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1. INTRODUCTION

Abstract. A new measurement technique for focal plane linearity was in-
vestigated experimentally. The spatial harmonic distortion test consists of
projecting spatial sine waves of irradiance onto a focal plane by means
of a Young’s fringe technique. If the detectors in the array have a linear
responsivity, a sinusoidal input waveform is mapped to a sinusoidal out-
put. However, if the detectors in the array have a nonlinear responsivity
(i.e., saturation), then the output waveform will exhibit harmonic distor-
tion. When the Fourier transform of the array data is taken, the content
at the second and third harmonics of the original sine-wave spatial fre-
quency indicates the amount of nonlinearity in the aggregate array re-
sponse. Measurement results are included for two focal planes: a vidicon
tube camera and a solid-state charge-injection device (CID) camera. The
minimum harmonic distortion measured was 3%. The sensitivity of this
test is limited ultimately by the amount of spatial nonuniformity. Numer-
ical and analytical models are given that indicate the minimum detectable
harmonic distortion is in the range of a few percent. This test also allows
measurement of the spatial-frequency dependence of the nonlinearity, a
quantity that is not accessible with the usual flat-field techniques for lin-
earity assessment.

Subject terms: focal planes; detector arrays; charge-coupled devices; charge-transfer
devices; nonlinearity; nonuniformity; harmonic distortion; flat-field test.
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Distortion of waveforms by a nonlinear transfer characteristic
is a well-known effect in time-domain systems.4 Departures from
linearity of the input-output curve cause harmonic distortion in
the output waveforms. The method described in this paper uses
a spatial-domain analog of this process. Our technique, the spatial-
harmonic-distortion test, measures the response of the array to
a spatial sine wave of irradiance. These fringes are produced by
Young’s double-slit interference. If the detectors in the array
have a linear responsivity, then the output waveform is undis-
torted. However, if the detectors in the array have a nonlinear
response characteristic, then the output waveform exhibits har-
monic distortion. The Fourier transform of the array data reveals
any content at the second and third harmonics of the original
sine-wave spatial frequency, proportional to the amount of non-
linearity present in the array response.

Experimental results are presented for two representative vis-
ible focal planes: a vidicon tube and a solid-state charge-injection-
device (CID) array. Depending on only double-slit interference,

A new method was investigated for the characterization of non-
linearity in detector arrays. The usual technique for linearity
characterization, the flat-field method,"3 requires that the re-
sponse of the array be measured for a number of uniform irra-
diance inputs. A responsivity (output per unit input) function
then can be plotted for individual detectors or for an average
detector of the array.
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the spatial-harmonic-distortion method is equally well suited for
measuring linearity in infrared focal planes.

Our technique has a number of advantages over the usual
flat-field method for linearity measurement. Since the amplitude
of the input sine wave may be adjusted to cover any given range
of irradiance, the entire operating characteristic of the array (at
one spatial frequency) is available from a single frame of data.
Also, the percent harmonic distortion is a convenient summary
measure of the amount of nonlinearity of the entire focal plane.

The presence of harmonic content in the output waveform is
a sensitive characterization, yielding measurable amounts of
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Fig. 1. Schematic of Young’s fringe apparatus.

nonlinearity even for focal planes that are very linear. Thus this
technique might be appropriate for a production-level linearity
test of focal planes such as monolithic PtSi.

Finally, our method allows measurement of the spatial-
frequency dependence of the nonlinearity. This information is
not available from a flat-field test, which is a zero-spatial-frequency
measurement. The dependence of nonlinearity on spatial fre-
quency is a generalization of the linearity concept and is an
effect i in detector arrays somewhat analogous to the adjacency
effects® seen in photographic media.

2. EXPERIMENTAL SETUP

Figure 1 is a schematic of Young’s double-slit apparatus that
projected sinusoidal fringes onto the focal planes. The laser used
was a He-Ne, with A = 0.6328 pm. A cylindrical lens illu-
minated the pinholes, thus avoiding unnecessary dilution of ir-
radiance in the aperture. The polarizer controlled the maximum
irradiance level of the diffraction pattern. The aperture used was
two square pinholes, each of dimensions 12 pm X 12 pm,
separated by a distance of 950 pm.

