Spatial filtering by a line-scanned nonrectangular detector:
application to SPRITE readout MTF

Glenn D. Boreman and Allen E. Plogstedt

Any finite-sized photodetector has an effect on the spatial frequency content of the detected image. An
expression for the modulation transfer function (MTF) of a nonrectangular detector in the along-scan
direction is obtained. A comparison of our theoretical prediction is made with published experimental and
numerical values for the MTF of a photosite having an exponentially tapered shape. Structures of this form
are used as the readout region in SPRITE (signal processing in the element) detectors.

l. Introduction

Spatial filtering is commonly thought of as being
implemented in the aperture plane of an optical sys-
tem. However, spatial filtering may also occur in the
image plane of an electronic imaging system, by virtue
of the finite size of the individual detector elements.
The modulation transfer function (MTF) of this pro-
cess may be obtained from a consideration of the spa-
tial averaging taking place over the surface of the pho-
tosite. An expression for the MTF of a scanning
rectangular detector is derived, valid for the along-
scan direction. The MTF expression is then general-
ized to include geometries where the photosite is non-
rectangular.

A use of this formalism is then presented: a predic-
tion of the MTF due to the readout geometry in a
SPRITE (signal processing in the element) detector.!-5
A SPRITE detector (Fig. 1) consists of a filament of
photoconductive material in which a time delay and
integration operation is performed on a scanned infra-
red image. The image data is read out as the voltage
across a particular portion of the filament as a function
of time. This photosensitive readout region of the
SPRITE is often exponentially tapered to reduce the
dispersion of carrier transit times in that region,®
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hence preserving the high frequency content of the
image data.

In this paper, an alternative viewpoint on the mech-
anism of the tapered readout is presented, which al-
lows an estimate of its MTF to be obtained directly
from the readout geometry. The method of MTF
calculation presented in Ref. 6 requires a numerical
mapping of the electric field strength in the readout
region. The prediction obtained from our model is
compared with the results of that method and to pub-
lished experimental MTF data for the particular read-
out structure of interest.

Il. MTF of a Line-Scanned Rectangular Detector

The geometry under consideration is shown in Fig. 2.
The image irradiance is i(x,y) and the photosite re-
sponsivity function d(x,y) is a rectangular function:

= x XY,
d(x,y) = rect( X Y)

(1)
The detector scans across the image with velocity v,
converting the image data which falls on it into a time
domain waveform. At an initial time ¢t = 0, the re-
sponse of the photosite may be written as

X/2
rit=0)= J

Y/2 .
f i(x.y)dxdy. @)
-X/2 J-

Y/2
At a general time ¢, the expression for photosite re-
sponse generalizes to

vt+X/2 (Y/2
o) = j [ i(x,9)dxdy. ®)
vt-X/2 J-Y/2

Equation (3) may be recast in terms of a convolution
of the image irradiance with the detector response.”®
Initially, we assume that the detector is free to scan in
both the x and y directions, with velocities v, and v,
In that case, its response (as a function of the x-shift
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variable x; = vt and the y-shift variable y, = v,t)
would be
1+ X/2 (v Y/2
Pty = ] ] ix,y)dxdy, @)
x,~X/2 ly,~Y/2
e . x = xs y _ys
r(xg,y,) = j L» i(x,y) rectli X v :]dxdy, (5)
rapyy) = f j " i@y - 1,y - y)dxdy. ®

Thus, writing the 2-D convolution in Eq. (6) schemati-
. cally:

rxg,ys) = i(x,y) ** d(x,y). (7

Since the detector under consideration is actually only
free to scan in the x direction, the detector response
takes the form of

r(x,0) = [ j " iey)d(x - x,)dxdy, ®

which will later be useful to write as
r(x,0) = [i(x,y) ** d(x,y)] X 1(x,)8(y,). 9)

We may obtain R(%), the 1-D Fourier transform of
the detector response function r(x;,0) by means of the
convolution theorem. We will consider a 1-D spatial
transform where the scan variable x, transforms to the
¢ spatial frequency variable. This transformation
may be thought of equivalently in the time/frequency
domains as a transformation from the variable v,t to
the variable f/v;. Denoting the Fourier transform op-
erator by F:

R(&) = Fir(x,,00L, (10)
R(&) = F[iCx.y) ** d(x.3)] X 1(x)8(y,)}, (11)
R(&) = [I(&n) X D(&m)] ** 8(5)1(n). (12)

Writing the last expression in equivalent integral form
yields

R() = j " I&;n) X D(En)dn. (13)
With d(x,y) = rect(x/X,y/Y), Eq. (13) reduces to
R = j I(EmXY sine(Xt, Yn)dn. (14)

Finally, since d(x,y) is separable for this example,
d(x,y) = d(x)d,(y) and thus

dy(x) 2> D) and d,(») T D, (n).

