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Applications using millimeter wave (mmW) and THz radiation have increased during the past few years.
One of the principal applications of these technologies is the detection and identification of objects buried
beneath the soil, in particular land mines and unexploded ordnances. A novel active mmW scanning
imaging system was developed for this purpose. It is a hyperspectral system that collects images at
different mmW frequencies from 90 to 140 GHz using a vector network analyzer collecting backscatter-
ing mmW radiation from the buried sample. A multivariate statistical method, principal components
analysis, is applied to extract useful information from these images. This method is applied to images of
different objects and experimental conditions. © 2006 Optical Society of America
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1. Introduction

Land mines inflict high costs on civilian populations
decades after the military conflicts that prompted
their deployment have ceased. The United Nations
estimates that over 110 million active mines lie hid-
den beneath the ground of 68 countries, killing or
maiming 2000 people per month. Accidents occur at a
rate of one for every 1000 to 2000 mines destroyed.1
The threat to civilians remains and hinders economic
and social recovery.

Antipersonnel mines can be buried just beneath the
surface, whereas antitank mines are buried as deep as
40 cm. The land mines can be any shape and can be
made of many different materials including metal,
plastic, rubber, or wood. There are a number of de-
tection technologies applied for the remediation of
minefields, such as inductance coils (metal detectors),
magnetometers, ground-penetrating radar, infrared
imaging, and explosives vapor sensors.2 Metallic
mines can be detected by using many of the methods
mentioned above. However, the increased use of plas-
tic mines has made detection difficult. Inductance
coils and magnetometers cannot detect mines with
little or no metal content.3 Ground-penetrating radar

systems operate at long wavelengths,3 which give
them high penetration through the soil but low spa-
tial resolution, increasing the false-alarm rate com-
pared with the millimeter wave (mmW) wavelengths.
Thermal infrared imaging detection methods require
multiple images to be taken 30 min apart to detect
the land mines.4 Explosives vapor sensors often pro-
vide poor localization capabilities and spatial resolu-
tion.3 A passive mmW land mine detection system
has been demonstrated before,5 but it depended on
the effective sky temperature. An active mmW sys-
tem6 is potentially attractive in that, in an imaging
mode, it can achieve good discrimination between
antipersonnel mines that are primarily nonmetallic,
and the small metallic debris (shrapnel and cartridge
cases, for example) typical of minefield conditions.

Because of the shape and size discrimination in-
herent in an imaging system, the trade-off between a
false-alarm rate and a miss rate is favorable for
mmW wavelengths.5 The ability to detect and image
buried objects will depend on soil transmission and
scattering. Soils with particle sizes larger than the
wavelength have low transmittance due to scatter-
ing.7 Dry quartz sand has high transmission in the
mmW range due to its fairly uniform particle size,
which is smaller than the wavelength of light.7

A hyperspectral 90–140 GHz mmW imaging sys-
tem used to locate and identify land mines and
other objects buried beneath sand of various depths
and conditions is demonstrated. The information pro-
vided by the hyperspectral images is analyzed through
a principal component analysis (PCA) method. With
this signal processing, valuable information is con-
densed into single images, and the buried objects can
be located and identified. The PCA method has been
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used before as a land mine detection signal processing
technique in other wavelength regions improving the
detection and classification rates while lowering the
false-alarm rate.8–10 We present the experimental
setup for the 90–140 GHz mmW imaging system, the
signal processing method used, and the imaging re-
sults of the buried objects.

