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Abstract

The design of plane Fresnel zone plates, and binary-staircase kinoforms, has been analyzed in this paper for a non-imaging applica-
tion aimed to increase the performance of point-like detectors. They maximize the irradiance at the focal point of the diffractive element
maintaining some constrains in the lateral size of the element. The design of the binary-staircase kinoform has been described as an iter-
ative process. Some interesting results have been obtained for the values of the relative aperture number, or F/#. The practical case trea-
ted here produces elements with very low F/#. The results shows that the gain of the irradiance at the focal point increases with the focal
distance of the binary-staircase kinoform, and decreases with the focal length for a plane Fresnel zone plate having a limited lateral size.
The calculation of the width of the irradiance distribution makes it possible to select those solutions that best concentrate the irradiance
on the focal plane.
� 2005 Elsevier B.V. All rights reserved.
1. Introduction

Fresnel lenses are typically used to focus, or reshape, the
irradiance distribution on detectors, and focal planes, in
several electromagnetic bandwidths [1–4]. Some other solu-
tions involving refractive lenslet arrays can be used [2], but
they require a separate manipulation to align and integrate
them with the detectors. The situation treated in this paper
is a simple non-imaging application where the use of dif-
fractive elements may change drastically the capabilities
of a given technology. This is the case for infrared anten-
nas. An interesting feature of infrared antennas is their
point-like characteristic [5,6]. So far, we may say that opti-
cal and infrared antennas are the light detection technology
having the smallest responsivity area (�k2

0, being k0 the
detection wavelength). Typically, when infrared antennas
are used for infrared imaging applications they are pat-
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terned as a two-dimensional array at the location of the
focal plane of the imaging optical system. The collected
energy focused on a given individual detector can be in-
creased by using diffractive non-imaging optics. In a previ-
ous contribution [7], it was proved that infrared antennas
improve their responsivity, and the value of their normal-
ized responsivity D*, when customized Fresnel zone plates
(FZP) are coupled to them. The responsivity is defined as
the signal, in current or voltage, for a given inciding optical
power [8]. On the other hand, the normalized responsivity

is defined as D� ¼
ffiffi
A
p ffiffiffiffi

Df
p

NEP
, where A is the detection area, Df

is the frequency bandwidth of the electronic subsystem
used in the detection, and NEP is the noise equivalent
power, defined as the power of the signal that produce a
signal-to-noise ratio equal to 1 [8]. In the case of FZP cou-
pled to infrared antennas, both the detector and Fresnel
lenses were made using electron beam lithography, and
integrated on the same double side, double polished, Si
wafer. As far as that paper was aimed to prove the integra-
bility of diffractive optics with the detection device on the

