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An integrated-wavelet-transform (IWT) approach is proposed for the study of scattering from slightly rough 
surfaces that manifest scaling properties over a finite domain of correlation lengths. Instead of collecting 
angle-resolved intensities, values of the irradiance integrated over increasing areas are used to enhance the 
contributions of small irradiances at large scattering angles and to reduce the coherent noise. In the case of 
self-similar surfaces , the scaling behavior of IWT allows investigation of the surface roughness at various 
length scales. For the realistic case of self-affine surfaces, IWT permits the evaluation of the scaling 
exponent of the autocorrelation and also offers a direct way to evaluate the necessary length scale of the 
surface profile. 
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1. Introduction 

Scattering from moderately rough surfaces is an area 
of active interest.1) Most of the surfaces in the industrial 

environment can be easily brought into this regime by ad-
justing the wavelength of the radiation used for their in-
spection. In this regime, a quite accurate description of 

the scattering phenomena is obtained by means of the 
scalar Kirchhoff diffraction theory. The light scattered 
from a slightly rough surface is considered as a sum of a 

coherent and a diffuse component. The coherent term 
represents the spread function of the input aperture mul-
tiplied by a constant depending on the variance a of the 
surface height variation, while the diffuse component de-
pends not only on a but also on the autocorrelation func-
tion (ACF) of the surface height variations. As long as a 
detailed description of the surface is needed, the atten-
tion is pointed toward the difftlse component of the scat-
tered field. 

On the basis of light scattering measurements, there 
are two different ways to provide a surface roughness 
description. First, we can compare directly the angle-
resolved scattering data with roughness-model-depen-
dent theories. This is a direct and easy way to character-
ize a surface however, one must make initial assumptions 
about the ACF. Second, starting with the values of the 
scattered intensity one can solve the inverse problem and 
describe the surface statistics without any initial assump-
tion about ACF.2,3) Whatever alternative we choose, the 

starting point of the analysis is the collection of ex-
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perimental data and, therefore, the description of the sur-

face roughness is practically determined by the quality of 
the angular-resolved scattering data. In spite of a correct 

understanding of the phenomenon of light scattering 
from slightly rough surfaces, there are still serious im-
plementation and reliability problems for optical scatter-
ing techniques. 

In the case of gently rough surfaces, the intensities in 

the diffuse component are several orders of magnitude 
weaker than the specular component. Moreover, the 
description of the angular-dependent scattered intensi-
ties requires an investigation over as large an angular 
domain as possible. Consequently, the weak intensities 
of the diffuse component should be scanned over a wide 
dynamic range and this imposes serious experimental 
limitations for the detection system. Usually, one is re-
quired to normalize the relative sensitivities of the detec-

tion system at different scattering angles. Beside the 
sensitivity requirement, the speckle noise afiiects sig-
nificantly the variation of the intensity for small changes 

of the scattering angle. There is always a need to average 
out this effect by enlarging the detector aperture, at the 

expense of the angular resolution, or by moving the sam-
ple and/or the detector while taking a large number of 
scattering data. Another practical difiiculty arises when 
the investigated surface is not isotropically rough. The at-

tempts to average out the speckle effect should be, in this 

case, carefully correlated to the directional features of 
the surface. 

We earlier proposed to solve some of these problems 
by making integrated irradiance measurements instead 
of collecting the real angle-resolved intensities.4,5) In the 

Fourier transform plane, the measurement of the in-
tegrated irradiance through filters of increasing area en-
hances the contribution of small intensities at large scat-

tering angles and, meanwhile, completely eliminates the 
undesired speckle noise. Based on Kirchhoff's scalar the-
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ory, a theoretical dependence was developed for the in-
tegrated irradiance as a function of filter magnification.5) 

This approach provided a satisfactory agreement with 
the description of rough surfaces given by mechanical 
profilometer. 

It was later recognized6) that the proposed method for 

measurement and interpretation of scattering data can 
be described in terms of the two-dimensional wavelet 
transform7,8) of the surface height variations. We demon-

strated that, through an inversion of the integrated wave-

let transform (IWT), the ACF can be evaluated from the 
values of the integrated irradiance in the Fourier plane.6) 

It should be emphasized here that, being based on the 
same scattering theory, the inversion procedure in terms 
of IWT cannot bring additional information about the 
scattering surfaces in comparison to the inversion of an-
gular-resolved scattering data. However, in solving the 
Fredholm equation of the first kind associated to the in-
verse problem, the reliability of a solution directly de-
pends on the quality of experimental data. In order to 
recover the ACF by the IWT procedure, one uses the in-
tegrated irradiance, a smooth and monotonic function 
rather than a stepwise one.9) This is not an alternative ap-

proach to the scattering problem but a way to use and in-
terpret the values of the integrated irradiance. Note that, 

in the IWT procedure, an asymmetrical wavelet and its 
subsequent rotation can also solve the problem of an-
isotropic roughness which cannot be tackled by a con-
ventional approach. 