2. Experimental Methods

An imaging system was developed for the mmW
range by using an Anritsu vector network analy-
zer (VNA) operating from 90 to 140 GHz. The VNA
modules, equipped with 16° horn antennas, were
mounted on a vertically oriented optical table, shown
in Fig. 1. The mmW radiation was focused by using a
high-density polyethylene (HDPE) lens onto the sam-
ple and then reflected back through another HDPE
lens into the VNA receiver. Two motorized transla-
tion stages with 200 mm maximum travel distance
and 50 mm�s maximum velocity were mounted per-
pendicular to each other. The sample was attached to
the stages by using a long aluminum arm with the
inset removed preventing the sample from being held
over the highly reflective metal stages. The land mine
was placed in a 20.3 cm � 20.3 cm � 9.5 cm con-
tainer surrounded by soil. This container allowed
the land mine to be buried up to 5 cm deep and to
be placed anywhere within the 412 cm2. A broad-
band convoluted foam mmW absorber, ECCOSORB
CV, was placed under the sample to eliminate back-
reflections from the optical table. A program was
written in LabVIEW to capture a raster scan image
containing 29 lines (Fig. 1 inset) of the land mine
under the soil. At each position of the scan the VNA
measured the reflection from the land mine, from
90 to 140 GHz in 1 GHz steps. The resulting data set
is converted into a set of images (one for each mmW
frequency used) by a MATLAB software program. In

our case, the total number of frequencies is 51. The
size of the images depends on the number of points
taken in each scan and the distance between them.
These sizes can be changed with the LabVIEW pro-
gram.

The objects imaged beneath the soil were two
land mines and other minefield debris. The two land
mines were the TS-50 (Fig. 2, top left) and the M14
(Fig. 2, bottom left). They are typically scatter laid
by a helicopter or buried to a depth of 30 mm.11 The
TS-50 is a circular plastic-body mine with strength-
ening ribs. The TS-50 has a height of 45 mm, a di-
ameter of 90 mm, and weighs 186 g. It contains a
round metallic pressure plate on top of the mine. The
TS-50 contains 50 g of T4 explosive and is waterproof
and nonbuoyant.11 The TS-50 cannot be located by
using metal detectors under most field conditions and
is highly resistant to blast overpressure clearance
methods. The M14 land mine is a cylindrical-body
plastic mine with very low metal content. The M14
has a height of 40 mm, a diameter of 56 mm, and
weighs 90 g. The M14 contains 29 g of tetryl explo-
sive.11 The M14 is difficult to locate by using metal
detectors under most field conditions and can be de-
feated by using blast overpressure methods. The
minefield debris consisted of a 20 mm objective indi-
vidual combat weapon (OICW) practice round, a
20 mm round from World War II, a 7.62 mm car-
tridge case, a 5.56 mm rose crimp cartridge case, a
5.56 mm standard cartridge case, and a fuse lighter
with a metal key ring (Fig. 2, right panel). The soil
sample was quartz sand locally sourced at the Uni-
versity of Central Florida in Orlando, Florida. The
soil was dry and maintained in a laboratory environ-
ment at about 40% humidity.

Fig. 1. Photograph of the active hyperspectral mmW imaging
system. Inset, schematic of the path for taking a raster scan image.
The radiation coming from the transmitter, at 90–140 GHz, is
focused onto the sample using the HDPE lens, and scattering
radiation from the object is collected and focused on the receiver at
each pixel of the raster scan.

Fig. 2. Photographs of the TS-50 land mine (top left), the M14
land mine (bottom left), and minefield debris (right) including,
from top down, a 20 mm OICW practice round, a 20 mm WW II
round, a 7.62 mm cartridge case, a 5.56 mm rose crimp cartridge
case, and a 5.56 mm standard cartridge case; on the left a fuse
lighter with a metal key ring.
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3. Signal Processing

The initial data set is a collection of N images, each
one corresponding to a mmW frequency. Figure 3
shows 6 of the 51 individual images, representing a
different frequency, taken during a single scan. The
information contained in each image about the object
(TS-50 land mine, Fig. 2, top left) is slightly different,
and you cannot distinguish whether the object is a
land mine, a rock, an aluminum can, or some other
minefield debris. The information about the structure
of the object is not concentrated around a single fre-
quency but spread over the frequency spectrum.
Therefore it is necessary to employ a method that can
combine the majority of the available information
into a single image with a high signal-to-noise ratio
(SNR).

