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Zernike expansions for non-Kolmogorov turbulence
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We investigate the expression of non-Kolmogorov turbulence in terms of Zernike polynomials. Increasing the
power-law exponent of the three-dimensional phase power spectrum from 2 to 4 results in a higher propor-
tion of wave-front energy being contained in the tilt components. Closed-form expressions are given for the
variances of the Zernike coefficients in this range. For exponents greater than 4 a von Kármán spectrum is
used to compute the variances numerically as a function of exponent for different outer-scale lengths. We
find in this range that the Zernike-coefficient variances depend more strongly on outer scale than on exponent
and that longer outer-scale lengths lead to more energy in the tilt terms. The scaling of Zernike-coefficient
variances with pupil diameter is an explicit function of the exponent.
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1. INTRODUCTION
Although the Kolmogorov formulation1 has been widely
used to describe atmospheric turbulence, some turbu-
lence conditions exist for which experimental data do
not support it. For Kolmogorov turbulence the three-
dimensional power spectral density of phase fluctuations
has the form

Fwskd ­
0.023 k211/3

r0
5/3

, (1)

where k is spatial frequency (cyclesylength) and r0 is a
normalization factor with units of length that gives the
correct dimensionality of the power spectrum.2 We in-
terpret r0 as the pupil diameter over which the piston-
subtracted wave-front variance is equal to 1 rad2 for
the case of Kolmogorov turbulence. We find this defini-
tion more convenient for our purposes than the original3

definition of r0 in terms of the integral of the modulation
transfer function. These two definitions agree to within
a few percent.

The exponent for the inverse spatial-frequency depen-
dence has been observed experimentally to be both larger
and smaller than the value of 11y3 that derives from the
Kolmogorov theory. Exponent values near 5 are encoun-
tered in high-altitude (stratospheric) stellar-scintillation
studies,4,5 while measurements affected by turbulence
nearer to the ground6 – 8 yield exponents in the range of
3 to 3.65. It is thus of interest to investigate the behav-
ior of non-Kolmogorov turbulence9 – 11 having a range of
exponents.

An alternative definition exists in the literature for
the term non-Kolmogorov turbulence, which is that outer-
scale effects are included for the case in which the power-
law exponent is assumed to be 11y3. The derivation of
Zernike-variance coefficients in this context has been ex-
0740-3232/96/030517-06$06.00 
plored in detail by Winker.12 In the present paper we
perform a wave-front expansion for the general-exponent
case in terms of variances of Zernike coefficients and
include outer-scale effects for the range of exponents
where they are required for evaluation of the expressions.
This is useful in determining the relative amounts of tilt
and other low-order aberrations in the turbulent wave
front as well as in analysis of experimental data from
Shack–Hartmann wave-front sensors.13

The generalized form of Eq. (1) for the phase spectrum
is

Fwskd ­
Abk2b

r
b22
0

, (2)

where r0 is a quantity analogous to r0 that reduces to r0 for
the case of b ­ 11y3. The constant Ab has a value such
that, for any power law b chosen for the spectrum, the
piston-subtracted wave-front variance (which we denote
D1) is normalized to 1 rad2 over a pupil diameter D ­ r0.
The numerical values of the Zernike-coefficient variances
(which we denote kjaj

2jl) are then the relative wave-front
energies contained in each Zernike term. Because the
wave-front variance directly affects image quality, this
normalization provides an equivalent-image-quality basis
for comparison of the amounts of the different aberrations
in the turbulent wave front as a function of b.

To verify that the parameter r0 ensures correct dimen-
sionality in the phase spectrum, we express the phase
structure function Dwsrd as

Dwsrd / 2
Z

jkj2bh1 2 expfi2psk ? rdgjdk . (3)

Given that Z
dk ;

Z 2p

0
df

Z `

0
k dk , (4)
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Table 1. Correspondence between j , n,
m, and the Lowest-Order Aberrations

Mode Radial Azimuthal
Number j Degree n Frequency m

1 (piston) 0 0
2 (x tilt) 1 1
3 ( y tilt) 1 1
4 (defocus) 2 0
5 2 2
6 (astigmatism) 2 2
7 (x coma) 3 1
8 ( y coma) 3 1
9 3 3
10 3 3
11 (spherical) 4 0

we find, upon performing the integration in Eq. (3), that
Dwsrd is proportional to rb22. Thus, because we desire
to express the structure function (and ultimately the
Zernike-coefficient variances) in terms of a normalized
pupil diameter sDyr0d, the form of the phase spectrum
must be as shown in Eq. (2), with a term of r0

b22 in the
denominator.

