversion.

The first-order solution can be directly expressed using
the orthogonalized functions that result from the mirror of
infinite extent.4 It is then possible to obtain the mirror profile
in the following way:

(Om(X) [e(x)m'(x)]* {[m'(x)e(x)]*w(x)} comb

where m'(x) are the orthogonalized influence functions, T
is the actuator spacing, and * and * represent the convolution
and correlation operators, respectively. A detailed deriva-
tion of a similar expression can be found in Appendix B of
Ref. 4. From Eq. (13), it is possible to realize that the edge
function actually affects the individual actuator influence
functions so that, even in their orthogonal form, they are
no longer shifted replicas of one another. The effect of the

edge function on the orthogonalized influence function cor-
responding to the central actuator is shown in Fig . 3 . The
dashed line corresponds to m'(x), the orthogonalized ver-
sion of the Gaussian influence function. The solid line in-
cludes the effect of the edge e(x) that multiplies m'(x),

(11) damping the ripples. The edge function has been assumed
with super-Gaussian shape. The amplitude of these ripples
grows with the coupling factor between actuators . There-
fore, the mirror with the edge factor acts, within this ap-
proach, like a nonedged mirror with smaller coupling be-
tween actuators.

In the Fourier transform domain;

(12) f1m() [()*i1,t'()] comb(T)}
(14)

where c , and .iVt denote the Fourier transforms of the
corresponding functions of Eq. (13). The procedure that
relates the spectrum of the incoming wavefront 1I) with
the spectrum of the surface of the mirror 11m() is a non-
multiplicative procedure with a clear dependence on the
edge factor. Figure 4 shows the spectrum of the orthogon-
alized function iIit'() (dashed line) compared with the con-
volution jfj'()*() (solid line). An ideal mirror would
have a rectangular spectrum with a width equal to the Ny-
quist frequency. Both spectra are close to this rectangular
function. However, the spectrum of the nonedged mirror
(dashed line) has a smoother behavior than the edged one
(solid line). On the other hand, the aliasing problems that
arise above the Nyquist frequency will have different im-

(13) portance, depending on the particular spectrum of the in-
coming wavefront.

3 Numerical Example

Although the first term ofEq. (12), EM(MtMY1MtE, could
be represented in the spatial domain as Eq. (13) and in the
spatial-frequency domain as Eq. (14), the second term of
Eq. (12), EMCMtE, does not have a simple representation
in either domain. To provide more insight into the contri-
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Fig. 2 Comparison of Wm(X), the mirror's surface profile, when the
edge is taken into account (solid line) or is neglected (dashed line)
for a given driving signal a.
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Spatial Frequency

Fig. 4 Spectrum t'() (dashed line) of the orthogonalized influence
function compared with A()*ciE() (solid line), the spectrum of the
product m'(x)e(x) represented in Fig. 3. The Nyquist frequency is
also noted.

butions of this term, we use a numerical calculation for a
typical small mirror. Our mirror has five actuators along the
studied direction. The influence functions of the individual
actuators m(x) are assumed equal, with Gaussian shape and
coupling factor between neighboring actuators of 17%. The
edge function e(x) is assumed to be of super-Gaussian shape.
These functions are plotted in Fig. 5. Their analytical
expressions are

2

m(x)= exP[_(OT)]
and

61

e(x)= exP[_()j

(15)

(16)

Fig. 5 influence function m(x) (solid line) and the edge function e(x)
(dotted line) for the case analyzed numerically. The influence function
has a Gaussian shape with a coupling factor of 17%. The edge
function is a super-Gaussian function (dotted line). The ticks are
located at the positions of the actuators.

.4.)

Using the specific parameters of Eqs. (15) and (16),
Fig. 6 presents plots of the mirror profile Wm , calculated
using Eq. (4), under the three different expressions (exact,
first order, and zero order) for the transfer matrix S. In each
case, ()m i5 the best-fit solution for a planar input wavefront.
In this example, we constrain the solution to exclude the
case of zero actuator displacement to show the differences
between the profiles for a simple but nontrivial case . The
solid line corresponds to the exact case [Eq. (10)1, where
the edge effect is accounted for. The dashed line corresponds
to the zero-order solution [Eq. (5)], where the edge has been
ignored. The dash-dotted line represents the first-order so-
lution, using the first term of Eq. (12), whose meaning in
terms of the spatial-frequency transfer function has been
found as Eq. (14). The exact solution for Wm lies between
the zero-order and first-order solutions, because the zero
order completely neglects edge effects and the first order
overemphasizes the edge effects. The exact solution, how-
ever, has no simple interpretation in the spatial-frequency
domain because of the matrix-inversion operation required
by Eq. (10). The advantage of using the first-order solution
in the analysis of small DMs is that it allows an approximate
spatial-frequency analysis of the edge effects.

Fig. 6 Mirror surface Wm produced in response to an input plane
wave is represented in this figure according to the equation Wm SW
for the case of nonzero actuator displacement. Three cases are
analyzed: exact response (solid line), zero-order response (dashed
line), and first-order response (dash-dotted line).

4 Conclusions
For the analysis of a small DM with few actuators, it is not
possible to directly use the zero-order approach of Eq. (5)
to find the spatial-frequency response because assumptions
about the invariance of the influence functions and the neg-
ligible effect of the edge are violated. The exact solution
of Eq. (10) has no simple interpretation in the spatial-
frequency domain but can be approximated by the first term
of Eq. (12). This first-order approach, while over-
emphasizing the effect of the edge, allows an extension of
the transfer-function analysis given in Refs. 2 through 4 to
the case of a DM with non-negligible edge effects.
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