mailto:j.alda@opt.ucm.es


J. Alda et al. / Optics Communications 260 (2006) 454–461 455
same element, there were no conditions about the lateral
size of the FZPs. However, several applications involving
the use of FZP are constrained by dimensional limitations
for the transverse size of the FZP located in front of the
detector. This is the case of focal plane arrays (FPA) com-
posed of infrared antennas. The pitch of the FPA determines
a maximum pixel�s size. Moreover, this spatial period fixes,
along with the characteristics of the optical system used to
collect the energy and form the image, the resolution and
sampling limitations of the system. On the other hand,
the focusing gain of the Fresnel lens increases with the
number of Fresnel zones. However, for a fixed transverse
dimension of a plane FZP lens, the number of zones
decreases when the focal length of the lens increases. This
means that those Fresnel lenses having a large value of
the F/# are not very well suited for its use for high-gain
coupling applications. In this paper we define the aperture
number, or f-number, for an object at the infinity as F/# =
f 0/DEP, where f 0 is the focal length of the system, and DEP is
the diameter of the entrance pupil. In our case DEP can be
considered as the lateral size of the diffractive element. To
optimize the design of low-F/# diffractive elements, even
within the scalar approximation, a more detailed solution
is required. Our attention has been focused on a three-
dimensional diffractive element: a binary-staircase kino-
form [4,9]. The result is a diffractive solid immersion lens
[10]. A previous analysis of this elements was done by us
using a finite-differences in the time-domain algorithm
(FDTD) [11]. One of the main conclusion of that paper is
that the results obtained for the irradiance distribution
from the FDTD were very close to the values obtained
from the application of the Huygens–Fresnel principle
[12], even when the spatial dimensions of the structure
are only a little larger than the wavelength, and the appli-
cation of the scalar diffraction approach could be compro-
mised [13–16]. The comparison between the results of the
scalar diffraction theory and the FDTD [11] shows the
same trend observed by Bendickson et al. [16] for the irra-
diance of the focal plane of low f-number elements. For the
case of plane Fresnel zone plate lenses of large F/# the fab-
rication was made by writing the zones on the surface of a
double polished silicon wafer. The center of the FZPL was
aligned with respect to the location of the infrared antenna.
In this case, we propose the fabrication of the binary-stair-
case kinoform by using, for example, micro-machining
techniques [17] or diamond turning machines [18] prior to
the fabrication of the antenna, in order to preserve the
detector as much as possible from the adverse effects of
the fabrication method.

In this paper, we analyze the design of two types of dif-
fractive elements: a Fresnel zone plate, and a binary-stair-
case kinoform. The geometric parameters defining the
Fresnel zones have been obtained from optical path calcu-
lations [10]. The analysis has been done by computing the
propagation of the wavelets produced at the location of
the Fresnel zones within the scalar approximation. The
incoming radiation is modelled as a plane wave propagat-
ing along the optical axis of the diffractive element. For
the planar FZP the characteristics of the design are quite
simple and some discussion about the feasibility of the
design are analyzed in Section 2. In Section 3, we have ana-
lyzed a special type of kinoform constructed with concentric
annuli located in a staircase arrangement, this diffractive
element is named along the paper as a binary-staircase
kinoform. The maximum departure of the phase shift is
limited to p. The conditions established for the optical path
determine the actual dimensions of the binary-staircase
kinoform structure. We obtain here several constraints
about the geometry of the successive Fresnel zones. The
proposed design maximizes the number of zones of the
kinoform. An iterative procedure is propose to obtain the
optimized design. A practical case applicable to the bin-
ary-staircase kinoform made of Si and working at
k0 = 10.6 lm is presented. The gain in irradiance due to
the diffractive element is calculated as a function of the
focal length. A detailed analysis of the optimum solution
is made within the scalar diffraction approach. This analy-
sis provides a design having the minimum focal length, and
the minimum F/# for a given number of zones in the bin-
ary-staircase kinoform. This design also optimizes the con-
centration of the irradiance around the focal point of the
kinoform. Finally, Section 4 summarizes the main conclu-
sions of the paper.

2. Fresnel lenses arranged as planar Fresnel zone plates

When considering the design of Fresnel lenses for micro-
optics applications we are typically restricted to the selec-
tion of a very few parameters: the transverse size of the
lens, 2R (being R the maximum radius of the Fresnel lens),
the focal length, f 0, and the refractive index of the material
used to fabricate the lens itself, n. Due to their diffraction
mechanism, there is another parameter that plays a decis-
sive role in the design of the lens: the wavelength in vacuum
of the incoming radiation, k0.

