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1. INTRODUCTION

Hexagonal sampling for detector arrays can provide an improve-
ment over rectangular sampling. For circularly bandlimited two-
dimensional signals with circular support, the hexagonal sam-
pling lattice is optimal in the sense that a lower sampling density
is required for exact reconstruction of the signal. 1-3 Hexagonal
sampling requires approximately 13.4% fewer samples than rec-
tangular sampling. In point-source tracking applications, hex-
agonal sampling with a hexagonal pixel shape also has advan-
tages over rectangular sampling." For point-source location,
the hexagonal detector array gives a lower error for the centroid
calculation and the algorithm is also less sensitive to detector
noise.

This paper considers hexagonally sampled detector arrays in
terms of their modulation transfer function (MTF). An expres-
sion for the MTF is derived by treating the array as an integral
sampler. An integral sampler produces a sampled version of the
input irradiance by first performing spatial averaging of the input
irradiance over the individual pixels, followed by a point-sampling
process. For bandlimited input irradiance functions, the MTF
can be derived from the geometrical shape of individual pixels.
The MTFs for both hexagonal pixels and equivalent-area rec-
tangular pixels are calculated. A hexagonal pixel shape is shown
to have an additional advantage over a rectangular pixel shape
in terms of the MTF.
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Abstract. The modulation transfer functions (MTFs) of hexagonally sam-
pled arrays with both rectangular and hexagonal pixel shapes are derived
from spatial averaging considerations. In one direction, the hexagonal
pixel shape is shown to provide a 13.6% improvement in MTF at the
Nyquist bandlimit over an equivalent rectangular shape. For the orthog-
onal direction, the hexagonal shape has a slightly worse MTF, which is
4.8% less than the MTF of the rectangular shape at the Nyquist bandlimit.
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2. MTF DEPENDENCE ON PIXEL SHAPE

Figure 1 shows the hexagonal and equivalent rectangular pixel
shapes for a small portion of a hexagonally sampled detector
array. Two assumptions were made regarding the detector array
geometry. First, a 100% fill factor was used to simplify the
analysis. Second, a regular hexagonal shape with a side length
of L was used to produce the detector array; the sampling lattice
coordinates were determined from this construction. The rec-
tangular pixel shape and the hexagonal pixel shape shown in
Fig. 1 have equal areas and have the same sampling lattice
points.

The hexagonal sampling lattice can be expressed as the two-
dimensional comb function7:

samp(x,y)=comb (+* ' 3LV3L) (1)

3V3L2 I 13L 3L=
2 m=- LX

fl +
I /\/3L \/3L \1x L -

—j--m)j , (2)

which is shown in Fig. 1 over a small portion of the x-y plane.
An input irradiance function, i(x,y), can be exactly reconstructed
from its hexagonally sampled version if it is bandlimited within
a hexagonal region in the spatial frequency domain.1 To simplify
the analysis, we assume that the input irradiance function is
bandlimited in a circular region inscribed within the hexagonal
bandlimited region required by the sampling function. The band-
limit placed on the input irradiance function can be expressed as

I(,i)=O if 2+2> (1)2 . (3)
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The sampled version, r(x,y), of the input irradiance function
for a hexagonally sampled array with rectangular pixels is ob-
tained by averaging the input irradiance function over the pixel
areas and then performing delta-function sampling at the center
of each pixel. This is called an integral sampling process8 and
can be written as

r(xy) k[l(xY
/ X Y= )**rect(— —,)]\3L/2 \/3L

[comb(+*,-*)]
(x yX recti— —ww

where I(q) is the spectrum of the input irradiance. Because
the input irradiance function is bandlimited, that is, no aliasing
occurs, we can disregard all of the delta functions comprising
the comb except the one at the origin. Also, in the approximation
W>>L, sinc(W,W'q) can be approximated by (ri). With
these assumptions, R(,i1) can be written as

R()=kI()sinc( V3L)
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Fig. 1. Hexagonal and equivalent-area rectangular pixels in a hex-
agonal array.

The MTF is defined as the ratio of the spectrum of the output
to the spectrum of the input, normalized to unity at zero spatial
frequency:

. R(,)/I(q)
MTFri)=R(OO),J(OO)

. (7)

Thus, for a hexagonal array of rectangular pixels, the MTF is
given by

MTF(l)=sinc( V3L)
. (8)

Taking the slices 'q =0 and =0 through the MTF gives the
MTF in the x and y directions , respectively. These can be written as

MTF(sinc ) , (9)

MTF()sinc(V3L'q) . (10)

Following a similar analysis , we can derive the MTF for a
hexagonally sampled array with hexagonal pixels. The sampled
input irradiance function for this case can be written as

r(x,y) =k[i(x,y)**d(x,y)I [comb (+ , -
V3L)]

x rect(4) , (11)

where the rectangular detector shape in Eq. (4) has been replaced
with a hexagonal detector shape d(x,y). Taking the Fourier trans-
form of Eq. (1 1) gives the spectrum of the response:

R(,'q) =k[I(,q)D(,q)]
73L \/3L 3L \/L \

** comb---+-_j---'!l —q)**sinc(W,W'q)
(12)

Using the same approximations that led to Eq. (6), we can write
the response spectrum as

R(,'q)=kI(,'q)D(,'q) . (13)