The expression for R(£) yields
R(®) = XY sinc(X#) J " I sin(Ynydn.  (15)

Since the detector scans only in the x direction, we
can obtain only £ information in the Fourier domain of
the signal. Since we cannot obtain n spectral informa-
tion regarding the image data, a reasonable assump-
tion to make is that I(£,n) is separable [tantamount to
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Fig. 1. Basic structure of the SPRITE detector. The image is
scanned mechanically in the same direction as the carrier drift,
enhancing the signal-to-noise ratio of the resulting image.
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Fig. 2. Geometry for the scanned rectangular detector.

assuming that the image data i(x,y) was separable].
Under this assumption,

i(x,y) = i, (x)iy(y), i.(x) % 148 and iy, 2> I ().
Thus, for Eq. (15) we can write

R(§) = XY sinc(X®) [ " LOL0 sin(Ydn,  (16)

R(®) = XY I,(8) sinc(X£) f " I(n) sine(¥n)dn. an

The MTF of the scanning detector system is the quan-
tity of interest. The integral in Eq. (17) yields a con-
stant which normalizes out in the usual definition of
MTYF. MTF relates the spectrum actually observed in
the image R(£) to the spectrum of the image incident
on the detector I(£). Thus the requirement that MTF
be normalized to unity at zero spatial frequency yields

R/

MTF® = Ze=0) '

(18)

For the case of a 1-D scanning rectangular detector of
width X, '

MTF (&) = Dy(£)/Dy(¢ = 0) = sinc(X¥). (19)

Thus, for the case of a separable photosite function,
the MTF in the £ direction was only affected by the x-
profile of the photosite responsivity. The following
section shows that, for a nonseparable photosite re-



sponsivity d(x,y), the MTF in the £ direction depends
on the y-profile of the responsivity function also.

. MTF of a Line-Scanned Nonrectangular Detector

In this section we consider the more general image
scanning geometry of Fig. 3, where the photosite re-
sponsivity function d(x,y) is a nonseparable function
of the x and y coordinates. In this case, it is'not
possible to express d(x,y) as a product of two functions,
one solely dependent on x and one solely dependent on
y. The photosite responsivity is again assumed to be a
one-zero function, i.e., equal to unity inside and equal
to zero outside. We also assume that it is symmetric
about the x-axis. With these assumptions, Eq. (13)
still holds for an x-direction scan:

R(®) = j " I(&m) X D(Emdn. 20)

Making the same assumption as in the last section with
regard to the separability of the image data,

R(®) = I®) j I(nD(Endn. @1

To obtain an expression for MTF(£), the 2-D func-
tion D(£,n) need only be evaluated along the £ axis:

R(®) = I(® ] " L(nDE0d, (22)

R(® = I(HD(0) ] Ln)dn. (23)

The final integral will again normalize out under the
usual definition for MTF:

RE/I(E)

= ", 2
MTF®) = 05 (24)
MTF(¢) = D(£,0)/D(0,0). (25)

For the present case of nonseparable d(x,y), note that
D(£,0) = Fld(x,00}. (26)

Hence, the y-dependence of the responsivity function
affects the £-profile of the transform, and therefore the
¢-domain (along-scan) MTTF as well.

The problem of determining the impact of detector
shape on the along-scan MTF reduces to finding the &-
axis profile of the 2-D Fourier transform of the one-
zero function d(x,y). For the detector geometry
shown in Fig. 3, for the transform of d(x,y) we can
write®10

D) = j J d(x,y) exp(—j2ntx) exp(—j2mny)dzdy.  (27)

Using the fact that d(x,y) is a zero-one function:
© y(x)

Dt = f ) j

- —y{x)

exp(—j2mny)dydz. (28)

For the case of interest to our application, the value of
the transform along n = 0 yields

© (x)
D(&0) = j exp(—j2rEx) j ™ dyds, 29).
© —y(x)
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Fig. 3. Geometry for the scanned nonrectangular detector.
D(£,0) = f exp(—j2wéx)2y(x)dx = 2Y(§). (30)

Thus, the y-profile of the photosite response function
comes explicitly into the calculation of the MTF in the
¢-direction. The formulation of Eq. (25) yields

MTF(§) = D(£,0)/D(0,0) = Y(£)/Y(0). (31)

Referring to Fig. 3, we have a function y(x) of the
form

x—X/2

X

y(x) = rect( >exp(—ax). (32)

The resulting MTF expression in the ¢£-direction is
= X/Z) exp(—ax)] . (33)

MTF() = Y(5)/Y(0) « sz[m( 2

Because of the convolution theorem, the MTF of the
tapered scanning detector will be wider than the MTF
of an untapered detector, i.e.,

57[rect(x _XX/2) exp(—ax)] = ‘.7[rect<x —'X/Z)] * F[exp(—ax)].

X
(34)

The function described by Eq. (34) will have a greater
equivalent width than will the function F[rect(x/X)].

In the next section we use our method to predict the
difference in MTF between two different photosite
geometries: rectangular vs a structure with an expo-
nential taper. This prediction will then be compared
to previously published MTF results for such struc-
tures.