The Fresnel lens is defined by the Fresnel zones. These
zones are defined by computing the optical path from the
object to the image points and allowing a maximum depar-
ture of k0/(2n). For a FZP working with an object placed at
infinity, the Fresnel zones are placed on a plane located at a
distance f 0 from the focal point (see top of Fig. 1). The
radius of the zones are given by the following expression:

rm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mk0f 0

n
þ m2k2

0

4n2

s
. ð1Þ

If the focal length is much larger than the transverse size of
the lens (large F/#) then the last term within the square
root can be neglected with respect to the first one. Most
applications of micro-optics Fresnel lenses are for an object
at infinity. Therefore, the image is located at the focal point
of the lens. This type of lens serves for the task of collecting
the incoming energy onto a given area where the detector is
placed. Due to the limitations in the transverse size



Fig. 2. The gain factor decreases when f 0 increases. The solid line is for a
plane FZP having alternated obscured Fresnel zones (the central zone is
open). The dashed line is for a pure phase planar FZP. The number inside
the graphic area represent the number of Fresnel zones. The dotted line is
the GF calculated for the binary-staircase kinoforms designed in this
paper. Here, it is shown for comparison.

Fig. 1. Graphical layout of a planar FZP and a binary-staircase kinoform.
The optical axis of the diffractive elements is the rotational symmetry axis,
Z.
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(rm 6 R, "m) the maximum number of Fresnel zones, M, is
also limited and is given by

M ¼ 2n
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 02 þ R2

q
� f 0

� �
¼ 4nR

k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F #2 þ 1

4

r
� F #

" #
; ð2Þ

where we have used F# to denote the relative aperture
number, or f-number, F/# (this has been done to avoid
misinterpretations in the reading of the equations). The
absolute maximum for the number of zones of a plane
Fresnel lens is obtained when considering a lens having a
focal length f 0 ! 0 (this is equivalent to consider F/#! 0)

Mmax ¼
2Rn
k0

. ð3Þ

From previous results, it is known that the efficiency gain
of the Fresnel lens will be larger when the F/# decreases
and the FZP lens involves more Fresnel zones [7]. How-
ever, the contribution of each zone decreases as the zone
is located farther from the center of the Fresnel lens be-
cause of the obliquity factor in the calculation of the con-
tribution of the individual wavelets to the field on the
focusing region. On the other hand, a plane FZP with adja-
cent zones showing a corresponding phase difference of p is
usually fabricated having a squared profile with non-negli-
gible thickness (actually, the thickness of the profile of a
pure-phase FZP is k0/(2n)). Even for a plane FZP with ob-
scured zones, some material has to be deposited to block
the incoming light. For very low F/# lenses, the thickness
of the profile of the plane FZP may be comparable to the
focal length or the lateral extension of the Fresnel zone.
In this case, the obscuration between adjacent Fresnel
zones may preclude the contribution of those zones located
far from the center of the optical axis. Then, the results ob-
tained from optical path calculations within the scalar
treatment is just an approximation. Therefore, in practice,
both the obliquity factor and the obscuration effect are
limiting factors for the maximum size of the Fresnel lens
designed as a plane plate. The gain factor of the diffractive
element, GF, is defined as the ratio between the irradiance,
I, with and without diffractive element, at a given point on
the focal plane (described by rd). It can be written as

GFðrdÞ ¼
Iwith diffractive elementðrdÞ

Iwithout diffractive elementðrdÞ
. ð4Þ

In Fig. 2, we have computed the gain factor for a collec-
tion of planar FZP with varying focal length. The incom-
ing radiation is a uniform plane wavefront inciding
normally onto the FZP, and GF is calculated at the focal
point, rd = 0. The wavelength in vacuum is k = 10.6 lm,
and the material supporting the FZP is Si. This material
is transparent for the analyzed wavelength and has an in-
dex of refraction n = 3.42. The irradiance is calculated by
adding all the electric field amplitude contributions of the
forward propagating wavelets. The complex electric fields
are added, and then the irradiance is obtained after squar-
ing the modulus of the resulting electric field. The irra-
diance without diffractive element is calculated by
propagating a non-apertured infinite plane wave. The re-
sult, Iwithout diffractive element, is taken as the reference for
all the cases having a diffractive element. The irradiance
obtained for the diffractive element is calculated taking
into account only the plane wave inciding onto the dif-
fractive element. All the planar FZPs represented in
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Fig. 2 have the same limitation in their transverse size,
2R = 55 lm. The solid line is for plane FZPs having alter-
nated obscured Fresnel zones (the central one is open),
and the dashed line is for pure-phase planar FZPs. In this
last case we have neglected the obscuration effect due to
the finite thickness of the phase profile. From this plot,
we conclude that GF decreases with f 0 because the num-
ber of Fresnel zones, for a fixed lateral dimension, is also
decreasing when f 0 increases. The vertical solid lines repre-
sent the change in the number of Fresnel zones. In the
analyzed case, the FZPs have a number of Fresnel zones
ranging from 4 to 10. The dotted line represents, as a
function of the focal length, the GF for the binary-
staircase kinoform designed in the following section.

