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Abstract: A metasurface consisting of an infinite array of square loops was 
designed for maximal absorptivity for s-polarized light at a wavelength of 
10.6 µm and 60 degrees off-normal. We investigate the effects of array 
truncation in finite arrays of this design using far-field FTIR spectroscopy 
and scattering scanning near-field optical microscopy. The far-field spectra 
are observed to blue-shift with decreasing array size. The near-field images 
show a corresponding decrease in uniformity of the local electric field 
amplitude and phase spatial distributions. Simulations of the far-field 
absorption spectra and local electric field are consistent with the measured 
results. 
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1. Introduction 

Optical metamaterials are an engineered class of materials which exhibit properties not 
typically found in nature. Several recent efforts have focused attention on the control of 
spectral properties [1–4] and phase [5, 6] at infrared wavelengths. The term metasurface has 
been introduced as a description for metamaterials consisting of planar periodic arrays of 
scatterers or apertures which form a surface much thinner than the design wavelength [7–12]. 
In many cases, the desired performance is obtained by employing metamaterial designs 
inspired by frequency selective surfaces (FSS) whose functionality was shown long ago for 
radio communications [13–16]. 

Metasurfaces and other sub-wavelength periodic structures are almost universally 
simulated as infinite arrays along the directions of periodicity, by considering a single unit 
cell with the appropriate boundary conditions. This greatly reduces the computational effort 
for simulation and is a good approximation for most applications. However, all metasurfaces 
and related structures are necessarily finite. The actual size limit of the arrays is enforced by 
various circumstances which can be application specific, related to the cost of fabrication, or 
ultimately limited to the size which can be realistically manufactured. In addition, the 
interaction of a beam of light of finite size can cause an equivalent form of array truncation if 
the number of illuminated elements is small compared to the number necessary for the desired 
optical property to converge to that of an infinite array. It is clear that below some threshold 
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the finite size of truncated arrays will significantly alter the device performance in terms of 
the near- and far-field response. 

Here, we report on the design, fabrication, and characterization of a square loop mid-
infrared (mid-IR) metasurface which has been created to demonstrate the effects of array 
truncation in the near- and far-field. The far-field measurements were carried out using an 
FTIR based ellipsometer in reflectivity mode, while the near-field measurements were made 
using scattering-scanning near-field optical microscopy (s-SNOM). Measurements of local 
electric field distributions using s-SNOM at mid-IR wavelengths have been shown recently 
for metamaterial samples [12, 17–19], as well as antennas [20–22], transmission lines [23, 
24], and phase-ramped structures [25]. The data presented in this report show the effects of 
truncation on the near- and far-field performance of a mid-IR metasurface by comparing the 
infinite array response with that of 11x11 arrays, 7x7 arrays, 3x3 arrays, and single square 
loops with a large periodicity. 

The investigation into array truncation was inspired by a previous effort where infinite 
metasurface arrays were etched into small square flakes toward the creation of a large area, 
conformal metasurface coating [26]. Here, the reflectivity spectra of the truncated arrays 
compared somewhat favorably with that of the infinite arrays, but the extent to which array 
truncation altered the spectra was unclear [26]. Aside from this particular application, our 
results are relevant for the design of metamaterial enhancement of pixel-scale sensors [1, 27–
29], as well as all other areas where truncated metamaterial arrays are employed. The results 
and discussion should serve as a baseline study for the effects of array truncation on optical 
metasurfaces and related structures. 

Truncation effects in FSS and metamaterial structures in the radio frequency (RF) band 
have been studied, with much of the work being concerned with the development of hybrid 
simulation techniques [30–35] as well as the presence of surface waves on finite arrays [36, 
37]. In addition there are several examples at RF where the effects of finite arrays are 
addressed in the discussion of the deviation between the performance of the fabricated or 
realistic sample and theory [38–42]. The most relevant literature at RF is that which relates to 
resonant spectral shifts due to truncation [43–47] as well as one reference which shows near-
field measurements on a 3x3 truncated array [48]. However, to the best of our knowledge, 
there are no examples in the literature on the study of truncation effects in metasurfaces or 
related structures at mid-IR frequencies. 