IV. Comparison to Previously Published MTF Results

In this section we predict the difference in MTF
between two photosite geometries which are used as
readout structures in SPRITE detectors. One such
structure is a rectangular readout 50 um long and 35
um wide, and the other is an exponentially tapered
readout which is 62.5 um at the wide end, 50 um long,
and 15 um wide at the short end. This prediction is
then compared to previously published numerical and
experimental MTF results for such structures.

Expressions for y(x), the y-profile of the respective
photosite responses, are as follows:
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Fig. 4. Comparison of MTFs for rectangular (lower curve) and

tapered (upper curve) photosites.

—

Freal®) = rect(" ;025) (35)

x—25
Yiaper®) = rect( 50

) X exp(—ax), (36)
where @ may be found from the equation for the taper

62.5 exp(—ab0) = 15; « = 0.0285. (37)

The magnitudes of the normalized Fourier transforms
of the functions from Eqgs. (35) and (36) are plotted in
Fig. 4. These plots correspond to the £-axis (along-
scan direction) MTFs for the two readout structures.
Comparing these curves, it is seen that the tapered
readout geometry should have a wider MTF (at the 1/e
point) by ~12%.

" A numerical simulation of these structures was car-
ried out in Ref. 6, where a map of the electric field
inside the readout was made. The carrier transit time
was computed along each streamline, and the spread in
transit times was used to predict the width of the
impulse response. The difference in the impulse re-
sponse widths (at the 1/e points) for the two structures
was predicted to be =43% using that technique.

Experimental MTF data comparing these struc-
tures is found in Refs. 6 and 11. There is some vari-
ability in the measured data, but the two readout
structures were found to differ by ~15-20% in impulse
response widths at 1/e points.

The MTF results from the geometrical convolution
method presented herein are seen to be in closer agree-
ment with the measured values than are the results of
the numerical E-field mapping method.

V. Conclusions

A geometrical method has been presented for the
calculation of along-scan MTF values for line-scanned
detectors which are nonrectangular in shape. The
shape of the photosite in the perpendicular-to-scan
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direction was found to affect the MTF in the along-
scan direction. This is due to the nonseparability of
the detector geometry. The predictions of this model
were compared with published experimental values
and found to be in closer agreement than previous
models.

In the analysis of SPRITE detectors, considering the
action of the readout to be a convolutional process
applied to the image data has the advantage that the
MTPF is easily obtained from a consideration of the
geometry of the structure.

This geometrical theory was developed without re-
gard for carrier recombination effects in the readout
region. Thus, it would be expected that the results of
this method would be most valid in cases where the
mean carrier drift length before recombination was
long compared to the total length of the readout. Also,
any inherent MTF due to carrier diffusion effects
would multiply the readout MTF and would tend to
decrease the observed difference between various
readout geometries.

Finally, it should be noted that the possibility exists
for tailoring the shape of a scanning detector to empha-
size certain spatial frequencies in the image data.
However, for a given envelope dimension of the photo-
site, this emphasis will be at the expense of the overall
magnitude of the response.

This work was supported by McDonnell Douglas
Astronautics Co., Titusville Division, and by the Cen-
ter for Research in Electro-Optics & Lasers of the
University of Central Florida.

References

1. C. T. Elliott, “New Detector for Thermal Imaging Systems,”
Electron. Lett. 17, 312 (1981).

2. C.T. Elliott, D. Day, and D. J. Wilson, “An Integrating Detector
for Serial Scan Thermal Imaging,” Infrared Phys. 22, 31 (1982).

3. A. Blackburn, M. V. Blackman, D. E. Charlton, W. A. E. Dunn,
M. D. Jenner, K. J. Oliver, and J. T. M. Wotherspoon, “The
Practical Realization and Performance of SPRITE Detectors,”
Infrared Phys. 22, 57 (1982).

4. D. J. Day and T. J. Shepherd, “Transport in Photo-Conduc-
tors—I,” Solid State Electron. 25, 707 (1982).

5. G. Boreman and A. Plogstedt, “Modulation Transfer Function
and Number of Equivalent Elements for SPRITE Detectors,”
Appl. Opt. 27, 4331 (1988).

6. T. Ashley, C. T. Elliott, A. M. White, J. T. M. Wotherspoon, and
M. D. Johns, “Optimization of Spatial Resolution in SPRITE
Detectors,” Infrared Phys. 24, 25 (1984).

7. J. M. Lloyd, Thermal Imaging Systems (Plenum, New York,
1975), Chap. 9.

8. L. G. Callahan and W. M. Brown, “One- and Two-Dimensional
Processing in Line Scanning Systems,” Appl. Opt. 2, 401 (1963).

9. A. Papoulis, Systems and Transforms with Applications in
Optics (McGraw-Hill, New York, 1968), pp. 95-96.

10. J. D. Gaskill, Linear Systems, Fourier Transforms and Optics
(Wiley, New York, 1978), pp. 311-312.

11. S. P. Braim and A. P. Campbell, “TED (SPRITE) Detector
MTF,” in Proceedings of the Conference on Advanced IR De-
tectors and Systems (IEE, London, 1983), Vol. 228, p. 63.