The diffraction pattern from this aperture has an 1rrad1ance
envelope function W(x) caused by the finite size of the pmholes

1rax
sm Z)\
Wx) = o | n

Z\

where a is the pinhole width and x is the position in the receiver
plane, measured from the axis. The maximum value of x was
4 mm for the arrays tested. The aperture-to-focal-plane distance
z was varied between 40 and 110 cm to produce spatial fre-
quencies between 40 and 12.5 cycles/cm at the array plane.
Given detector spacings on the focal planes of 25 pm, these
waveforms were oversampled, with at least 10 samples per cycle.

With the apparatus configured (z = 40 cm) to produce the
maximum spatial frequency, Eq. (1) yields W(x) = 0.88 at the
edges of the detector. Because the fringe data are interpreted in
the Fourier domain, a nonunity W(x) will broaden peaks in the
spectra corresponding to harmonic content,’ but will not change
the relative strength of these components. For lower spatial fre-
quencies (larger z values) W(x) is essentially unity over the array
dimensions.

3. DATA PROCESSING

After the array data for any specific spatial frequency are ob-
tained, a number of options are available for graphical presen-
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tation. Examples of each are given in the next section. First, a
profile along one horizontal row of the distorted output waveform
can be observed directly for qualitative purposes.

The magnitude of the one-dimensional fast Fourier transform
(FFT) of the fringe data can be calculated also, and the strengths
of the second and third harmonics measured. The percent har-
monic distortion was calculated by the strength of the harmonic,
normalized to the strength of the fundamental in that data set.
Because broadening of the individual spectral lines is caused by
the envelope function W(x) seen in Eq. (1), the strength of any
individual harmonic was calculated as the area under the spec-
trum curve within a small range of frequencies encompassing
the 10% response points on each side of the peak.

Another way of presenting the linearity data is also of interest.
The input-versus-output curve for the array was obtained by
plotting the distorted sinusoidal output values on the vertical
axis, while the corresponding irradiance values of the input sin-
usoid of the same fundamental frequency were plotted on the
horizontal axis. When a representative row of data containing
many cycles was plotted, a scatter plot representing the respon-
sivity was obtained. Second-degree polynomials were fit to these
responsivity curves by a least-squares criterion. This technique
directly yields the responsivity and the degree of linearity in
graphical form.

For the focal planes tested, the detector-to-detector uniformity
was excellent. Thus, a responsivity curve obtained for a single
detector was representative of the other detectors in that partic-
ular row or of the array as a whole. For a perfectly uniform
array of detectors, the interpretation of the spatial-harmonic-
distortion test is particularly straightforward, because the input
sinusoid provides different detectors with different irradiances
rather than characterizing any detector over its entire operating
range.

However, the method is still useful in the presence of the
detector-to detector nonuniformity often seen in infrared focal
planes 3 In Section 5 we present both numerical and analytlcal
models that quantify the relationship between the pixel variance
caused by nonuniformity and the minimum detectable harmonic
distortion, which determines the ultimate sensitivity of the spatial-
harmonic-distortion test.

4. RESULTS

In this section, we compare the responses obtained from the two
arrays tested: a vidicon tube camera and a solid-state CID cam-
era. We present linearity data in the following forms: flat-field
plots, direct waveforms, responsivity curves, and Fourier spec-
tra. We also present data on the percent harmonic distortion
versus spatial frequency for both cameras.

4.1. Flat-field plots

Figures 2(a) and 2(b) show flat-field plots for the CID and the
vidicon, respectively. The curves show representative detector
output in digital units versus the input irradiance, at zero spatial
frequency. The solid-state camera has a higher degree of lin-
earity, as expected.

4.2. Direct waveforms

Figures 3(a) and 3(b) are representative plots of direct array data
for the CID and the vidicon, respectively, both at a spatial
frequency of 12.5 cycles/cm. The distorted (nonsinusoidal) na-
ture of the waveform output from the vidicon is evident.
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Fig. 2. Measured flat-field curve for the (a) CID array, (b) vidicon. Ver-
tical axis is in A/D converter output units. The horizontal axis is in
irradiance units, with 1 unit along the axis equal to 10 uW/cm?,

4.3. Responsivity curves

Figures 4(a) and 4(b) are representative plots of input-versus-
output curves, that is, the responsivity functions for the CID
and the vidicon. These plots were measured at 25 cycles/cm.
As mentioned in Section 3, these curves were made by plotting
the distorted sinusoidal output values on the vertical axis, while
the corresponding irradiance values of the input sinusoid of the
same fundamental frequency were plotted on the horizontal axis.
The plotted points are the resulting data over a number of cycles
of the waveform, while the solid lines are the least-squares best
fit of a second-degree polynomial. Again, the more linear re-
sponse of the CID camera is evident.