There are a few examples at visible wavelengths which investigate finite structures which 
are similar to metasurfaces. The angular dependence of throughput with respect to number of 
aperture elements has been investigated for extraordinary optical transmission applications 
[49]. In another example, the transmission through finite asymmetric metamaterial arrays was 
reported as a step toward a lasing spaser [50]. Additionally, spectral shifting of the Fano 
resonance has been noted in plasmonic nanoclusters with varying number of nanoparticles 
[51–53]. Perhaps the most relevant prior work at optical frequencies concerns plasmon 
waveguides, where a splitting between the resonance wavelength of the longitudinal and 
transverse modes was simulated [54, 55] and observed experimentally [54, 56] for finite one 
dimensional arrays of plasmonic elements. 

2. Sample design and fabrication 

For the purposes of investigating truncation effects both in the near- and the far-field, a 
sample was designed with optimized absorptivity at 10.6 µm at an angle 60 degrees from 
normal incidence. This wavelength and angle of incidence correspond to the typical excitation 
scheme of the s-SNOM apparatus in the near-field. The design consisted of Au square loops 
above a ZnS standoff layer and Cr ground plane. ZnS was chosen due to its transparency at 
mid-IR wavelengths, while Cr was chosen as a ground plane material due to good adhesion to 
ZnS and Si. The design was then simulated by Floquet analysis at 60 degrees off-normal in 
Ansys HFSS using optical properties derived from ellipsometry; the metasurface was 
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optimized for absorptivity via iterative tuning of the thickness of the ZnS layer, the square 
loop dimensions, and the periodicity. The dimensions of the optimized design are as follows: 
the ZnS thickness was 320 nm, the square loop edge length was 1.44 µm, and the periodicity 
was 1.79 µm. 

Fabrication of the structures was performed using electron beam lithography and lift-off. 
First, a 150 nm Cr ground plane was deposited on to a clean 4” Si wafer via electron beam 
evaporation. The ZnS layer was deposited by thermal evaporation using a baffled box to 
enhance film uniformity. The square loops were patterned via electron beam lithography with 
a JEOL JBX-9300FS system, using PMMA as resist. The exposed areas were developed in a 
solution of equal parts methyl isobutyl ketone (MIBK) and isopropyl alcohol (IPA) for 2 
minutes. Metallization was carried out by electron beam evaporation of a 2.5 nm adhesion 
layer of Ti followed by a 75 nm layer of Au. Liftoff was achieved by submerging the sample 
in n-methyl pyrrolidinone (NMP) for approximately 24 hours. 

Six patterned areas 3 mm x 8 mm in size were fabricated on the sample. These patterned 
areas consisted of the non-truncated design (henceforth called the “infinite array”) as well as 
truncated arrays of the original design containing 11x11, 7x7, 5x5, and 3x3 square loop 
elements as well as isolated square loop elements. In the case of the isolated loops and 
truncated loop arrays, the adjacent space between the structures was 6.35 µm. This was 
observed in the initial simulations to be a distance where the arrays had enough fill factor to 
provide significant absorptivity for the far-field measurement along with a lack of significant 
near-field interaction between adjacent arrays. It is noted that the variation in pattern density 
between the six patterned areas initially caused fabrication inconsistencies between the 
different sized arrays due to proximity effects in the lithographic exposure. To ensure that the 
geometry of the elements in the truncated arrays remained true to the original design, the 
electron beam doses were varied and the pattern line widths were biased over several dose 
matrices until the correct dimensions were observed for each patterned area by high 
resolution scanning electron microscopy (SEM). SEM images representing each patterned 
area of the fabricated sample are shown in Fig. 1. 

