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Abstract
Modulation-transfer-function (MTF) measurement often in-
volves the use of three- and four-bar resolution targets. In
the conversion of three- and four-bar image data to MTF,
biased results can occur when we use series-expansion tech-
niques appropriate for square-wave targets of infinite ex-
tent. For systems where the image data are digitally re-
corded, a convenient and accurate conversion of bar-target
data to MTF can be performed using a Fourier-domain
method.

Method
Modulation transfer function (MTF) is the ratio of the out-
put to input modulation depth as a function of spatial fre-
quency ~ for sinusoidal input targets. Modulation depth M
is defined for a general target as

(1)

where I~~X  and I~i~ are the maximum and minimum values
of W/cm2  describing either the input-object exitance or
output-image irradiance. Assuming sinusoidal input tar-
gets, MTF  is written  as

(2)

Although MTF is defined for sine-wave targets, practice of-
ten dictates that resolution-target sets other than sine waves
be used. A target set consists of a number of different-sized
targets, which can be specified by a spatial period X equal
to one cycle of the pattern. Binary target sets with equal-
ized  lines and spaces are commonly used. Visible-
wavelength systems are often characterized using a three-
bar (Air Force) target set.1 Infrared systems are typically
characterized with a four-bar target set.2

Targets that have an infinite number of square-wave
cycles are simpler to analyze mathematically. For such tar-
gets, we can define a contrast transfer function (CTF)  as a
function of fundamental spatial frequency & = l/X as

(3)

Like the MT.F for sine waves, the CTF also is a transfer func-
tion because it describes the image modulation depth over
a basis set of square-wave components. The modulation
depth of the input square wave is usually 1 for all targets
in the set.

The infinite-square-wave CTF  is generally higher
than the MTF at the same spatial frequency because the odd
harmonics of the infinite-square-wave test pattern (which
are absent from sine-wave targets) will also contribute to the
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image modulation depth. The modulation depth, and hence
CTF, at any frequency can be expressed as a summation of
harmonic components. These components are weighted by
two multiplicative factors in the summation: their relative
strength in the input waveform and the MTF  of the system
under test at each harmonic frequency. This process yields
an expression3 for CTF in terms of MTF

(4)

Inversion of the series3  yields an expression for MTF  in
terms of CTF

The series representations of Eqs. (4) and (5) are analytically
valid for infinite-square-wave targets because these targets
have discrete harmonic components. However, the spectra
of finite-length square-wave targets such as the three- and
four-bar targets have broader features and do not have dis-
crete harmonic components.4 A series representation is not
as accurate for bar-target data because contributions to the
image modulation depth occur at spatial frequencies other
than those in the series. Bar-target data maybe interpreted
in terms of image modulation depth as a function of fun-
damental spatial frequency, IMD (&), according to Eq. (6)

(6)

where again the input modulation is usually 1.
The modulation depth of the output image is calcu-

lated in terms of maximum and minimum values, according
to Eq. (l). For an infinite-square-wave target, the maxima
are all equal and the minima are all equal. For the case of
three- and four-bar targets, edge effects produce maxima
and minima that are not equal for each bar in the output
image. To be consistent with usual laboratory practice, we
calculated the modulation depth using the highest maxi-
mum and the lowest interbar minimum that occur in any
particular image.