In the present paper, the IWT approach is applied to 
the particular case of fractal surfaces. When surfaces are 

so irregular that geometrical concepts such as the sur-
face area cease to be practically meaningful, the geo-
metry of fractals provides a useful framework for surface 
description.10) Deviations from an ideal planar surface 
can be adequately described in terms of a fractal surface 
with 2 <D < 3. A wide variety of surfaces and interfaces 
are well represented by the roughness associated with 
self-similar or self-afflne processes. Fractals, and in par-

ticular fractal surfaces, are objects manifesting invari-
ance to scale transformations. No characteristic length 
scale exists and, upon magnification, a fragment looks 
similar (in the mean) to the whole. Consequently, scaling-
oriented techniques, such as the wavelet transformation, 
may offer an easier and more direct description of fractal 

roughness. 
In Sect. 2, the IWT is introduced as a mathematical 

technique which can resolve independently both position 
and scale and is further adapted to the case of scattering 
from slightly rough surfaces. In the next section, the scal-

ing behavior of the ACF of self-similar surfaces is de-
scribed in the frame of IWT approach. The more general 
case of self-affine surfaces is studied in Sect. 4. These sur-

faces manifest a natural cutoff of fractality which is di-

rectly monitored by IWT. The scaling properties of IWT 
are discussed in connection with the shape o"f the analyz-

ing wavelet. An example of IWT inversion is presented 
in Sect. 5. The retrieval of surface autocorrelation func-
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tion from the values of the integrated irradiance is com-
pared to the result of an inverse Fourier transform ap-
plied to the angular-resolved scattered intensities. In the 

last section, some conclusions of this study are pointed 
out . 

2. Integrated Wavelet Transform 

The two-dimensional WT of an input function f(x) 
with respect to the wavelet g(x) is defined as 

1 ~J Tf(a, ~!, b)= g*(a~1~~1(x-b))f(x)dx 
a 

1 
(27c)2 ~*(a~~1k)f(k) exp (ibk)dk, (1) 

where the symbols * and ^ stand for the complex con-
jugate and an operation of the Fourier transform, respec-
tively, while I /a, ~~, and b indicate the magnification, the 

rotation, and the position in the WT domain, respec-
tively. The rotation operator ~~ = ~~(e) is defined by 

cos O -sin O 
~~(O) sin 6 cos e (2) 

In performing the transformation defined in Eq. (1), no 
information about f(x) is lost, and this relation can be in-

verted as long as the wavelet admissibility condition, 
namely 

1 J I~(k)12dk<co (3) 
(27c)2 1 k 1 2 

is satisfied. This requires that at least the first moment of 

g is zero, namely J~ 9(x)dx= O, and that the wavelet func-
tion decreases more slowly than xl/2 as x->0.6) This ad-

missibility condition implies that the wavelet is restricted 

around the origin. 
The irradiance in the WT plane can be integrated. An 

IWT, defined as a function of the wavelet magnification 
1 /a and the wavelet rotation e, can be written as 

J 
I(a, 6)= I Tf(a, ~!,b)12db. (4) 

Using Parseval's theorem, the integral can be evaluated 
in the filter plane and it can be shown that6) 

1 ~ - Ix = * ) ~~J 
I(a, O) F(x)dx (5) G 

where G and F stand for the two-dimensional autocorrela-
tion functions of the wavelet g (x) and input f (x), respec-
tively . 

This general formalism can be easily adapted to the 
case of slightly rough surfaces when just a small phase 
modulation of the complex scattered amplitude is in-
troduced by scattering on the surface. 