 

Fig. 1. SEM images depicting square loop arrays of increasing size: a) isolated square loops, b) 
3x3 element arrays, c) 5x5 arrays, d) a 7x7 array, e) an 11x11 array, and f) the infinite array of 
the original design. 
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3. Characterization methods 

3.1 Far-field characterization 

The spectral absorptivity was measured at 60 degrees off-normal using an infrared variable-
angle spectroscopic ellipsometer (IR-VASE, J. A. Woollam). The ellipsometer was run in 
reflectivity mode with the source and detector filters configured for s-polarization. Since the 
sample has an optically thick ground plane, the absorptivity A is simply calculated from the 
reflectivity R as A = 1 – R. 

While the measurement of reflectivity at 60 degrees off-normal was easily performed 
using the ellipsometer, issues arose due the discrepancy between the size of the IR beam and 
the size of the patterned areas on the sample. The interrogation area on the sample at 60 
degrees is approximately 1 cm x 2 cm, much larger than the area of interest. Additionally, the 
light impinging upon the sample area is not a uniform beam, but rather a slightly focused 
image of the infrared glow-bar source, with a “U” shaped intensity profile. Since the beam is 
not uniform, the aperture at the source cannot be simply made smaller to accommodate the 
small sample size. To mitigate these issues, custom masks were fabricated with rectangular 
apertures centered about the brightest observed intensity from the glow-bar at the sample 
area. Several aperture sizes were tested, but during the reflectivity measurements it was 
observed that the smallest aperture to yield a suitable signal to noise ratio was 4 mm x 10 
mm. The measurement area thus contained all of the sample area of 3 mm x 8 mm along with 
additional sample area outside of the patterned area, consisting of bare ZnS on Cr. The latter 
led to an overall lower measured absorptivity, as will be discussed later. 

3.2 Near-field characterization 

The local infrared near-field polarized normal to the square loops (p-polarization with respect 
to the sample) was measured by a custom built s-SNOM system [19]. A schematic of the 
apparatus is shown in Fig. 2. The source is a CO2 laser, tuned to 10.25 μm. The incident beam 
is expanded and collimated with s-polarization with respect to the sample. The apparatus is 
arranged in a Michelson configuration, with a beam splitter allowing for part of the incident 
wave front to be transmitted to the sample area while the remaining wave front is reflected 
into the reference arm. The transmitted beam is directed toward the sample by planar mirrors 
and focused onto the sample area with an off-axis parabolic reflector (OAP). 

The beam at the sample is s-polarized with an elliptical waist of approximately 65 μm 
spatial extent along the short axis in the sample plane. However, even for the largest sample 
area measured of 22 µm2 the excitation field is still well-approximated as a plane wave. 
Additionally, for the s-SNOM measurements the sample is scanned underneath the stationary 
beam focus, so the measurement area on the sample is consistently being excited with the 
uniform amplitude and phase front at the center of the Gaussian focus. A Pt-coated AFM 
probe operating in tapping mode is positioned at the focus of the beam, which allows the local 
resonant evanescent fields on the sample to be scattered back into the system and detector. 

The reference arm consists of a moveable mirror that is used to adjust the path length of 
the reference beam as well as a quarter wave plate to attenuate the polarization state of 
interest. The reference and sample beams are recombined at the beam splitter and passed 
through a wire grid polarizer, which allows p-polarization (with respect to the sample) to pass 
through, corresponding to the near-field signal polarized normal to the square loops on the 
sample. For the results shown here, the square loop structures are excited using s-polarization 
and the p-polarized light in the near-field is measured. 
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Fig. 2. Schematic of the s-SNOM apparatus. 

The interfering beams are sampled with a HgCdTe (MCT) detector, using a lock-in 
amplifier to sample the signal at the second-harmonic of the AFM tip dither frequency. The 
intensity at the detector can be expressed as follows [19, 22, 25]. 