2. ZERNIKE EXPANSION AND
RESIDUAL WAVE-FRONT ERROR
We use the definitions of Noll14 for the Zernike polynomi-
als and their Fourier transforms. We perform all calcu-
lations with the transform-domain Zernike polynomials,

Qj sk, fd ­
p

n 1 1
Jn11s2pkd

pk

3

8><>:
s21dn/2

p
2 cos mf, j even

s21dn/2
p

2 sin mf, j odd
s21dn/2, m ­ 0

, (5)

where f is the azimuthal angle in the transform domain,
j is the mode number, n is the radial degree, and m is
the azimuthal frequency. These numbers15 correspond
to the first few classical aberrations seen in Table 1, suit-
able for analysis of a low-order-correction adaptive-optical
system.

We are interested in the residual mean-squared wave-
front error DJ after terms from j ­ 1 to J are corrected
(as with an adaptive-optical system), defined as

DJ ­ kw2l 2
JP

j­1
kjaj j2l , (6)

where kw2l is the total phase variance of the random wave
front,

kw2l ­
P̀

j­1
kjaj j2l , (7)

and the kjaj j2l are the Zernike-coefficient variances. The
piston variance kja1j2l is infinite, and the phase variance
is also infinite if outer-scale effects are neglected. These
infinities cancel when the two terms are subtracted. The
resulting piston-subtracted wave-front variance D1 is nor-
malized to 1:

D1 ­ kw2l 2 kja1j2l ­
P̀

j­2
kjaj j2l ­ 1 , (8)
which determines the value of Ab (Appendix A).
The Zernike-coefficient variances are defined14 as

kjaj
2jl ­

Z `

2`

Z `

2`

Qj
pskdQj sk0dFwskyR, k0yRddk dk

0
, (9)

where R is the pupil radius, and the general form of the
cross-phase spectrum is

FwskyR, k0yRd ­ Ab

√
R
r0

!b22

k2bdsk 2 k0d . (10)

If we substitute Eq. (10) into Eq. (9), the expression for
the Zernike-coefficient variances becomes

kjaj j2l ­ Ab

√
R
r0

!
b22 Z `

2`

Z `

2`

Qj
pQjk2bdsk 2 k0ddk dk

0
.

(11)
Using Eqs. (4) and (5), we can write Eq. (11) as

kjaj j2l ­
2Ab

p

√
R
r0

!b22

sn 1 1d
Z `

0
k2sb11dJ2

n11s2pkddk ,

(12)
which is valid for any m, and for any n not equal to zero.
Performing a change of variables, 2pk ­ k, we obtain

kjaj j2l ­
2Ab

p

√
R
r0

!b22

sn 1 1ds2pdb
Z `

0
k2sb11dJ2

n11skddk .

(13)
Using 2R ­ D, we find that the Zernike-coefficient vari-
ances have a sDyr0db22 dependence:

kjaj j2l ­ 8Ab

√
D
r0

!
b22

sn 1 1dpb21
Z `

0
k2sb11dJ2

n11skddk .

(14)
It should be noted that the scaling of the Zernike-
coefficient variances with pupil diameter is explicitly
a function of b.

The integral in Eq. (14) can be expressed in closed
form16 asZ `

0
k2sb11dJ2

n11skddk

­

Gsb 1 1dG

√
2n 1 2 2 b

2

!

2b11

"
G

√
b 1 2

2

!# 2

G

√
2n 1 4 1 b

2

! (15)

for b and n satisfying s2n 1 2d . b . 21. In that range
the Zernike-coefficient variances are expressed as

kjaj j2l ­ 8Ab

√
D
r0

!b22

sn 1 1dpb21

3

Gsb 1 1dG

√
2n 1 2 2 b

2

!