4.4. Spectra

Figures 5(a) and 5(b) show representative plots of the magnitude
of the Fourier spectra of array output data at a spatial frequency
of 12.5 cycles/cm, for the CID and the vidicon, respectively.
The second harmonic is clearly seen for both cameras, even
though it is smaller for the CID array, which has a more linear
response. The third harmonic is also visible in the vidicon data.
The harmonic components to be measured must have sufficient
strength with respect to the baseline noise in the spectra. As
seen in Section 5, this noise arises because of detector-to-detector
nonuniformity, and determines the ultimate sensitivity of the test
in terms of the minimum detectable nonlinearity.

2ss
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Fig. 3. Representative direct array data, at 12.5 cycles/cm, for the
(a) CID array, (b) vidicon. Vertical axis is in A/D converter output
units. The horizontal axis is in position units, with 512 units along
the axis equal to 1 cm. Note especially the nonsinusoidal nature of
the vidicon data.

4.5. Percent harmonic distortion versus spatial frequency

Figures 6(a) and 6(b) show the dependence of second-harmonic
distortion on spatial frequency for the CID array and the vidicon,
respectively. The harmonic distortion is a decreasing function
of spatial frequency for both arrays. This spatial-frequency de-
pendence is a quantity that cannot be measured by the usual flat-
field linearity test. Although we do not postulate a mechanism
in this article, the interpretation of a spatial-frequency-dependent
nonlinearity for detector arrays would be analogous to artifacts
such as the adjacency effect seen in photographic media.

5. TEST SENSITIVITY LIMITATION: SPATIAL
NONUNIFORMITY

The concept and interpretation of the spatial-harmonic-distortion
test are straightforward when all of the detectors have the same
responsivity function. This may be very nearly the case for
certain focal planes, but for other focal planes an appreciable
detector-to-detector nonuniformity exists. Generally, digital cor-
rection algorithms yield a decrease in the magnitude of the non-
uniformity, but still leave some residual variation due to the
limited number of points of correction.!-3

In this section, we present numerical and analytical models
for the sensitivity of the spatial-harmonic-distortion test to the
presence of pixel-to-pixel nonuniformity.

OPTICAL ENGINEERING / May 1991 / Vol. 30No. 5 / 611
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Fig. 4. Responsivity curves for (a) CID and (b) vidicon. Data were
taken at a spatial frequency of 25 cycles/cm for each. Vertical axis
is in A/D converter output units. The horizontal axis is in irradiance
units, with 255 units along the axis equal to 7.5 pW/cm?.

5.1. Numerical model

Our numerical model allows the representation of a typical focal-
plane response, assuming that the responsivities of the detectors
have been corrected for differences in gain and offset to the
accuracy of a two-point correction. This model provides valuable
qualitative insight into the origin of spatial noise in the presence
of nonlinearity and allows the direct visualization of the effect
of residual nonuniformity in the Fourier-transform domain.

A two-point correction for gain and offset is most accurate
in the vicinity of a central operating range of irradiance that
contains the calibration points used to compute the correction.
Outside this central region, the slope of the true responsivity
curve will eventually deviate from the slope computed for the
two-point correction. Because of pixel-to-pixel nonuniformity,
the responsivity outside the central region will not be the same
for all detectors in an array, but will exhibit a spatial variation.

Our model assumes that an ideal sinusoid of irradiance is
input to an array of detectors that exhibits this type of behavior.
We assume a responsivity slope of unity (no distortion) for values
of the input sine wave within the interval —0.5 to 0.5, with a
stochastic distribution of slopes outside that interval to account
for the spatial nonuniformity. We model the slope outside of
the central region as being uniformly distributed between O and 0.5.

The central features of our numerical model are that the non-
linearity is created by the difference in responsivities for different
regions of irradiance, and that the spatial nonuniformity is cre-
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Fig. 5. Magnitude of the Fourier spectrum of the array data for the
(a) CID array and (b) vidicon at 12.5 cycles/cm. The vertical axis is
the transform magnitude. The horizontal axis is spatial frequency,
with 128 units along the axis corresponding to 165 cycles/cm.

ated by the stochastic nature of the slopes of the responsivity
curves for irradiances lying outside of the region of best cor-
rection.