 
2 22 2 cosd scat ref scat ref scat ref bI E E E E E E Iϕ∝ + = + + ⋅ +  (1) 

Here Escat is the field of the scattered sample beam, Eref is the field of the reference beam, φ is 
the phase difference between the two beams, and Ib represents a background signal which is 
not related to either the sample signal or reference beam. The terms which do not oscillate 
according to φ are diminished significantly due to the use of the lock-in amplifier as well as 
the orthogonally polarized excitation and detection scheme [17, 19, 20, 22, 23, 25]. In order 
to generate amplitude and phase images, several data sets are taken over the sample area of 
interest at different discrete reference phases. The results are exported as text files via WSxM 
[57]. The scans are then processed, point by point, using a least squares fit to a cosine 
function with respect to the reference phase. The output is a set of spatial maps over the 
sample area of interest with each point taking the following form. 

 ( ) 0 cosrel A relS S Sϕ ϕ= +  (2) 

Here, S0 is an offset term that does not vary with φrel, SA is an amplitude term that is 
proportional to the amplitude of the local electric field, and φrel is an arbitrary relative phase 
value. It is noted that for all possible relative phase values, the point-by-point spatial 
relationship in phase on the sample will be maintained. 

4. Results 

4.1 Far-field FTIR 

The spectral absorptivity (using s-polarized light) of the patterned structures at 60 degrees 
off-normal was measured using the infrared ellipsometer apparatus as described previously. 
While the infinite array simulations were performed using Floquet port analysis, the finite 
array simulations were performed using plane wave excitation with s-polarization at 60 
degrees off normal. Absorptivity was calculated in the Floquet analysis by way of the 
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scattering parameters, while the finite array simulations obtained absorptivity by integrating 
the volume loss density over the simulated volume and then normalizing the results to the 
excitation intensity. The measured and simulated spectra are shown in Fig. 3. As can be seen, 
the wavelength of peak experimental absorptivity shifts from approximately 10.25 µm for the 
infinite array to approximately 9.35 µm for the single isolated loops. The underlying causes 
for the shift in peak resonance are discussed thoroughly in the following section. The 
decrease in the amplitude of absorptivity with decreasing array size is predominantly due to 
the decreased fill factor of elements within the measurement area. The simulated spectra show 
the same general trend, although the simulations show more abrupt changes in the resonant 
wavelength. 

 

Fig. 3. Measured and simulated spectral absorptivity for the infinite array and truncated arrays, 
at 60 degrees off-normal for s-polarization. 

The wavelength of resonance for the infinite array is found to be near 10.25 µm when it 
was stated previously that the sample was designed for peak absorptivity at 10.6 µm, 60 
degrees angle of incidence. Upon investigation via SEM it was found that the fabricated 
structures were actually slightly smaller than intended (the edge length of the loops was ~50 
nm shorter than the specified design). Additionally, the corners were slightly rounded 
compared to the idealized simulation. As the resonant wavelength of a square loop is related 
directly to the perimeter, this slight difference in geometry shortened the wavelength of 
resonance correspondingly. Therefore, the simulated values shown in Fig. 3 have been 
adjusted to show this difference by re-simulating the actual dimensions with a loop edge 
length of 1.39 µm. 

The infinite array is observed to be ~80% absorptive at the resonant wavelength, whereas 
the design was optimized to approach unity absorptivity at resonance. The weaker than 
expected measured absorptivity can be attributed to the additional un-patterned areas within 
the aperture mask which defined the area that was actually measured. Indeed, the sample area 
of interest was much more absorptive than implied by Fig. 3; however, the measured sample 
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area included regions around the arrays void of square loops. The percentage of this area is 
calculated geometrically to be approximately 20% (considering the finite thickness of the 
mask and absorptive mask coating). The simulated values shown in Fig. 3 take into account 
the mixture of the arrays and the perimeter voids as follows. 