2b11

"
G

√
b 1 2

2

!# 2

G

√
2n 1 4 1 b

2

! . (16)

For the piston case s j ­ 1, n ­ 0d the integral of Eq. (15)
diverges for b . 2, which includes all cases of interest to
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Table 2. Comparison of kjaj j2lkjaj j2lkjaj j2l for b ­ 11y3b ­ 11y3b ­ 11y3 and
D ­ r0D ­ r0D ­ r0 Calculated with Eq. (17) to Those of Ref. 12

kjaj j2l From Eq. (17) From Ref. 12

kja2 3j2l 0.434783 0.4479
kja4 6j2l 0.022489 0.0232
kja7 10j2l 0.005997 0.0062
kja11j2l 0.002377 0.0024

us. We will see below that b ­ 2 corresponds to the case
in which the wave-front variance is entirely contained in
the piston term.

Using the normalization condition of Eq. (8), we develop
an expression for Ab in Appendix A as Eq. (A13). Com-
bining Eqs. (16) and (A13), we find that

kjaj j2l ­

√
D
r0

!b22
sn 1 1d

p

3

G

√
2n 1 2 2 b

2

!
G

√
b 1 4

2

!
G

√
b

2

!
sin

√
p

b 2 2
2

!

G

√
2n 1 4 1 b

2

! .

(17)

Equation (17) is valid for n $ 1 and 2 , b , 4. Referring
to Eq. (17) and Table 1, we see that the Zernike-coefficient
variances are equal for any j having the same value of n.
We use the notation

kja2 3j2l ; kja2j2l ­ kja3j2l , (18)

kja4 6j2l ; kja4j2l ­ kja5j2l ­ kja6j2l , (19)

kja7 10j2l ; kja7j2l ­ kja8j2l ­ kja9j2l ­ kja10j2l . (20)

To facilitate comparison with the work of Fried2 and
Noll,14 considering our slightly different definition of
r0, we give the first few kjaj j2l terms calculated with
Eq. (17) for the Kolmogorov case of b ­ 11y3 and find
good agreement with previously published values, as
shown in Table 2.

3. ZERNIKE-VARIANCE
COEFFICIENTS FOR 2 , b , 42 , b , 42 , b , 4
We evaluate Eq. (17) with 2 # j # 11 and 2 , b , 4
for the case of D ­ r0. The Zernike-coefficient variances
scale with pupil diameter as sDyr0db22, consistent with
Eq. (17). Figure 1 shows the two tilt terms kja2 3j2l as
a function of b, and Fig. 2 shows three curves for the
next-higher-order terms: kja4 6j2l, kja7 10j2l, and kja11j2l,
as functions of b.

All of the variances obey the normalization condition
expressed in Eq. (8) for any given value of b, and thus
the sum over all the coefficients for j $ 2 must be unity.
All of the coefficients approach zero as b approaches 2.
Equation (3) shows that for b ­ 2 the structure function
Dwsrd would be a constant, depending on the zeroth power
of separation distance. This corresponds to the case in
which the phase variance is contained solely in the piston
term. Thus we consider only the case of b . 2 as hav-
ing physical significance. Because the set of Zernike-
coefficient variances is normalized, more terms are
required (as the terms themselves get smaller) for
an accurate representation of the wave front as b

approaches 2. This shift of the wave-front energy to
higher orders is consistent with decreasing the tilt com-
ponents, under the normalization condition of D1 ­ 1.
As shown in Fig. 3, as n increases, the terms decrease
in magnitude, but each successive term peaks at a lower
value of b and is progressively skewed to have its main
contribution for smaller b. This increases the relative
importance of the higher-order terms as b approaches 2.

As b increases toward 4, the two tilt coefficients of
Fig. (1) increase toward 0.5. Although Eq. (17) has a sin-
gularity at b ­ 4, the interpretation is that an increas-
ing amount of the energy in the piston-subtracted wave

Fig. 1. Zernike-tilt-coefficient variances (for the case of D ­ r0)
kja2 3j2l as a function of b, for 2 , b , 4.