By the definition of MTF given in Eq. (7), the two-dimensional
MTF of the hexagonal detector array is

(5) MTF(q)=' , (14)

The MTF along 'r = 0 and =0requires knowledge of D(,0)
and D(0,'q). The hexagonal detector shape, d(x,y), is a non-
separable one-zero function, which implies

D(,0) {d(x,0)I , (15a)

D(0,q)*?J[d(0,y)] . (15b)

Because the detector shape is symmetric about x and y, the

(4)

where k is a constant, i(x,y) is the input irradiance function, and
wx W is the dimension of the array. The spectrum of r(x,y) is
obtained by Fourier transformation:

R() =k[I(i)sinc( V3Li)]
13L \/3L 3L

**
combI--- + —j--Tl, --

—

** sinc(W, W'r)

(6)
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necessary Fourier transforms can be obtained from the x and y
profiles of d(x,y).9 The profiles d(x) and d(y), of the hexagon
shape are shown in Figs. 2 and 3, respectively. Using the for-
mulation in Ref. 9, the MTF along '= 0 and =0can be written as

MTF() D(,O) D()
(16)

D(O,O) D(O)

MTF(l)1)=Dx) . (17)
D(O,O) D(O)

To compute D(), we note that the x profile shown in Fig. 2
can be written as

dy(x)k[rect()*rect(2)] , (18)

and the corresponding Fourier transform for d(x) is

/L\ 13L\
D() = k sinc sinc . (19)

The MTF along the x direction is then given by Eq. 16 as

IL\ 13L\
MTF()sinc sinc --) . (20)

The MTF along the y direction can be computed similarly.
The y profile of the detector shape shown in Fig. 3 can be
written as

d) =
k[tri(VL2)

+ rect()] , (21)

which has the Fourier transform

F _ 1 /\/3L\1D(i) =k sinc(\/3L-q) + sinc2(—j--ii) . (22)

The resulting MTF along the y direction is, by Eq. (17),

21 — 1 fv'L\1
MTF(i)= sinc(\/3L) + sinc2—---i)j . (23)

These MTF results for the hexagonal pixel shape are consistent
with the more general analysis performed in Refs. 10 and 1 1.

The MTF along the x direction of the hexagonally sampled
array is shown in Fig. 4 for both rectangular and hexagonal pixel
shapes. The Nyquist bandlimit represents the upper frequency
limit of the input irradiance function to avoid aliasing. Figure 4
shows that in the x direction the MTF for the hexagonal-pixel-
shape array is approximately 4.8% worse than for the rectangular-
pixel-shape array at the Nyquist bandlimit. However, the y di-
rection MTF shown in Fig. 5 shows an improvement of ap-
proximately 13 .6% in MTF for the hexagonal-pixel-shape array
at the Nyquist bandlimit. Inspection of Figs. 4 and 5 indicates
that the MTF resulting from a hexagonal pixel shape is almost
identical in the x and y directions out to the Nyquist bandlimit.

To further quantify the comparison of the MTF of hexagonal
and rectangular pixel shapes, two-dimensional MTFs of these
structures were calculated. These are shown in Figs. 6 and 7 for
the rectangular and hexagonal pixel shapes, respectively. The
MTFs shown in these figures extend beyond the Nyquist band-
limit to illustrate the differences between the two functions. Over
the bandlimited spatial frequency region of interest, an MTF
difference function (Hex. MTF — Rect. MTF) was formed to
show the difference between the two MTFs. The contour plot
of this difference function is given in Fig. 8. The hexagonal
pixel shape MTF exceeds the MTF of the rectangular pixel shape
over most of the bandlimited region.
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Fig. 2. Hexagonal pixel shape in the x direction.
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Fig. 3. Hexagonal pixel shape in the y direction.
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Fig. 4. MTF in the x direction for hexagonally sampled detector array.
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3. CONCLUSIONS

DETECTOR ARRAY MTF
(Y—DIR)

The hexagonally sampled focal plane array was found to have
an MTF that is strictly dependent on pixel geometry. For hex-
agonal and equivalent-area rectangular pixel shapes, the MTF
was found in closed form, and it was shown that x and y cross
sections of the MTF are not equivalent for the two pixel shapes.
In the x direction, the MTF resulting from a hexagonal pixel
shape is approximately 4.8% worse than for a rectangular pixel
shape at the Nyquist bandlimit. The y direction MTF for the
hexagonal pixel shape is approximately 13.6% better than the
rectangular pixel shape at the Nyquist bandlimit. The MTF of
the hexagonal pixel shape is approximately equivalent in both
x and y directions up to the Nyquist bandlimit, and a two-
dimensional analysis indicates that the hexagonal-pixel-shape
MTF exceeds that of the rectangular-pixel-shape MTF over most
of the bandlimited region.

—0.2 0.0 0.2
Norma'ized Spatial Frequency (EL)

Fig. 8. Contour plot of the MTF difference of the hexagonal pixel
shape and the rectangular pixel shape (solid lines are positive, dotted
are negative).
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Fig. 5. MTF in the y direction for hexagonally sampled detector array.

Fig. 7. Two-dimensional MTF of hexagonal pixel shape.
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Fig. 6. Two-dimensional MTF of rectangular pixel shape.
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