 . .( ) ( ) (1 ) ( )Total S L SubstrateA FF A FF Aλ λ λ= ⋅ + − ⋅  (3) 

Here, FF is the proportion of the arrays filling the masked aperture, termed the fill-factor, 
A(λ)S.L. is the simulated absorptivity of the arrays, and A(λ)Substrate is the simulated absorptivity 
of the un-patterned substrate. The absorptivity of the infinite array was also measured at 
normal incidence using FTIR with a microscope attachment to measure a 100 µm diameter 
circular sample area filled with loop elements. This measurement (data not shown) concluded 
that indeed the absorptivity of the original design has a maximum value of 0.98 near 10.6 µm. 

To highlight the spectral shifts in Fig. 3 due to truncation, Fig. 4 depicts the peak 
wavelengths (a) and corresponding FWHM (b). This shows the gradual shift of the 
wavelengths of maximum resonance for the truncated arrays from that of the infinite array 
value for both the experiment and the simulations. The deviations between theory and 
experiment for the 3x3 and 5x5 arrays are likely due to interference effects that are sometimes 
seen in the modeling when the lateral dimensions of the array are close to the wavelengths of 
interest. These simulated effects come about due to the perfect coherence assumed in the 
simulations, whereas the experiment uses a broadband incoherent source and does not 
experience these effects. The experimental and simulated FWHM values of the absorptivity 
peaks fluctuate somewhat through the truncated values, as might be expected due to the 
changes in resonance. For every array measured, the experimental bandwidth is larger than 
the simulated bandwidth, which can presumably be attributed to structural inhomogeneities in 
the fabricated compared to the ideal geometry. 

 
Fig. 4. Peak wavelength (a) and FWHM (b) derived from measured and simulated absorptivity 
spectra shown in Fig. 3. 

4.2 Near-field imaging 

s-SNOM images are acquired at an excitation wavelength of 10.25 µm corresponding to the 
peak wavelength of the largest array, and still well within the observed experimental 
bandwidth of the fabricated arrays (with the exception of the isolated loops). Figure 5 shows 
the measured and simulated amplitude of the local electric field signal polarized in the 
direction normal to the square loops (p-polarized with respect to the sample) for an area of the 
infinite array (a,d), an 11x11 array (b,e), and a 7x7 array (c,f). The experimental results were 
obtained by sampling 256 x 256 data points on square sample areas 22 µm per side, 
corresponding to an area slightly larger than the 11x11 arrays. As can be seen for the infinite 
array, the experimental and simulated results show a high degree of uniformity, with each 
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element exhibiting the expected symmetric dipolar amplitude pattern with a minima at the 
center of each horizontal edge. 

The effects of truncation can be seen for the finite arrays as disruptions in the amplitude 
uniformity, with the dipolar pattern for most of the elements becoming asymmetric in terms 
of the amplitude on each vertical edge of the loops as well as the position of the horizontal 
minima. Insets of the center three elements for each array in Fig. 5 are included to illustrate 
more clearly the differences in field amplitude between the infinite and truncated arrays. It 
can be seen noticeably for the truncated arrays that only the center column of elements shows 
a local electric field distribution which is similar to the dipolar pattern observed in the unit 
cells of the infinite array. As expected, the simulated and experimental amplitude values show 
the effects of truncation more strongly in the horizontal direction due to inter-element 
coupling along the direction of the excitation polarization (s-polarized, horizontal in the Figs.) 
and much less coupling along the vertical direction. 

While the simulations do not replicate all experimental near-field details of the truncated 
arrays, there is good overall qualitative agreement. For example, there is strong experimental 
amplitude observed at the top, center region of the 11x11 array (dotted circle) which is clearly 
predicted in the simulation. Additionally, simulation and experiment share the amplitude 
variations from row to row for the 7x7 array. Moreover, the pattern of the experimental 
amplitude distribution from column to column is well reproduced by the simulations for most 
of the columns in both truncated arrays shown in Fig. 5. 