Fig. 2. Higher-order Zernike-coefficient variances (for the case
of D ­ r0) kja4 6j2l, kja7 10j2l, and kja11j2l, as functions of b, for
2 , b , 4.

Fig. 3. Zernike-coefficient variances peak at lower values of b,
as n increases. Plots are for kjaj j2l (for the case of D ­ r0)
corresponding to n ­ 20, 24, 30, and 40.
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Fig. 4. Zernike-tilt-coefficient variances (for the case of D ­ r0)
kja2 3j2l as a function of b, for b . 4, with L0yD ­ 10, 100, and
1000.

Fig. 5. Zernike-coefficient variances (for the case of D ­ r0)
kja4 6j2l as a function of b, for b . 4, with L0yD ­ 10, 100,
and 1000.

Fig. 6. Zernike-coefficient variances (for the case of D ­ r0)
kja7 10j2l as a function of b, for b . 4, with L0yD ­ 10, 100,
and 1000.

front are contained in the tilt terms as b approaches 4.
Figures 2 and 3 show that all of the coefficients for j . 3
approach zero as b approaches 4, as required by the nor-
malization, because an increasing amount of energy is
contained in the tilt terms.

Figures 1 and 2 [or Eq. (17)] can be used to evaluate
the residual mean-squared error DJ according to Eqs. (6)
and (8) for any 4 . b . 2.

4. ZERNIKE-VARIANCE
COEFFICIENTS FOR b . 4b . 4b . 4
Equation (17) for the Zernike-coefficient variances is not
valid in the range b . 4, so we use numerical techniques
to investigate the variances as a function of b for differ-
ent outer-scale lengths. Combining Eqs. (14) and (A10)
yields an expression for the Zernike-coefficient variances
in terms of spatial-frequency integrals:
kjaj j2l ­ 4sn 1 1d

√
D
r0

!
b22

Z `

0
k2sb11dJ2

n11skddkZ `

0
k2sb21d

(
1 2

4J1
2skd

k2

)
dk

.

(21)

The integrals involved in Eq. (21) are divergent for
small k. In order to examine the effect of the power-law
exponent b on the Zernike-coefficient variances, we must
include an outer-scale dimension in the calculation. We
used the von Kármán1 spectrum as a convenient means to
accomplish this. Qualitatively similar results should be
obtained by use of alternative outer-scale expressions,17

such as the Greenwood or exponential models. Modify-
ing Eq. (2) in this way yields

Fwskd ­

Ab

"
k2 1

√
R
L0

! 2#
2b/2

r0
b22

. (22)

We express Eq. (22) in terms of k ­ 2pk to yield

Fwskd ­

Ab

"
k2 1

√
2p

R
L0

! 2#2b/2

r0
b22

. (23)

Substituting D ­ 2R yields

Fwskd ­

Ab

"
k2 1

√
p

D
L0

! 2#
2b/2

r0
b22

. (24)

If Eq. (24) is used in a development similar to that which
produced Eq. (21), the analogous expression is

kjaj j2l ­ 4sn 1 1d

√
D
r0

!
b22

3

Z `

0

"
k2 1

√
p

D
L0

! 2#
2b/2

k21J2
n11skddk

Z `

0

"
k2 1

√
p

D
L0

! 2#2b/2

k

√
1 2

4J1
2skd

k2

!
dk

.

(25)

We choose the following outer scales for the computa-
tion of the kjaj j2l from Eq. (25): L0 ­ 10D, L0 ­ 100D,
and L0 ­ 1000D. Figure 4 shows kja2 3j2l, Fig. 5 shows
kja4 6j2l, and Fig. 6 shows kja7 10j2l, all as functions of b

and L0yD, for the case of D ­ r0.
We note from Figs. 4–6 that the coefficients have a

stronger dependence on L0 than on b. For any given
b, a decreasing outer scale takes energy away from the
tilt terms. The normalization of Eq. (8) then requires
that the higher-order terms gain energy as L0 decreases.
Conversely, the tilt terms dominate the expansion for
large L0. Also, increased values of b lead to larger
amounts of tilt.