The topography of a rough surface can be described by 
the height z (x), measured from a reference plane S, as a 
function of the lateral position x. The roughness of the 
surface is described, therefore, by the statistical distribu-

tion of the heights z (x). Usually, a Gaussian distribution 
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of heights is assumed for the theoretical description of 
the roughness.n) However, this description refers to the 

vertical characteristic of the surface and does not take 
into account the horizontal length scales involved in a sur-

face profile. To appreciate how the height z (x) varies on 
the horizontal plane, the profile autocorrelation function 

is used. If we restrict our comments to the case of iso-
tropic surfaces, the normalized autocorrelation function is 
defined as8) 

C (x) = a ~2 <z (x' +x)z (x')>, (6) 

where < • • • > denotes an ensemble average over all 
choices of the origin on the surface. By assuming that 
<z (x)>=0, the rms roughness cr is given by 

When a plane wave with the wavelength ~ illuminates 
a rough surface and if kz (x) < 1, the diffase component of 
the intensity distribution scattered in the far-field region 

is well approximated by a Fourier transform of the au-
tocorrelation function C (x) of the surface height varia-
tion z (x) multiplied by its variance,5,6) 

ldiff (k )oc a2 C (x). (8) 
We can consider that, for the special case of a slightly 

rough surface, the input function for the IWT analysis 
corresponds to z (x) and, consequently, the function F of 
Eq. (5) corresponds to autocorrelation C defined in Eq. 
(6). In this case, Eq. (5) represents the relationship be-
tween the integrated irradiance of the scattered light in 
the far field and the surface height variation and is an ex-

tension of the classical result of Eq. (8). The IWT ap-
proach has been applied to slightly rough surfaces with 
Gaussian and negative exponential autocorrelation func-
tions. Well-defined maxima were found for the inte-
grated irradiance as a function of the magnification 
parameter of the WT.6) The presence of this maximum is 
explained by considering the wavelet transformation as a 
kind of mathematical microscope used to observe an im-
age of the input. In the present example, its magnzfication 

is deflned by the parameter a while its impulse response 
is described by the wavelet shape. In this respect, the 
maximum in the dependence of I versus a is equivalent to 
the focus position of the microscope. There is an optimum 
magnification of the microscope at which the characteris-
tic length scale of the profile L is matched to the impulse 

response size and, consequently, I(a) becomes maxi-
mum. From the position of this maximum, as a function 
of magnification, the surface autocorrelation length L 
can be extracted. 

Because the admissibility condition is satisfied, Eq. (5) 

can be inverted and the autocorrelation function of the 
surface profile can be evaluated from the values of the in-

tegrated intensity in the WT plane. This represents a 
new approach to the inverse problem associated to scat-
tering from slightly rough surfaces. 

In the next sections, IWT will be applied for the 
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specific case of light scattering from surfaces with 
fractal-1ike characteristics . 

3. Self-Similar Surfaces 

If a surface lies in the three-dimensional Euclidean 
space and if we try to cover it with squares of the linear 

dimension l, it may happen that the number N of re-
quired squares depends on the size of the squares in such 
a way that 

D ~~ lim log N(1 ) (9) 
l+0 Iog l 

is finite and non-integer. A11 the information about the 
surface is contained in the value D of this limit, called the 
fractal or Hausdorff dimension 0L the surface.9) The finite-

ness of this limit implies, for IH,O, a scaling like 

Nocl-D, 2<D<3. (10) 
This approach for the description of a surface is usually 
called the definition of the surface dimension in terms of 
tiling.12) If Eq. (10) is valid, the surface is self-similar and 

its irregularity, as compared with a plane square, is fully 

measured by the fractal dimension D. Of course, this is 
true only in an averaged sense and, for a rough surface, 
the concept of statistical self-similarity is more appropri-

ate. By increasing the resolution of a covering process 
(i.e., by reducing the yardstick l), the same statistical 
properties are revealed for such a rough surface. A value 
of D= 2 corresponds to a perfectly smooth (but not neces-
sarily flat) surface, while a value of D= 3 means a space-
filling surface which is indistinguishable from a uniform 
distribution of mass in the three-dimensional space. 

For self-similar surfaces, no definite scale length on 
the surface profile exists, and we can expect that a corre-

lation function like C (x)ocx ~" may be used to describe 
the surface roughness. The parameter oe is just a generic 
exponent describing, in terms of the autocorrelation func-
tion, the invariance to scale transformation: C (yx)oc 
y ~"C(x). This kind of scaling autocorrelation function 
has been successfully used to describe porous coal sur-
faces,13) mesoporous silica gels,14) or heterogeneous chem-
ically active surfaces.15) Of course, for real surfaces, this 

scaling form of C (x) is valid only for a range of x limited 

by the microscopic properties of the surface and by the in-

herent finite extent of the sample. However, for the case 
of self-similar surfaces, the IWT approach leads to some 
interesting results. 