 
Fig. 5. Measured near-field amplitude images for polarization normal to the loops (p-
polarization) for a) the infinite array, b) an 11x11 array, and c) a 7x7 array, and corresponding 
simulated near-field amplitude values for d) the infinite array, e) an 11x11 array, and f) a 7x7 
array. 

Figure 6 depicts the measured and simulated amplitude of the electric field polarized in 
the direction normal to the sample for the next smaller arrays of 5x5, 3x3, and the single 
loops. The experimental results were again obtained by sampling 256 x 256 data points as 
before; however, to obtain better resolution the square sample area in this case was 11 µm per 
side, corresponding to an area slightly larger than the 5x5 array size. Similar truncation 
effects can be seen experimentally in the 5x5 and 3x3 arrays as was seen in the previous Fig. 
for the 11x11 and 7x7 arrays. It is observed again that in the truncated results the center 
column of elements shows the symmetric dipolar pattern which is expected for resonant 
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square loops. As before, there is a good qualitative match between the experiment and 
simulations. For the 5x5 array, the strong experimental field amplitude in the second row is 
predicted well by the simulations. However, the experimental amplitude variations from 
column to column differ from the simulated values. As expected, the local electric field 
distribution appears roughly symmetric from left to right in the horizontal direction for the 
5x5 and 3x3 arrays, although the right edge of the 3x3 array appears brighter than the left. 

 
Fig. 6. Measured near-field amplitude images for polarization normal to the loops (p-
polarization) for a) a 5x5 array, b) a 3x3 array, and c) an isolated square loop, and 
corresponding simulated near-field amplitude values for d) a 5x5 array, e) a 3x3 array, and f) 
an isolated loop. 

The most notable difference between the experimental and simulated images is seen in the 
elements at the left and right edges of the arrays, which are observed to have strong field 
amplitude in the experiment and appear weaker in the simulation. However, the near-field 
simulations of the finite arrays were performed with master and slave boundaries to enforce 
the correct periodicity and thus are presumed to correctly interpret the coupling between 
adjacent arrays. As was observed in the previous Fig. for the larger finite arrays, the effects of 
truncation on the near-field experimental amplitude seem more significant than what is 
predicted by the simulations. The 3x3 array and isolated loop show an asymmetric 
experimental amplitude pattern that is not found in the simulations and contrary to basic 
expectation. We believe that the asymmetry observed experimentally for the 3x3 arrays and 
single loops is due to a far-field interference background, which is more pronounced as the 
resonant amplitude is reduced and less noticeable in structures which are highly resonant. It is 
noted that the asymmetry and background amplitude seen in Fig. 6 was not reduced by 
incremental alignments of the apparatus. It is additionally noted that the inhomogeneities and 
curved edges of the fabricated geometry may also have some effect of the differences 
observed between theory and experiment in the near field. 

The effects of array truncation are also observed when plotting the cosine of the relative 
phase of the local electric field; phase images corresponding to Fig. 5 are shown in Fig. 7, 
where the cosine of the phase is shown rather than the raw relative phase to highlight the 
phase relationships and dilute the graphical anomalies caused by phase wrapping between –π 
and π [58–60]. The phase images show uniformity in the infinite array, while the phase of the 
11x11 and 7x7 truncated arrays appears to show a collective oscillation. The phase images 
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corresponding to Fig. 6 are shown in Fig. 8. As was observed in the larger truncated arrays, 
the 5x5 and 3x3 arrays show non-uniformity across the truncated arrays and a collective 
oscillation in the phase images. 

 
Fig. 7. Cosine of the relative phase for polarization normal to the loops (p-polarization) as 
measured for a) the infinite array, b) an 11x11 array, and c) a 7x7 array, as well as 
corresponding simulated values for d) the infinite array, e) an 11x11 array, and f) a 7x7 array. 
The results were obtained with a 22 µm square sample area. 