3. Three-dimensional Fresnel lenses. Binary-staircase

kinoforms

Another kind of diffractive element used in micro-optics
applications are those where the Fresnel zones are located
in a three-dimensional arrangement [4]. The elements
obtained using this three-dimensional arrangement can be
classified as a binary-staircase kinoform [9], or a diffractive
immersion lens [10]. The kinoforms treated in this contri-
bution consist of a sequence of Fresnel zones configured
as flat parallel steps each having an annular shape (even
the first one could be considered as a circular annulus hav-
ing an internal radius equal to zero). The phase difference
between the optical path from the two limits of every step
is p. In the bottom of Fig. 1, we show the spatial arrange-
ment of the kinoform and how the cylindrical coordinate
system is configured. The global shape of the element
analyzed in this paper is convex. However, it could be also
possible to define a concave binary-staircase kinoform hav-
ing the same focalization behaviour. The effect of the
obscuration between adjacent zones could be more relevant
for the concave case than for the convex one. The steps of
our convex binary-staircase kinoform are plane interfaces
separating two media having different index of refraction,
next, and n (where next denotes the index of refraction of
the medium where the incident wavefront is coming from).
The dimensions of these steps are one of the results of the
design process. For each Fresnel zone, the internal points
of the annulus corresponding to the zone labelled with
index, m, are given by coordinates (rm, zm), and the external
points are given by ðr0m; z0mÞ. The design process has to pro-
duce the values of these geometric variables optimized for a
maximum radiometric efficiency of the kinoform computed
from optical path calculations within the scalar approxima-
tion. Although the design approach is purely geometric
[10], a more accurate description of binary-staircase kino-
forms using finite-differences in the time-domain (FDTD)
methods provide more accurate results. The FDTD results
locate the focus of the kinoform in the same location
obtained from optical path evaluation, approximately
[11]. This result is in good accordance with the conclusions
obtained by Bendickson et al. [16] for the case of the irra-
diance distribution at the focal plane of a diffractive lens,
where they found less discrepancies between the exact
and the scalar diffraction approach.

Let us assume that light is inciding as a monochromatic
plane wave having a wave vector,~k, parallel to the optical
axis of the diffractive element. This choice is made because
we pay special attention to the practical case of collecting
the irradiance coming from the infinity, and focusing it
onto the focal point of the kinoform. This point will be
the location of the point-like detector. The extension of
the Fresnel zone is given by the same condition about the
optical path difference used for the typical design of plane
Fresnel lenses. In this case, the optical path difference has
to take into account the optical path travelled from a given
reference plane. Without loss of generality this reference
plane is located at a distance f 0 from the focus. The limit
of the zone m is reached when the geometrical path obeys
the following condition:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r02m þ ðf 0 � z0mÞ
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m þ ðf 0 � zmÞ2
q