Let us consider the wavelet transformation defined in 
Eq. (5) restricting our consideration to the case of iso-
tropic functions. Using the proposed scaling form for the 
autocorrelation function, Eq. (5) becomes 

J: ( -2 * ) x 

I(a)=a G (11) x~"xdx 
a 

We now identiLy how the scaling form of C(x) deter-
mines the IWT behavior through Eq. (11). By making the 
change of variable as x=ax', Eq. (11) can be written as 
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2 J" 
I(a)=a~ G*(x')(ax')~~a2x'dx' 

0+ 

= J" a~" G*(x)x~"+1dx, (12) 
0+ 

where the singularity at x=0 has been omitted. Obvi-
ously, the behavior of I (a) is determined by the scaling ex-

ponent a of the autocorrelation function and by the be-
havior of the wavelet autocorrelation function G (x) for, 
respectively, small and large values of the argument x. 

Recalling the wavelet admissibility condition of Eq. (3), 

we can assume that the wavelet function decreases at in-
finity like x ~m with an exponent m > O and, in such condi-

tions, Eq. (11) becomes 

J - -* 
I(a)=a~" x "x "+1dx. (13) 

0+ 

A brief inspection of Eq. (13) reveals two different pos-
sibilities. First, if a > I - m, then the integral over x is 

finite and the integrated intensity scales like a~". Sec-
ond, if a < I - m, then the integral diverges in general 
but, in the limit of large magnifications, such as when 
a~>0, we have 

1/a J -" I(a)-a~" xl~m dxoca"~2 (14) 
0+ 

Accordingly, the IWT follows the scaling behavior of the 
autocorrelation function only under certain conditions. If 
the scaling exponent a of the autocorrelation function 
and the exponent m describing the shape of the wavelet 
satisfy the condition a > I - m, the integrated intensity 
scales like I(a)oca~". Otherwise, the scaling takes the 
form of I(a)oc a"~2. Some rigorous results about scalings 
and wavelets can also be found in Holshneider.16) 

A Mexican-hat wavelet, illustrated in Fig. 1(a), is de-

scribed as 

( 2) lx] 

g(x)=(2-lx[2)exp - 2 (15) 
and approximated in the Fourier plane (Fig. 1(b)) by 

2 1 ifkl<k<k 
l~(k)1 - O otherwise (16) 

where kl and k2 are constants to be chosen arbitrarily. 
For this particular wavelet, a straightforward integration 
of Eq. (11) results in 

I(a)oc kl " (17) 
a ' 

for 0<a <2. 
This scaling property of I(a) can also be demonstrated 

by analyzing the integrated intensity in a diffraction ex-
periment. Suppose that the behavior of the irradiance in 
the Fourier plane is like k -*, and that no restriction is im-

posed on the exponent rc except that /c > O. I(a) is given 
by a two-dimensional integration of the intensity with 
scattering vectors k satisfying (kl /a) < k < (k2 /a). By a 
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(a) 

(b) 

Fig. 1. (a) Shape of the two-dimensional Mexicale-hat wavelet. (b) 
An approximate (band-pass filter) of the Fourier transform of the 
wavelet in (a). 

drrect mtegration, we obtain 

k,/a kl 2~* I (a)oc k -"k dkoc (18) k* /a a 
For K < 2, the last result is identical with Eq. (17) if 
2 - a = Ic, which, in fact, is the usual relationship between 

the scaling exponents of the autocorrelation function and 

the power spectrum in the case of a two-dimensional 
Fourier transform. For K > 2, the power spectrum van-
ishes quicker than the area of integration and, conse-
quently, the integrated intensity decreases when the mag-
nification 1/a is increased. 

In conclusion, a study of the scaling behavior of the in-

tegrated irradiance as a function of a can be used, under 
certain conditions, to infer the scaling exponent of the au-

tocorrelation function. As previously indicated, as long 
as no correlation length is assumed for the surface rough-
ness, the wavelet microscope cannot match a length scale 
and, accordingly, no maximum exis,ts for I(a). The finite 
extension L of the surface correlations can be accounted 
for by a multiplicative exponential factor exp ( -x/L) in 
the form of C (x) in a similar manner to that used in criti-
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cal phenomena or in the studies of scattering from fractal 
aggregates.17) L has the significance of an effective cutoff 

of the fractal regime. However, including this form of 
C (x) in the present analysis will not modify the scaling 

properties of IWT. 