The random nature of the output waveform, when Fourier-
transformed, produces a baseline noise in the spectrum. Figure 7
shows a representative output waveform, and Fig. 8 shows the
magnitude of the spectrum for that waveform which results from
the model. The second and third harmonics are still clearly
discernible, but indeed there is some competition from the base-
line noise. The relationship between residual nonuniformity and
the minimum detectable harmonic distortion is quantified in the
following analytical model.

5.2. Analytical model

To obtain a quantitative relationship between the amount of
pixel-to-pixel nonuniformity and the minimum detectable non-
linearity, we take the simple model of a spatially varying signal
(either sinusoidal or distorted), which is immersed in zero-mean
Gaussian-distributed white noise, of standard deviation o. Let
the fractional amount of nonuniformity present (N) be defined
as the ratio of o to the maximum output range (R) of the array:

N=aogR . (2)

If we consider a sinusoidal signal waveform of spatial frequency
&0 and with an amplitude that occupies the full range of outputs,
we have for the waveform itself
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Fig. 6. Second harmonic distortion in percent versus spatial fre-
quency of input sine wave for the (a) CID array, (b) vidicon. The data
points shown are for spatial frequencies of 12.5, 18.75, 25, 31.25,
37.5 cycles/cm. The solid line is the best-fit linear curve for each case.

R
s(x) = —2-cos(§0r) . 3)

By our definition of the harmonic-distortion magnitude used in
Section 3, a second-harmonic component with fractional strength
J€ will have the following waveform component:

h(x) = ¥ % cos(2Ex) . )

To investigate the visibility of a given amount of harmonic
distortion in the presence of nonuniformity, we compare the
power spectra of the nonuniformity and the harmonic distortion.
The nonuniformity component is properly described by its au-
tocorrelation function R(x), which for the white noise assumed
in this section is written as

R(x) = d®(x) , 5

where 8 is the delta function. The Fourier transform of this
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Fig. 7. Numerical model of a distorted output waveform, with a sto-
chastic distribution of responsivities in the detector elements. The
vertical axis corresponds to detector output (arbitrary units). The
horizontal axis corresponds to position on the array. The array used
in the model had 128 elements in the horizontal direction.

NN
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Fig. 8. Magnitude of the Fourier spectrum of the waveform seen in
Fig. 7. Horizontal axis corresponds to spatial frequency (arbitrary
units). The random distribution of responsivities has contributed to
a baseline noise level in the transform, but the second and third
harmonics are still discernible.

autocorrelation yields the power spectrum PSD(£) that is a con-
stant function of frequency:

PSD(¢) = ¢ = (NR)? . ©)

The Fourier transform H(§) of the harmonic-distortion com-
ponent h(x) yields

H(§) @{%% cos(2§0x)}
R

1
%—2— X ‘2‘[3(§_2§0) + 8(E+2&)] .

0]

The power spectrum A [H(&)|?, thus consists of two delta functions
of strength [#%/4]*. Equating the expressions for |H(£)|? and
PSD(£), we obtain the condition for detectability of the harmonic
component at a signal-to-noise ratio of unity:

[HR/4? = (NR)? . 8)
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Thus, the nonuniformity must be corrected to a level that is
one quarter of the harmonic-distortion component to be detected.
Thus, for any given focal plane to be tested, the amount of pixel-
to-pixel nonuniformity in responsivity will establish the mini-
mum detectable nonlinearity. For example, a system that op-
erated at a full 8-bit dynamic range would allow one level out
of 256 for spatial noise, or a nonuniformity of =0.4%. Harmonic
distortion could be measured to a level of =~1.6%. In a 7-bit
system, the minimum detectable harmonic distortion would be
in the range of 3%. Nonlinearities of this magnitude would be
inconveniently small to observe directly from responsivity curves.

6. CONCLUSIONS

The spatial-harmonic-distortion test is a means for characteri-
zation of the nonlinearity in focal-plane arrays. The main ad-
vantages of this test, as compared to the usual flat-field method,
are the ability to cover the entire operating range of irradiance
with one frame of data, the inherent sensitivity of the test to
small amounts of nonlinearity, and the ability to measure the
spatial-frequency dependence of the nonlinearity. The sensitivity
of the test is limited by the (postcorrection) nonuniformity of
response from detector to detector, and is in the range of a few
percent for systems operating with a 7- to 8-bit dynamic range.

The method should be equally suitable for characterization
of visible and infrared focal planes.
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