þ k0

2n
; ð5Þ

where the square root on the right-hand side of the equation
represents the geometrical path from the inner limit of the
zone to the focal point, and the square root of the left-hand
side of this equation represents the geometrical path for the
outer limit of the same Fresnel zone. The geometric path
difference is established in this equation as k0/2n. The previ-
ous equation involving geometrical paths holds true
because the wavelength has been shrunk by the factor n.
However, any other condition to produce a finer quantiza-
tion of the optical path can be set by changing the 1/2n fac-
tor to another suitable value. From this equation, we may
obtain the value of the radius of the first zone r01. This equa-
tion produces the same result than (1) only for the first zone
(m = 1, assuming that r1 = 0, and z1 = 0). Due to the stair-
case arrangement of the zones we may assure that

z0m ¼ zm. ð6Þ
The next zone, m + 1, begins where the previous finishes,
but at a different height. This means that

rmþ1 ¼ r0m. ð7Þ
Besides, the optical path from the beginning of the follow-
ing zone to the focal point has to be equal to the optical
path from the beginning of the previous zone to the focal
point. Then, by applying this recurrence, this optical path
is equal to nf 0, that is the optical path from the center of
the first zone to the focal point. This condition can be gen-
eralized to obtain the distance from the reference plane of
the successive Fresnel zones, zm (where m = 2, . . ., M), as

nf 0 ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m þ ðf 0 � zmÞ2
q

þ nextzm. ð8Þ

Geometrical interpretations can be obtained from the pre-
vious conditions. Eq. (8) establishes the internal limits of
the Fresnel zones. Eq. (5) defines the external limits of
the Fresnel zones. After some algebra, the curve for the
internal points of the Fresnel zones is written as



Fig. 3. Dependence of the minimum F/# vs. the index of refraction of the
material of the lens (assuming air as the external medium).
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z ¼ nf 0

nþ next

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ next

n� next

� �
r2

f 02

s" #
; ð9Þ

where we are assuming that next < n. The curve defining the
outer limit of the Fresnel zone is obtained from Eq. (5) and
condition (6), and is given by

z0 ¼ f 0 � n
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02 � r2 � k0

2n

� �2
" #2

� k0r
n

� �2

vuut . ð10Þ

By using Eqs. (9) and (10), we define a region where the
annular steps fall.

As we have seen, Eq. (8), is used to define the inner
radius of each Fresnel zone. This condition defines a stig-
matism correspondence between a centered point at the
infinite and another point immersed in the second medium
and located at f 0. A simple algebraic transformation of this
relation gives the equation of a conicoid surface of the type
r2 = 2qoz � pz2. This surface has a radius of curvature at
the vertex, qo = f 0(n � next)/n, that is equal to the radius
of curvature of a spherical dioptric surface having its focal
point at f 0. The asphericity parameter, p ¼ 1� n2

ext=n2, cor-
responds with that of a prolate ellipsoid (0 < p < 1). This
means that the curve described by Eq. (9) is wider than
its tangent sphere (the tangent sphere can be obtained by
substituting p = 1 in the conicoid equation). Eq. (9) can
be used to obtain some other important relations. This
equation contains a square root which has to produce a
real valued result. Then, the term inside the square root
has to be greater than zero. Therefore

r 6 rmax ¼ f 0
n� next

nþ next

. ð11Þ

This condition implies a relation between the transverse
size of the Fresnel zone and the focal length when the size
is limited by the previous condition. This relation can be
written in terms of the numerical aperture as follows:

F # P
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ next

n� next

r
. ð12Þ

The term inside the square root is related with the reflec-
tance of the lens medium and the external medium inter-

face, R ¼ n�next

nþnext

� �2

. By using this relation, Eq. (12) becomes

F # P
1

2
R�1=4. ð13Þ

The evolution of this minimum value for F/# as a function
of the index of refraction of the material used to fabricate
the lens is plotted in Fig. 3. It should be noted that for the
case of infrared materials, the index of refraction is typi-
cally larger than in the visible. Then, the reflectance is
larger than in the visible and the inequality (13) has a lower
bound. This fact makes possible to produce lenses with
lower F/# in the infrared than in the visible. This means
that, as the index of refraction of the material of the
lens increases, the focusing capabilities improve and the
maximum irradiance is larger. However, this trend is com-
pensated by the increase in the reflection coefficient. On the
other hand, the absolute minimum for F/# has a more
complicated dependence on the value of the focal length
of the lens, as we will see in the following subsection.