4. Self-Affine Surfaces 

In the previous section, we considered surfaces that ex-
hibit scale invariance. However, in the process of generat-

ing a rough surface, we need not assume similar statis-
tics on directions parallel and normal to the surface. The 
two directions are physically distinct, and therefore may 
have different scaling features. The result is a more com-
plex kind of rough surface called a statistically self-affine 

surface. A typical example is the altitude zH(t) of a 
straight-1ine hiker as a function of time when he walks at 
constant speed. The function zH(t) is statistically self-
afline if, when t is scaled by y, ZH Is scaled by yH 12) In this 

case, the definition of a fractal dimension is not straight-
forward as in the case of self-similar surfaces.12,18) 
However , most natural phenomena (clouds, mountains , 
or sea surfaces) can be modeled using the concept of self-
affine surfaces.18-22) 

For a selL-afiine surface, the mean square increment of 
the height z (x), that is the structure function,12) scales 
likel8-23) 

S( I x I ) = <[z (x2) -z (xl)]2>Qc I X2 - xl 1 2H (19) 

where, again, < • • • > denotes an average over all the 
choices of the origin for two position vectors xl and x2. 

The exponent O <H<1 is the Hurst exponent and 
describes the statistical behavior of the surface. It is im-

portant to note that Eq. (19) does not invalidate the usual 

assumption of Gaussian statistics for the surface heights. 

Equation (19) expresses the scaling property of the 
horizontal roughness21) but is not a constraint for the 
height statistics. For isotropic surfaces, Eq. (19) be-
comes, by putting xl=x' and x2=x' +x, 

S(x)=<[z(x'+x)-z(x')]2>=Ax2H, 0<H<1. (20) 

The physical meaning of the constant A will be apparent 
in the following. It is easy to see that the mean-square 
slope behaves as follows: Iim*-* S(x)/x2-0. At large 
scales the surface looks essentially smooth. However, at 
smaller scales the surface can be regarded as a fractal 
with the fractal dimensionl8,22) given by D=3-H. 
Although the surface described by Eq. (20) is nondifferen-
tiable, the chords joining points separated by a given dis-

tance x do have a finite mean-square slope. This may be 
used further to define a scale length on the structure of 
the surface. The distance P over which the chord has a 
unit rms slope, 

/\[[z(x'+fi)-z(x')lJ \/ = 

fi ~ 1, (21) 
is called the topothesyl8) of z (x) and can be expressed 
asl4,19) 

A. DOGARlU et al. 297 

fi=A1/2(1-H)=A1/2(D-2) (22) 
P may also be called the strength of the fractal surface 
because it represents the resolution of a measurement 
of z(x) resulting in a rms slope of one radian. Intuitively, 

an ideal measurement on a fractal surface would result in 
an infinitely large rms slope. 

For smooth surfaces described by D= 2 or equivalently 
H= l, there is no topothesy and 

S(x) 

lim = 2 (23) 6 
.*o x2 ' 

where 62 is the mean square slope. Making use of Eqs. 
(20) and (22), the structure function of the fractal surface 

can be written as a function of the fractal dimension D as 

S(x)=P2D~4x6 2D 2<D<3 (24) 
As can be seen from Eqs. (22) and (24), the topothesy and 
the strticture function of a self-afline surface definitely 

depend on the fractal dimension. 
Note that the proportionality constant in Eq. (20) 

depends on the specific properties of the surface profile. 
A is a function of a scale length on the surface profile, 
P, and also a function of the scaling parameter H: 

A =fi2(1 -H). (25) 
The complex character 0L self-aifine surfaces is evident; 
the parameters describing the surface, H and fi, act not 
only on the scaling part of Eq. (20) but also on the value 
of the proportionality constant A. 

So far, we used the structure function S(x) to describe 
the topography of a self-afiine surface because it has the 
appealing quality of being independent of the position of 
the plane from which z (x) is measured and, meanwhile, 
describes the appropriate scaling properties of self-afiine 

rough surfaces. Unfortunately, S(x) does not appear ex-
plicitly in the theories of wave scattering, and therefore 
the equivalent approach in terms of the surface autocorre-

lation function of Eq. (6) must be used. For stationary 
rough surfaces, S(x) and C (x) are related byn) 

S(x) = 2a2 [1 - C (x)]. (26) 
Rigorously speaking, S(x) can diverge at infinity for self-

afline processes and the stationarity condition is never 
reached. However, fractal profiles represent an idealiza-
tion of real physical surfaces. The divergence of S(x) at 

large x (or the corresponding divergence of the power 
spectrum at low frequencies) is unphysical and the actual 

roughness measurement converts this quantity into a 
finite one.10) In practice, the rms roughness saturates, for 

sufiiciently large horizontal distances x, at a certain value 
a.24) The existence of a cutoffL of the fractality can be in-

cluded in an autocorrelation function such as 

[ (-) J-x 2h 
C(x)=a~2 exp - (27) L 

When the surface is measured using a profilometer, the 
cutoffL can result from experimental effects not directly 
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Fig. 2. Autocorrelation functions as defined in Eq. (27) plotted for 

values of the parameter h as indicated. 