For this purpose, we have used a PCA method. The
PCA method is a multivariate statistical method de-
veloped primarily to deal with a large ensemble of
observations of N random variables.12 In previous
applications, the PCA method was adapted to the
case of N images with M points or pixels.13 In the case
of the present work, the original data set is the col-
lection of N images, parameterized by the frequency
f, �F�x, f��f�1, . . . , N where F is a matrix containing all
the images and x denotes the spatial coordinate along
the scan path within the total of M points. The pre-
vious N images are each transformed to produce a
mean of zero. Within this framework, the N images
are N random variables, and the values of the pixels
are random observations. It is easy to calculate the
covariance matrix between the N images.13 In gen-
eral, this matrix is strongly nondiagonal, which
means there is a strong correlation between the im-
ages (see Fig. 3). The principal components are a new
set of variables (frames) that have no correlation be-

tween them. Moreover, the original frames can be
seen as a linear combination of the principal compo-
nents. The coefficients of these linear combinations
are obtained through the diagonalization of the frame
covariance matrix. This process gives you three out-
puts: the eigenvalues ���

2���1, . . . , N, the eigenvectors
�e��f����1, . . . , N, and the principal components
�Y����1, . . . , N, where � is an integer running from 1 to
N. The principal components can be seen as the pro-
jections of the original zero mean images into a base
produced by the eigenvectors. After diagonalization,
there is zero correlation between the principal com-
ponents Y� and they are calculated as linear combi-
nations of the original images:

Y��x� � �
f�1

N

e��f�F�x, f�. (1)

But the original images can also be expressed as
linear combinations of the principal components:

F�x, f� � �
��1

N

e��f�Y��x�. (2)

Normally, the principal features of the data set are
well represented by a small number of principal com-
ponents.14 In our case, the principal features of the
land mine are well represented by only one principal
component �Y1 in Fig. 4). This allows the main prin-
cipal components to be selected and then to reconstruct
the original images by using only them, filtering out
the higher components. This process is called rectifi-
cation.13 One important property of the principal com-
ponents is that the factor ��

2����1
N ��

2 represents the
portion of the total variance explained by each prin-
cipal component. A statistical analysis of the princi-
pal component decomposition enables us to classify
and group the eigenvalues and the corresponding
eigenimages into processes. When a subset of eigen-
values, along with their uncertainty, can be consec-
utively indistinguishable, they belong to the same
process. The uncertainty is produced by the finite
size of the data set and the high-order cumulants of

Fig. 3. Six of the 51 single-frequency reflectance images taken
from 90 to 140 GHz in 1 GHz steps of the TS-50 land mine with a
2 mm step size, buried 15 mm deep, and with a flat soil surface.

Fig. 4. Application of the PCA to a set of 51 single frequency
images of the TS-50 land mine. Only one relevant principal com-
ponent (Y1) appears. Some of the higher components (Y2, Y20, and
Y50) are represented.
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the underlying probability distribution.13 The advan-
tage of this approach is that it can be implemented
automatically. A process is defined as a filtered set of
frames generated by a subset of principal compo-
nents. These processes could contain a single princi-
pal component or a large number of them. Based on
previous applications of the method to different types
of system,15–17 different types of noise are associated
with processes containing a high number of principal
components: they are so random that they need a
large number of degrees of freedom to describe them.
On the other hand, signals normally appear associ-
ated to processes with only one principal component
or a small number of them.

We have applied the previously described method
to the collection of images produced by the mmW
imager. After identifying the appearing processes, an
analysis of the rectified images for each process is
performed. The outputs are related to the physical
characteristics of the sample objects. These results
are described in Section 4.

4. Results

Figure 4 shows the results of the PCA method for
the set of 51 images, some of which are presented
in Fig. 3. A relevant principal component clearly ap-
pears, and its picture resembles, with high accuracy,
the shape of the object buried beneath the sand. The
higher principal components are grouped together
in a single process, which gives useful information
about the structure and composition of the object.
Figure 5 represents the total amount of variance ex-
plained by each principal component. The first prin-
cipal component represents only approximately 27%
of the total variance.