3.1. Practical design of kinoforms with minimum F/#

In the previous paragraphs, we have presented a collec-
tion of equations and conditions determining the design of
a binary-staircase kinoform. Now, we describe how this
design may be realized in practice. We propose an iterative
method that builds the kinoform one zone after the other
beginning with the central one. This procedure needs the
knowledge of the internal coordinates of the first zone.
We set these coordinates as r1 = 0 and z1 = 0. The method
itself will be applied starting at the first zone in a recurrent
manner, until some design condition is reached and the
iterative procedure stops. In the method presented here,
the condition to stop the design maximizes the number of
zones. This is because the irradiance at the focal point
increases with the number of zones. At the same time, when
the number of zones increases, the transverse dimension of
the kinoform also increases and the F/# decreases, reaching
a minimum value.

The input of each iteration are the coordinates of the
internal limit of the m zone, (rm, zm). The method uses
the fact that the Fresnel zones are located at parallel planes
between the lines defined by Eqs. (9) and (10). This means
that condition (6) has to be satisfied for each zone, and z0m is
easily obtained. Besides, the outer radius limiting a given
Fresnel zone is obtained from condition (5) as

r0m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m þ
k2

0

4n2
þ k0

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

m þ ðf 0 � z0mÞ
2

qs
. ð14Þ

At this point we have the coordinates of the inner and out-
er limits of the zone m, (rm, zm) and ðr0m; z0mÞ, respectively.
The next zone begins where the previous one finishes. This
condition has been described by Eq. (7). The height of this
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following zone is given by the condition (8), that corre-
sponds with Eq. (9). This last equation can be re-written
using now the appropriate subindices as

zmþ1 ¼
nf 0

nþ next

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nþ next

n� next

� �
r2

mþ1

f 02

s" #
. ð15Þ

The previous equations define the iterative procedure as the
successive application of equations (6)–(14) and (7)–(15).
The process stops when applying Eq. (15) the solution is
complex for a given m + 1 = M + 1. This happens when

r0M ¼ rMþ1 > rmax; ð16Þ
where rmax is defined in (11). Therefore, the number of
zones of the kinoform is M. In Fig. 4, we present the flow
graph of the proposed iterative algorithm.

As a consequence of the previously proposed method of
design, we may say that the last zone of the binary-staircase
kinoform finishes at a point belonging to the curve (10). If
we are interested in an element having the maximum num-
ber of zones possible, the iterative method is only stopped
when no real value is obtained from Eq. (15). Depending
on the value of the focal length, the actual radius of the
outer limit of the kinoform, r0M , is larger than, or equal to,
rmax. Unfortunately, there is not an analytical form for
Fig. 4. Flow graph of the iterative method proposed to obtain the
geometric parameters of the optimized binary-staircase kinoform. The
method begins with the value of the inner points of the first zone, and
stops when the external radius of the last zone is larger than the maximum
allowed internal radius, rmax.
r0M because it is obtained from an iterative process. In
any case, the value of the F/# given by Eq. (13) can be con-
sidered as an upper limit for those kinoforms having the
maximum number of zones possible.

In order to clarify these previous concepts, we have
performed a numerical calculation of several designs of bin-
ary-staircase kinoforms. The physical parameters used in
the design correspond with the practical situation of an ele-
ment fabricated with Si, n = 3.42, operating at k = 10.6 lm
(Si is transparent at this wavelength). We are assuming a
plane wavefront incident normally onto the kinoform from
the air. Fig. 5 shows that the F/# of the kinoform is
between two limits. The upper limit corresponds with the
condition of Eq. (13) that is not dependent on f 0. The lower
limit is depending on the focal length. The sharp changes in
F/# are produced when the inner limit of the last zone is
equal to rmax. The dashed line represents the condition lim-
iting the diameter of the kinoform to 55 lm (as it was done
for the plane FZP). The lenses located to the left of this
dashed line represent binary-staircase kinoforms having a
diameter smaller than 55 lm.