1 o~3 1 0~2 

x/L 

1 O-i 1 Oo 

Fig. 3. Structure functions corresponding to the correlation 
functions in Fig. 2. For small values of the normalized distances 
x/L, the slopes have the expected values of 2h. 

related to the surface itself. These includel) the finite size 

of the investigated area and the detrending process used 
to remove setup errors (piston, tilt, curvature) from the 
experimental data. These effects generate a cutoff in the 
scaling form of a measured power spectrum.24~26) Also, it 

was suggested that some particularities of the scattering 
experimentsl0,27) may be explained by such a form for the 

autocorrelation function of the surface. Being a realistic 
form of the autocorrelation function, it recovers the tradi-

tional Gaussian shape for h = I and the negative exponen-
tial for h = 0.5 (see Fig. 2). The corresponding structure 

function is given by 

[ (-) J}-J x 2h S(x)=2a211-exp - (28) L 
Note that, deep inside the fractal domain (for x<< L), C (x) 

of Eq. (27) can be approximated by I - (x/L)2h and, ac-
cordingly, S(x) has the same form as in Eq. (20) with 
h =H. This is illustrated in Fig. 3, where the structure 
function corresponding to a correlation function as de-
fined in Eq. (27) is , plotted against the normalized dis-

tance x/L. As can be seen, for x/L<0.1, the structure 
function has a definite power law behavior with a slope 
2H. We may conclude that a surface having a correlation 
function as defined in Eq. (27) is a self-afiine surface for 

sufficiently small length scales. Furthermore, using Eqs. 
(24) and (28), the correlation length L can be expressed in 

terms of the topothesy T and the fractal dimension D as 

L=(1r~cT)1/(3 D)ft(2 D)/(3 D) (29) 

Accordingly, we reach the conclusion that, for a fixed a, 
the finer the structure on the surface (in other words, the 

smaller the topothesy), the longer the extension L for the 
surface correlation. 

Being in possession of a reasonable form for the au-
tocorrelation function, we can apply the wavelet trans-
form approach for the case of self-afiine surfaces. For ex-

ample, in the easiest case of a Mexican-hat wavelet, the 

1 Oo 

l~ CS I 0~2 
'-/ h~ 

H = 0.25 

H = O' 

H = 0.75 

H=1 
10~} 10~ 10~2 100 1 O~i 

a 

Fig. 4. Integrated irradiance corresponding to self-affine surface 
described by different values of the Hurst parameter H, as a 
function of the magnification parameter a. The shape of the 
analyzing wavelet and the correlation length are the same for all the 

cases . 

autocorrelation function of Eq. (27) can be used in the 
general form of the integrated irradiance expressed by 
Eq. (5). Analytical expression cannot be derived in the 
case of an arbitrary H and results of numerical integra-
tion are presented in Fig. 4. 

As can be seen, at very small magnifications, such as in 
the limit a- co , the curves corresponding to different H's 
tend to an asymptotic a~2 dependence. We can under-
stand this by imagining that, at these small magnifica-
tions, the mathematical microscope of the WT cannot dis-
tinguish between different kinds of surfaces. As long as 
the largest length scale on the surface (the correlation 
length L) cannot be resolved, all the surfaces look essen-
tially smooth. For large a , I (a) is also independent of the 

shape of the analyzing wavelet. In terms of the mathemat-
ical microscope at small magnifications, the recorded 
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signal is obtained by integrating a constant irradiance dis-

tribution disregarding the specific choice of the point-
spread function. As for the absolute value of 2 for the 
scaling exponent, this can be explained by following the 
same argument used to derive Eq. (18). The integration 
domain corresponds now to scattering vectors with k<< 
1 /L where the intensity distribution is essentially con-

stant. A straightforward integration as in Eq. (18) Ieads 
to the a~2 dependence of the integrated irradiance. 