5. CONCLUSIONS
We investigated the behavior of the Zernike-coefficient
variances of a turbulent wave front having a general ex-
ponent b. Our normalization of unity piston-subtracted
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wave-front variance provides an equal-image-quality com-
parison of the relative energy content of the various
Zernike components in the turbulent wave front as b

varies. The scaling of the Zernike-coefficient variances
with pupil diameter is proportional to sDyr0db22.

For 2 , b , 4, the amount of energy in the tilt terms
increases nearly linearly with b, with the limit that the
tilt terms contain all of the energy at b ! 4. The higher-
order terms increase in importance for smaller values of
b. The case of b ­ 2 corresponds to the case in which all
of the variance of the turbulent wave front is contained
in the piston term.

For b . 4, an outer scale L0 must be assumed in the
calculation. The tilt terms dominate the expansion with
increasing outer scale or increasing b. The higher-order
terms correspondingly decrease with increasing L0 and b.
Consistent with Ref. 9, the Zernike-coefficient variances
show a stronger dependence on L0 than on b, for b . 4.

APPENDIX A: CALCULATION OF AbAbAb

We develop an expression for D1, which will be solved
for Ab . The resulting expression for Ab will be used
in Eq. (16) for the Zernike-coefficient variances. We ex-
press the phase variance as12

kw2l ­ 2p
Z `

0
kFwskyRddk , (A1)

and, upon substituting Eq. (10), we obtain

kw2l ­ 2pAb

√
R
r0

!
b22 Z `

0
k2sb21ddk , (A2)

kw2l ­ pAb

√
D
r0

!b22

22sb23d
Z `

0
k2sb21ddk . (A3)

To combine Eq. (A3) with Eq. (14), we make the same
change of variables 2pk ­ k, to yield

kw2l ­ pAb

√
D
r0

!b22

22sb23d
Z `

0

√
k

2p

!2sb21d
dk
2p

, (A4)

kw2l ­ pAb

√
D
r0

!
b22

22sb23ds2pdsb22d
Z `

0
k2sb21ddk , (A5)

kw2l ­ Ab

√
D
r0

!b22

2pb21
Z `

0
k2sb21ddk . (A6)

Substituting Eq. (14) (for the case of j ­ 1, n ­ 0) and
Eq. (A6) into Eq. (8) yields

D1 ­ kw2l 2 kja1j2l

­ 2Ab

√
D
r0

!b22

pb21
Z `

0
k2sb21ddk

2 8Ab

√
D
r0

!b22

pb21
Z `

0
k2sb11dJ1

2skddk , (A7)

D1 ­ pb212Ab

√
D
r0

!
b22(Z `

0
k2sb21d 2 4fk2sb11dJ1

2skdgdk

)
,

(A8)

D1 ­ pb212Ab

√
D
r0

!b22√√√ Z `

0
k2sb21d

(
1 2 4

"
J1

2skd
k2

#)
dk

!!!
.

(A9)
With the normalization of D1 ­ 1 at D ­ r0, we have

Ab ­ 1

, (
2pb21

Z `

0
k2sb21d

"
1 2

4J1
2skd

k2

#
dk

)
. (A10)

This normalization ensures that the sum of the Zernike-
coefficient variances from j ­ 2 to infinity sum to unity,
consistent with Eq. (8). Following Noll,14 we have for the
integral in Eq. (A10)

Z `

0
k2sb21d

(
1 2

4J1
2skd

k2

)
dk

­
pGsb 1 1d

2b21

"
G

√
b 1 2

2

!# 2

G

√
b 1 4

2

!
G

√
b

2

!
sin

√
p

b 2 2
2

! ,

(A11)

valid over the range 2 , b , 4. We thus have for Ab ,

Ab

­
1

2pb21 pGsb 1 1d

2b21

"
G

√
b 1 2

2

!# 2

G

√
b 1 4

2

!
G

√
b

2

!
sin

√
p

b 2 2
2

! ,

(A12)

Ab

­

2b22

"
G

√
b 1 2

2

!# 2

G

√
b 1 4

2

!
G

√
b

2

!
sin

√
p

b 2 2
2

!
pbGsb 1 1d

. (A13)
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