When computed in this fashion, the resulting three-
and four-bar IMD curves differ from each other, and are
different from the CTF defined for infinite-square-wave tar-
gets. The closer the IMD curves are to the CTF curve for the
infinite-square-wave target, the more accurate will be the
series in Eq. (5) (substituting IMD for CTF)  for three- and
four-bar IMD-to-MTF conversion. If substantial differences
exist among the curves, a direct application of the series
conversion will yield biased results. In that case, techniques
discussed below will convert bar-target data directly to
MTF.
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FIGURE 1. Comparison of IMDs  for three- and four-bar targets, and CTFS for infinite-square-wave targets, given the following MTFs:  la)
a diffraction-limited circular-aperture MTF with cutoff frequency go; lb) a Gaussian MTF = exp{–2(~/~o)2}  (both IMD curves are identical
to the CTF);  Ic) an exponential MTF = exp{–2(~/~o)};  and ld) a diffraction-limited annular-aperture MTF (50% diameter obscuration) with
cutoff frequency go.
Figure 1 illustrates the behavior of the IMD curves for
three- and four-bar targets and CTF  curves for infinite-
square-wave targets, given four typical system MTFs:  a
diffraction-limited circular-aperture system with cutoff fre-
quency & (Fig. la); a Gaussian MTF  = exp {-2(~/&)2} (Fig.
lb); an exponential MTF = exp {–2(~/&)}  (Fig. Ic); and a
diffraction-limited annular-aperture system (50% diameter
obscuration) with cutoff frequency g. (Fig. id). To produce
the infinite-square-wave CTF  curves, the series in Eq. (4)
was used directly with each MTF  curve. To produce the
three- and four-bar IMD curves, spectra were calculated for
120 bar targets of various frequencies, which were then fil-
tered  by each MTF curve. The resulting filtered spectra were
inverse transformed, and the IMDs were calculated from
the image data according to Eqs.  (1) and (6). The Gaussian
MTF  produced identical curves for the three-bar, four-bar,
and infinite-square-wave cases. The other three-bar IMDs
were higher than the four-bar IMDs, which were higher
than the infinite-square-wave CTFS.  For these examples, the
difference between the three-bar IMD and infinite-square-
wave CTF  curves is within 5Y0  in absolute modulation
depth, but the relative difference between the curves is as
high as 20%. Thus, in some cases three-or four-bar IMD data
should not be converted to MTF using a series such as
Eq. (5).

Digital Data Measurement
Where the image data are recorded digitally, a convenient
and accurate IMD-to-MTF  conversion can be performed by
using a Fourier-domain calculation. Figure 2 shows a meas-
ured three-bar-target magnitude spectrum, and the corre-
sponding calculated input spectrum. Both spectra are nor-
malized to 1 at the origin, which yields MTF  = 1 at dc. The
measured output spectrum has been filtered by the MTF  of
the system under test. Because of the falloff  of MTF  with
frequency, the peak of the output spectrum will occur at a
frequency somewhat lower than the fundamental fre-
quency of the input spectrum. We can determine the fun-
damental frequency of input spectrum & from the location
of the first zero in the output spectrum. The location of the
first zero is not shifted by the system MTF. For the three-bar
target, the fundamental frequency is three times the fre-
quency of the first zero. For the four-bar target, the funda-
mental frequency is four times the frequency of the first
zero. These relations are revealed from the expressions for
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FIGURE 2. Measured output spectrum magnitude for a three-bar
target (dashed line) and calculated input spectrum magnitude
(solid line).

the magnitude spectra for each case. For the three-bar target

where the term in square brackets first goes to zero at

(8)

For the four-bar target

(9)

where the term in square brackets first goes to zero at

(l0)

The fundamental frequency is the only free parameter in the
calculation of the normalized input spectrum. Once the fun-
damental frequency has been found using Eq. (8) or Eq (10),
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the input spectrum needed for the MTF calculation is de-
termined.

The MTF  at the fundamental frequency&of any par-
ticular target of the set can be calculated as

where S-mput-bar-target (~= &) is the magnitude (normalized to
1 at dc) of the input spectrum at its fundamental frequency,
and SOUtPut  (~ = ~f) is the  dc-norrnalized  magnitude  Of the
output spectrum at the same frequency. Using Eq. (11) for
various test targets allows MTF  to be measured directly
from bar-target data without need for a series conversion.
To verify the procedure, we used this MTF  measurement
technique to test a commercial visible CCD camera-and-lens
combination over a spatial frequency range up to one half
of the spatial Nyquist  frequency of the detector array. The
results obtained agreed with a sine-wave MTF  measure-
ment within 296.  At spatial frequencies higher than approxi-
mately half Nyquist,  both the sine-wave test and the bar-
target test will suffer appreciably from sampling artifacts,
and other measurement techniques such as an oversampled
knife-edge response5 or random-noise targetsG  must be
used instead.
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