 
Fig. 8. Cosine of the relative phase for polarization normal to the loops (p-polarization) as 
measured for a) a 5x5 array, b) a 3x3 array, and c) an isolated square loop, as well as 
corresponding simulated values for d) a 5x5 array, e) a 3x3 array, and f) an isolated loop. The 
results were obtained with a 11 µm square sample area. 
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5. Discussion 

While the changes in near-field distribution between the different array sizes may seem small, 
they underlie the significant spectral shift of the corresponding far-field resonance spectral 
position. Such spectral shift has been noted previously at RF. For example, Grounds and 
Webb showed through simulations that the resonant wavelength of a patch array FSS which 
was infinite in one dimension and 3 elements wide in the other is slightly shorter than that of 
the doubly periodic array at both normal and 30 degree angles of incidence [43]. Guclu et al., 
also at RF, showed via simulation that the peak in gain of finite high impedance surfaces 
occurs at shorter wavelengths as the number of elements in the array is reduced [46]. Kiani et 
al. measured transmission through a 2x2 cross-dipole FSS at RF, and the data showed that the 
peak transmission occurred at a slightly shorter wavelength as opposed to the infinite array 
theoretical prediction [40]. Savia, Parker, and Philips showed simulated results for circular 
ring arrays on a triangular lattice that indicate a shifting of resonance toward shorter (radio) 
wavelengths upon truncation from an infinite to a 91 element array [44]. 

There are several examples of similar behavior in patterned structures at optical 
frequencies. Fedetov et al. experimentally showed a slight shifting of the resonant 
transmission dip associated with a trapped-mode resonance for finite arrays of asymmetric 
metamaterials at near-infrared wavelengths [50]. Bao, Mirin, and Nordlander observed a red-
shifting in the Fano resonance with respect to the number of nanoparticles ranging from one 
to seven [51]. Red-shifting of the Fano resonance was similarly noted for nanoclusters where 
the center element grew in size to accommodate a larger number of perimeter nanoparticles 
[51–53]. Additionally, Maier, Kik, and Atwater showed that the longitudinal mode plasmon 
resonance energies of nanoparticle chains were shifted higher as the number of nanoparticles 
was reduced in both simulations [54, 56] and an experimental study [56]. This behavior was 
again seen in simulated nanoparticle chains by Willingham and Link [55]. Overall, examples 
in the prior work tend to show that truncated systems will resonate at wavelengths shorter 
than their infinite array counterparts, consistent with the behavior observed in Fig. 3 for our 
structures. 

The physical mechanism of a red-shift with increase in coupling between neighboring 
plasmonic or optical antenna elements is due to a softening of the effective potential for the 
collective electron motion [61]. In an effort to gain further insight into the physical details of 
the shift in resonant wavelength with respect to array dimensions, spatial simulations were 
carried out by discretizing the loop elements and underlying structure, then calculating the 
spectral absorptivity from volume loss density inside each cell. As before, the structures were 
simulated with s-polarized excitation at an angle 60 degrees off-normal. These results are 
shown in Fig. 9, in the form of a spatio-spectral graph, where the wavelength of peak 
absorptivity is plotted over a schematic drawing of each array. It is again noted that the s-
polarized electric field excitation is along the horizontal direction in the Fig. A general trend 
of a red-shift with increasing array size is seen in agreement with what was observed in the 
far-field absorptivity plot (Fig. 3) when considering the average peak absorptivity of all the 
elements within each truncated array. However, the physical relationships causing shifting of 
peak absorptivity between individual elements are quite complex. 

We have observed here as well as in previous experiments and simulations that the 
wavelength of resonance gradually becomes shorter and converges toward that of a single 
element as the array dimensionality is reduced, presumably due to the decrease in nearest and 
second-nearest neighbor coupling as the array dimensions are decreased. For a very large 
finite array, one would expect the local resonant wavelength to tend toward shorter 
wavelengths on the edges and toward longer wavelengths in the center. This trend is indeed 
observed for several of the element rows plotted in Fig. 9; however, it is clear that the mutual 
coupling in the truncated arrays bears considerable complexity. The 60 degree angle of 
incidence causes additional modulation in the vertical direction. A gradual shift of resonant 
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wavelength for each column should be readily observed at the edges of a large (pseudo-
infinite) array, which is the topic of another ongoing investigation. 