The diffractive elements described in this paper are
designed to increase the irradiance in its focal plane. There-
fore, our interest is to know the behaviour at the focal
plane of the binary-staircase kinoform compared with the
situation without any element under the same incidence
conditions. Fig. 6 represents the value of the gain factor
of the binary-staircase kinoform as a function of its focal
length. In Fig. 6, the selected point is the focal point,
rd = 0. We may see that the gain factor increases with the
focal length. The vertical lines represent the transitions
between elements having an additional Fresnel zone. It is
interesting to note that the gain factor jumps to a higher
value when the number of zones increases. This is because
of the additional contribution of a new Fresnel zone. In
Fig. 7, we compare in the same graph the physical layout
and shape of two binary-staircase kinoforms, having
Fig. 5. Variation of the F/# as a function of the focal length. The numbers
in the graphic area denote the number of Fresnel zones. Those binary-
staircase kinoforms located to the left of the dashed line are those having a
transverse size smaller than 55 lm.



Fig. 6. The gain factor, GF, increases with the focal length. The vertical
lines determine the regions with the same number of zones (denoted by
numbers inside the graphic area). GF jumps abruptly when a new zone is
added. Within those designs having the same number of zones, GF
increases but at a smaller rate. Fig. 8. The gain factor can be calculated at any location on the focal

plane. It has a maximum at the center. The solid line represents the gain
factor distribution for the design shown on the left side of Fig. 7. The
dashed line is for the practical design represented on the right side of
Fig. 7. Besides of an increase in the gain factor, we can see that the energy
is more concentrated for the dashed line. The vertical lines plotted in this
figure are located at the position of the calculated width for each
distribution.
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M = 6 (at the left), and M = 7 (at the right) Fresnel zones.
This figure explains how the application of the iterative
procedure may produce two kinoforms having very similar
focal lengths, but having a different number of Fresnel
zones, and therefore a different behaviour at the focal
plane. In Fig. 8, we have represented the gain factor as a
function of the position at the focal plane of the binary-
staircase kinoform. This plot is proportional to the irradi-
ance distribution at the focal plane and calculated under a
scalar diffraction approximation. The curves represent the
cases plotted in Fig. 7. The dotted line is for the case with
M = 7, and the solid one is for M = 6. As we already
proved in Fig. 6 the gain factor is larger for a larger num-
ber of zones, although the change in the focal length is very
small. Another interesting remark is the change in the
shape of the irradiance around the focal point. This fact
can be seen in this figure and it is also parameterized with
the calculation of the width defined with the second-order
moments of GF(rd)
Fig. 7. This figure compares the actual profiles of two binary-staircase
kinoforms. On the left of the optical axis, we have represented a binary-
staircase kinoform having six Fresnel zones. On the right side, we have
plotted a binary-staircase kinoform with seven Fresnel zones. These
designs differs very little in focal length but the gain factor and their spatial
distribution changes significatively.
x ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1
�1GFðrdÞr2

d drdR1
�1GFðrdÞ drd

s
. ð17Þ

This has been represented in Fig. 9 as a function of the
number of zones. The meaning of this figure is that the irra-
diance is more concentrated (lower width) when F/# is
smaller for a given value of the number of zones. The ver-
tical solid lines connecting the large dots represent the evo-
lution of the width as the focal length increases. The
Fig. 9. Plot of the width calculated with the second-order moments as a
function of the number of zones. The width is narrower for those binary-
staircase kinoforms having a shorter focal length. The vertical solid lines
between the circles represents the evolution of the width as the focal length
increases for a constant number of Fresnel zones.
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oblique solid lines only represent the connection between
kinoforms having an additional Fresnel zone (no elements
are defined having a non-integer number of Fresnel zones).