Two different subdata sets were constructed: the
first one coming from the rectification by using only
the first principal component, and the second from
the rectification by using the higher components. For
each subdata set, the mean value and the standard
deviation of each pixel is calculated, and three images
are constructed: the mean value (signal), the stan-
dard deviation (STD), and the ratio of them (the
SNR). The results are shown in Fig. 6. The first prin-
cipal component reconstructs the original shape of

the object with high accuracy and high SNR (typically
6 to 18). The threshold value of the SNR for which the
target is detectable half of the time was determined
experimentally in Ref. 18 to be between 2 and 3. The
metal inside the mine is clearly seen in the signal,
meaning that the metal reflection drives it. However,
reflections from the plastic body of the mine show-
ing the structure of the strengthening ribs are seen.
We also reconstruct the data using the remaining com-
ponents (the higher components) and perform the
same analysis as before, obtaining the signal, the STD,
and the SNR. In the reconstruction with the higher
components, the signal is weaker, but the standard
deviation is high. The difference in the structure and
material of the background and object is responsible
for this behavior. The plastic part of the object is
curved, and the reflection changes with the angle,
while the background is random. Also, the reflection
from the plastic varies at different frequencies, which
will be represented by the higher order components.
This is the reason the STD of the higher-order compo-
nents is greater than the STD of the first principal
component. The main difference is that, while a strong
signal is produced mainly by metal components of the
object, the structure in the higher components is
driven mainly by the structure of the plastic material.

A. Other Types of Objects

Antipersonnel mines vary widely in size, shape, and
material content depending on their intended use
and burial location. The PCA method was applied to
other land mines and minefield debris. The M14 land
mine has a different size and shape compared with
the TS-50 as well as a much smaller metal content.
Images were taken for the M14 land mine with a
2 mm step size, buried 15 mm deep, and with a flat

Fig. 5. Percentage of variance explained by the principal compo-
nents of Fig. 4.

Fig. 6. Images of the mean value, STD, and SNR for the rectified
images of Fig. 2 with the first principal component (left) and the
higher components (right) of a TS-50 land mine at 2 mm step size,
15 mm deep, and with a flat soil surface.

1 August 2006 � Vol. 45, No. 22 � APPLIED OPTICS 5689



soil surface. As with the previous mine, the PCA
method allows the structure and composition of the
mine to be identified. The results are given in Fig. 7.
The unique structure of the top cap of the mine can be
identified from the principal component images. The
higher component images show the plastic composi-
tion of the land mine. The percentage of variance
explained by the first principal component is similar
to the previous case.

Figure 8 shows the results of the analysis for a
collection of bullet cartridges and other types of mine-
field debris. In this case, the object is not visible in the
first principal component but in the STD of the re-
construction with the higher components. The cur-
vature of the objects introduces deviations in the
reflection coefficients. In the previous images, the
metal was large and planar compared with the wave-
length, which produces strong reflections. In this
case, the dimensions of the metal parts are small or
comparable to the wavelength, producing small back-
scattering. The objects are curved and have reflection
changes that introduce a high STD. The PCA method
can even distinguish between objects with such small
fluctuations allowing the minefield debris to be lo-
cated and identified.

B. Resolution, Depth, and Soil Surface

The influences of other physical characteristics re-
lated to mine detection were explored. These factors
include image resolution, depth of the object, and the
condition of the soil surface. For this study the TS-50
land mine analyzed earlier in Section 2 was selected.
In all cases, the level of the first principal components
is between 25% and 30% of the total data set vari-
ance.