Following a similar explanation, the behavior of I(a) at 
large magnifications (in the limit a- O) can be made trans-

parent. First, we must remark that a smoother surface 
corresponding to a higher parameter H has a far-field in-
tensity distribution that vanishes faster at large spatial 
frequencies k. Noting that a behavior as in Eq. (18) is also 

expected for the far-field intensity scattered by self-
afline surfaces, a higher value of the parameter H cor-
responds to a higher exponent lc in Eq. (18). Rougher 
surfaces tend to scatter light over larger angles and, 
therefore, correspond to a smaller exponent rc in Eq. (18). 
As can be seen in Fig . 4 and in agreement with the expec-
tations of Eq. (18), I(a) decreases more rapidly at small a 

in the case of large parameters H. From the scaling fea-
ture of the integrated intensity at high magnifications, 
therefore, it is possible to extract information about the 

associated fractal dimension D=3-H. Finding the ex-
plicit dependence of I(a) at small a is, however, equiva-
lent to solving the problem of light scattering from self-
affine surfaces. A scaling behavior with the exponent - rc 
for the intensity in the far field is equivalent to a scaling 

with the exponent lc - 2 for the integrated intensity. The 

IWT technique cannot bring additional information 
about the scaling feature but offers an alternative ap-
proach which, especially for experimental reasons, may 
be very attractive. The IWT technique involves an in-
tegrated intensity measurement with the inherent in-
crease of signal to be detected. This is to be appreciated 

particularly in the case of smooth surfaces with a 
reduced diffuse scattering. Also, the integrated-irradi-
ance nature of the IWT approach minimizes the statisti-
cal fluctuations in the recorded intensity from speckle 

phenomena. 
Besides, as we have pointed out, real surfaces (self-

similar or self-affine) have limited scaling characteristics. 

Therefore, it may be useful in some applications to infer 
a characteristic scale length on a rough surface. This is 
done very well by our microscope which, with an adjusta-
ble magnification, can match a scale length on the sur-
face. The ability of IWT to reveal the characteristic 
length is demonstrated in Fig. 5, where the integrated in-

tensities corresponding to a correlation function with 
H= 0.75 and different correlation lengths are presented. 
The maximum of I(a) corresponds to that magniflcation 
which matches the specific wavelet shape to the length 
scale on the surface. As can be observed, the smaller the 
correlation length L of the surface roughness, the higher 
the magnification I /a needed to reveal it. Obviously, the 

value of a corresponding to a maximum of the integrated 
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Fig. 5. Integrated irradiance corresponding to self-affine surfaces 
described by the same parameter H= 0.75 but having different 
correlation lengths L, as indicated. The shape of the analyzing 
wavelet is the same for all the cases. 

intensity is proportional to the size of the correlation 
length. Note also that the absolute value of L does not 
affect the scaling properties at smaller distances on the 
surface. Consequently, the same dependences are found 
for I(a) at small a in all the cases. Practically, the curves 

of I(a) are identical in Fig. 5 but shifted horizontally, cor-

responding to the matching magnifications. 

5. ACF Retrieval 

In this section we will briefly present an example of 
how IWT can be inverted, and therefore applied to 
retrieve the ACF of the surface fluctuations from the 
values of the integrated irradiance. 

In Fig. 6, two typical profiles of scattered intensities 

having power-1aw behaviors are presented. To simulate 
difiicult experimental conditions, the scattering data are 

strongly corrupted by noise but overall dependences like 
h -2.25 and k -2.75, respectively, are evident over an angu-

lar domain as large as two decades. The fractal appear-
ance extends down to the spatial frequency k= 1. Note 
that, in order to ensure the scaling behavior, the intensi-

ties span over more than five orders of magnitude. As we 
mentioned in the Introduction, in the case of fractal scat-

tering, the need for a large dynamic range of the detec-
tion system complicates the acquisition of accurate ex-
perimental data. 

However, we can integrate the angular-resolved inten-
sity over domains with increasing area as suggested in 
the IWT approach. By this integration, the necessary dy-
namic range can be highly reduced and, meanwhile, the 
speckle noise is drastically diminished . These are proved 
in Fig. 7, where integrated irradiances, corresponding to 
the intensities in Fig. 6, are shown as a function of wave-

let magnification. Data of Fig. 7 were obtained by using 
an approximated Mexican-hat wavelet having kl /k2= I / 
3. Figure 7 clearly shows how this type of measurement 
can counteract the intensity fall-off, the signal being co-



300 OPTICAL REVIEW Vol. 6, No. 4 (1999) A. DOGARlU et al. 

f~ ~,: 

~/~ 
;S 

~f 

100 

10~1 

1 0~2 

1 0~3 

1 0~4 

1 0~5 

0.1 

" o 

100 

10 

-_ b 

a 
ll 

ll ' ~ llf / ~ \ l 

I I \ l 

\ J , 
\ If 
\ l, 
\ I: 

1 10 100 
0.1 0.2 0.5 1 

k 
Fig. 6. Angular-resolved values of the scattered intensity. The 
curves correspond to power-laws with exponent (a) - 2.75 and (b) 

-2.25. 