Summarizing the previous findings, we may conclude
that the design of the binary-staircase kinoform can be
optimized by selecting the focal length corresponding to
the minimum value of the F/#. This is because the most sig-
nificant change in the gain factor is produced when an
additional Fresnel zone appears. On the other hand, for
those formats having the same number of zones, the gain
factor increases, however, the width also increases and dis-
tributes the irradiance on a larger area.

4. Conclusions

In this contribution, we have presented a geometric
analysis of the conditions defining the spatial dimensions
of FZPs and binary-staircase kinoforms optimized to
increase the irradiance on the focal point of the diffractive
element and constrained by a bound in their lateral dimen-
sions. These diffractive elements are capable to improve the
electro-optical performance of optical and infrared anten-
nas. The design of the diffractive element is based on geo-
metric and optical path calculations. The treatment is
made under the scalar diffraction approximation because
a previous and more detailed analysis of the same type of
elements using FDTD techniques produced results in good
agreement with the expectations obtained from the scalar
diffraction analysis. The illuminating source is a collimated
uniform plane wave having a direction of propagation par-
allel to the optical axis of the diffractive elements. The anal-
ysis has begun with the case of a plane FZP. In this case,
the transverse size limitation has been related to the total
number of zones obtaining that, for a fixed lateral size,
the number of zones increases as the focal length of the
FZP decreases. We have made a more detailed analysis
of a binary-staircase kinoform consisting of plane parallel
circular annuli. The maximum departure in the phase
between the limits of a given annulus is p. Within the design
conditions, we have developed a sound iterative method to
specify the dimensions of an optimized element. The
method begins with the dimensioning of the first zone
and obtains the spatial locations of the maximum number
of Fresnel zones allowed.

The evaluation of the optical path for a uniform plane
wave coming from infinity and focusing on the focal point
of the binary-staircase kinoform has produced several
interesting results. The first one is that the F/# for a bin-
ary-staircase kinoform with the maximum number of zones
diminishes as the index of refraction of the material used to
fabricate the binary-staircase kinoform increases. The
actual F/# for the optimized case is ranging between a
value that only depends on the index of refraction of the
diffractive immersion lens and the index of refraction of
the external medium, and another lower value that also
depends on the focal length. The gain factor at the focal
point, defined as the ratio between the irradiance with the
binary-staircase kinoform and without the kinoform at this
focal point, increases with the focal length. The gain factor
actually jumps to a higher level when an additional Fresnel
zone is added to the design. On the other hand, the concen-
tration of the irradiance is lowered when the focal length
increases for a fixed value of the number of zones. This fact
points out that the optimum binary-staircase kinoform is
obtained for the minimum focal length at a fixed number
of zones. This minimum focal length also corresponds with
the minimum aperture number.

Finally, we may say that the gain factor has been
obtained for a binary-staircase kinoform having plane inter-
faces between air and media. An important improvement of
the design could be achieved if the kinoform is coated with
an anti-reflection film. As far as the transmittance due to
Fresnel reflection in the air/medium interface is equal to
0.7 for the material selected in this paper, the improvement
in the gain factor could be a factor of · 1.42 just by adding
an appropriate anti-reflection thin film.
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[11] J.M. Rico-Garcı́a, J.M. López-Alonso, B. Lail, G. Boreman, J. Alda,

Proc. SPIE 5612 (2004) 216.
[12] E. Hecht, Optics, Addison-Wesley, Reading, MA, 1998.
[13] D.A. Pommet, M.G. Moharam, E.B. Grann, J. Opt. Soc. Am. A 11

(1994) 1827.
[14] Z. Jaroszewicz, A. Kolodziedjzyk, M. Sypek, C. Gómez-Reino, J.
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