Figure 9 shows the images of the TS-50 land mine

when the resolution of the scan is 5 mm steps with a
depth of 15 mm and the soil surface flat. This figure
can be compared to Fig. 6 �2 mm steps, 15 mm depth,
and flat soil surface). The added resolution from a
step size of 5 to 2 mm does not change the overall
image significantly. The 2 mm step size oversamples
the image without adding useful information while

Fig. 7. Images of the mean value, STD, and SNR for the rectified
images of an M14 land mine with the first principal component
(left) and the higher components (right) at 2 mm step size, 15 mm
deep, and with a flat soil surface. Fig. 8. Images of the mean value, STD, and SNR for the rectified

images of the minefield debris with the higher components at 2 mm
step size, 15 mm deep, and with a flat soil surface. The principal
component rectified images did not show any features of the
objects.

Fig. 9. Change in resolution. Images of the mean value, STD, and
SNR for the rectified images of a TS-50 land mine with the first
principal component (left) and the higher components (right) at
5 mm step size, 15 mm deep, and with a flat soil surface.
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adding time to complete the scan. The spot size of the
imaging system is approximately 5 mm; therefore it
is sufficient to use a 5 mm step size while taking
images, since our system is not a subdiffration
limited–superresolution process.

The images of the TS-50 land mine buried at a
depth of 50 mm with 5 mm steps and a flat soil sur-
face is shown in Fig. 10. This figure can be compared
with Fig. 9 �5 mm step size, 15 mm depth, and flat
soil surface). Changing the depth affects the images
in two ways. First, the radiation has to travel a longer
distance in the random soil, increasing the effects of
scattering, which decreases the reflected signal from
the object. Second, the uncertainties related to the
beam focus are increased causing a blur over the
object. However, the PCA method can extract infor-
mation from the first principal component and higher
components locating and identifying the land mine.
Due to the depth of the land mine compared with the
size of the container and the orientation of the VNA
modules, the edges of the container can be seen in
Fig. 10.

Figure 11 shows the images of the TS-50 land mine
with a 2 mm step size at a depth of 15 mm with a
disturbed soil surface. This figure can be compared
with Fig. 6 �2 mm step size, 15 mm depth, and a flat
soil surface). The images of the flat soil surface and
the disturbed soil surface show a comparison between
an ideal smooth surface and a real-world type of sit-
uation where the surface above the mine is disturbed.
The disturbed surface introduces a blur in the image
and increases the effects of scattering while largely
destroying the useful information in the higher com-
ponents. The land mine is detected and identified
with the disturbed surface, degrading only the infor-
mation in the higher components about the plastic in

the mine. It is important to note that in both cases the
maximum signal level, STD, and SNR are similar.
This supports the idea that disturbed surface soil can
be modeled as a blur or scattering imposed over the
image.

5. Conclusions

An experimental 90–140 GHz mmW imaging system
was developed and tested by using different types of
object. The principal application was the detection of
land mines and minefield debris buried in soil.
The final data set was a collection of mmW images
at different frequencies. A signal processing method
based on a principal component analysis was applied
to the images to separate different structures that
help to identify the objects. In most cases, the first
principal component appeared strongly related to the
structure of the object. Information in the higher
components was also extracted giving additional in-
formation about the composition of the object. The
mmW imaging system and the PCA method were
successful as a means of locating and identifying the
objects buried beneath the soil. Image resolution,
depth of the object, and the condition of the soil sur-
face were explored. Changing the image resolution
from a 2 to a 5 mm step size did not degrade the
image significantly and allowed a quicker scan. As
the depth was increased from 15 to 50 mm, the buried
object was still located and identified. The object was
also located and identified with a disturbed soil sur-
face similar to a real-world situation. A hyperspectral
mmW imaging system using the PCA method is a
promising technique for the detection of land mines
and unexploded ordnances.

Fig. 10. Change in depth. Images of the mean value, STD, and
SNR for the rectified images of a TS-50 land mine with the first
principal component (left) and the higher components (right) at
5 mm step size, 50 mm deep, and with a flat soil surface.

Fig. 11. Change in soil surface. Images of the mean value, STD,
and SNR for the rectified images of a TS-50 land mine with the first
principal component (left) and the higher components (right) at
2 mm step size, 15 mm deep, and with a disturbed soil surface.
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