 
Fig. 9. Simulated peak absorptivity within each cell for a) an isolated loop, b) a 3x3 array, c) a 
5x5 array, d) a 7x7 array, e) an 11x11 array, and f) an infinite array. 

Despite the wide distribution of peak wavelength shown for the 7x7 and 11x11 arrays in 
Fig. 9, it is worth noting that the linewidth as shown in Fig. 4 does not increase over that of 
the infinite array for both the experimental and simulated FWHM values. However, the 
spatio-spectral graph is slightly misleading since it refers only to the resonant wavelength 
without showing the corresponding amplitude of the resonance. The experimental and 
simulated near-field amplitude plots shown in Figs. 5 and 6 in fact indicate stronger 
amplitude toward the top of the structures, which spatially suggests a greater absorptivity of 
the wavelength of excitation. Thus, certain unit cells contribute more significantly to the 
overall absorptivity and the net far-field response corresponds to a weighted average of the 
emission from the different elements of the array. It is noted that the simulations in Figs. 3 
and 9 are the exact same except for the fact that the computational domain was discretized for 
Fig. 9 such that absorptivity could be calculated within each unit cell. While this process 
altered the initial mesh of the simulations, the adaptive meshing technique used in Ansys 
HFSS gave the same result when considering the entire structure in both cases. 

Just as related literature is scarce regarding truncation effects in the far-field, there are 
only a few results which report near-field phenomena, all at RF. Grounds and Well reported 
simulated results for an infinite by 7 element patch array where the current density is 
significantly greater on the edge elements at both normal and 30 degree angles of incidence 
[43]. Contrary to this, Ko and Mittra showed no significant edge effects in the current density 
with simulated values on an infinite by 9 element wide patch array [32]. Ekpo, Batchelor, and 
Parker have published the only report which to our knowledge shows near-field mapping of 
truncated arrays [48]. Here, the transmitted near-field power was mapped over a 3x3 square 
loop array through its resonance at 400 MHz; the results showed the expected stop-band and 
pass-band behavior [48]. The near-field results presented in this report show truncation 
effects in terms of a disruption in the uniformity of the amplitude and phase of the electric 
field polarized normal to the sample. These results share qualitative agreement with the 
simulations; although the truncation effects at the edges of the arrays appear more significant 
than the simulations would predict. 
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It should be noted that the simulations and measurements described here can be explicitly 
applied to only the metasurface design which was presented; however, the results should be 
applicable to a range of element geometries with square symmetry and close inter-element 
spacing. While there are many combinations of element geometries, sizes, and material 
system choices within the realm of metasurface design, we believe that our results should 
provide a baseline result for future researchers concerned with array truncation effects in the 
infrared and optical regime. 

6. Conclusion 

Square loop metasurfaces of different array size were designed and fabricated with peak 
absorptivity at 9.4-10.3 µm at 60 degrees off-normal. Truncation effects were examined for 
reduced element dimensions 11x11, 7x7, 5x5, 3x3, and isolated square loops using near-field 
imaging and far-field spectroscopy. The results show the far-field effects of truncation in 
terms of blue-shifts of the resonant wavelength with decreasing array size. The truncation 
effects manifest themselves in the near-field in terms of spatial inhomogeneities in the local 
electric field amplitude and phase distribution. Finite element method simulations show a 
correspondingly rich spatial distribution of near-field spectral signature at the level of the 
individual loop elements composing the arrays. The results suggest a complex pattern of 
mutual coupling, sensitively depending on array size, is responsible for the observed spectral 
shifts. 
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