,A, C~: 

~J ~i 

0.5 

0.2 

0.1 

0.05 

0.1 

a 

1 10 

Fig. 7. Integrated irradiance (approximated Mexican-hat wavelet 
with kl /k2= 1/3) corresponding to scattering intensities presented 
in Fig. 6. 

vered with less than two decades of the irradiance varia-
tion, and how the speckle noise is practically suppressed. 

Also visible is the cut-off of the fractal domain. The 
plateau at small scattering angles, visible in Fig. 6 for 
q < I , generates a maximum in the shape of the integrated 
irradiance. This time, the cut-off corresponds to a wave-
let magnification of a = 1. For a less than 1, the depen-
dence between the integrated irradiance and the wavelet 
magnification parameter a can be directly used to infer 
the power-1aw behavior of the scattered intensity. The 
position of the maximum can be used to extract or to 
control in an automatic procedure the value of the upper 
cut-off of the fractal domain. 

Inverse IWTS were processed for I(a) and are shown 
in Fig. 8. The result of this inversion, using a dynamic 
range of only 40 for the magnification parameter a, is 
presented in Fig. 8 together with the result of an inverse 
Fourier transform applied to the angular-resolved scatter-
ing data of Fig. 6. As can be seen, the power-1aw behav-
iors are fully recovered in spite of the low number of I(a) 

X 

Fig. 8. Autocorrelation functions recovered by inverse IWTS 
from the values of the integrated irradiance in Fig. 7. Also shown, 
with dashed lines, are the corresponding autocorrelation functions 
recovered by inverse Fourier transforms from the values of the 
angular-resolved intensities presented in Fig . 6 . 

data and of their relatively reduced dynamic range . The 
inversion of scattering data by means of IWT is suf-
ficiently close to that provided by the classical Fourier 
transformation in spite of the fact that their input data 
are different: the values of the integrated irradiance 
shown in Fig. 7 for the IWT and, respectively, the 
angular-resolved intensity shown in Fig. 6 in the case of 
Fourier transformation. Moreover, the inverse Fourier 
transformation uses an input with a dynamic range 
almost three times larger than IWT. 

6. Conclusions 

Based on the general theory of wavelet transforms, a 
new approach for the study of the surface roughness was 
recently introduced . It was demonstrated that the in-
tegrated irradiance in the WT plane can be regarded as 
the WT of the autocorrelation function of the input func-
tion and that this relationship can be used to describe the 

measurement of the integrated intensity scattered by 
rough surfaces having small height variations . It was also 

proved that this integrated wavelet transform IWT can 
be inverted and, consequently, may be used to solve the 
inverse problem of the scattering from slightly rough sur-
f aces. 

In this paper, the IWT approach was applied to the 
investigation of fractal surfaces with self-similar or self-

affine characteristics. The main properties of the self-
similar surfaces were reviewed and a scaling-1ike autocor-

relation function was considered. The method based on 
integrated wavelet transform was applied and the scaling 
features of the integrated intensity in the WT were inves-
tigated. It was demonstrated that the scaling behavior of 
the IWT follows the scaling of the surface autocorrela-
tion function only in particular cases. Restrictions on the 

shape of the wavelet and the scaling exponent of the au-
tocorrelation function were pointed out. Because of an ap-

pealing practical implementation, the scaling property 



OPTICAL REVIEW Vol. 6, No. 4 (1999) 

was studied for the case of a Mexican-hat wavelet. 
Self-afiine surfaces, a more complex kind of rough sur-

face, were also studied. The parameters that deflne this 
type of surface were introduced and it was shown that, in 
this case, there is a definite scale length on the surface 

topography. It was demonstrated that a general form of 
autocorrelation considered describes actually the small 
scale features of a self-a~ine surface. This observation 
emphasizes the general character of the concept of self-
affine surfaces. When applied to this particular case, the 
microscope of the IWT easily reveals the characteristic 
scale length on the surface profile. Given that all real sur-

faces have at least one characteristic scale length, the 
ability of the IWT to measure this length is a promising 
practical advantage of the IWT approach. The scaling 
behavior of the IWT also reflects the scaling character 
of the surface structure function. 

Finally, the inversion procedure 0L IWT was tested 
against the classical method of Fourier transformation of 

the angular-resolved scattered intensities. The IWT 
approach uses a much more reduced dynamic range of 
irradiances while providing a satisfactory solution for 
the inverse problem associated with the scattering 
from slightly rough surfaces. 
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