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Carrier transport in signal-processing-in-the-element 1SPRITE2 detectors is an important phenomenon
because it determines properties such as the responsivity and the modulation transfer function
1MTF2. The previous literature has presented approximate solutions to the transport problem that
neglect boundary effects, which have long been thought to play a major role in SPRITE behavior. We
present a new solution to the problem through the use of modal analysis. This method intrinsically
includes boundary conditions and thus is more complete than the previous analysis. Furthermore we
use this solution to derive expressions for the MTF. The effects of the boundary conditions on the MTF
are studied to determine their optimum values.
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1. Introduction

Signal-processing-in-the-element 1SPRITE2 detec-
tors1,2 provide improvement in the signal-to-noise
ratio over simpler photoconductive detectors through
the use of a virtual time-delay-and-integration pro-
cess internal to the detector element. The drift
transport of carriers through the detector is the
mechanism that makes this possible. Other trans-
port mechanisms, such as recombination and diffu-
sion, tend to degrade detector performance. Under-
standing the interplay of these effects with the
electrical boundary conditions would permit better
understanding of existing devices and provide further
guidance in the design and manufacture of new
SPRITE detectors.
In previous analyses,3–5 a one-dimensional Green’s

function was taken as the solution to the transport
equation. This solution, which describes the charge
distribution in an infinite one-dimensional solid result-
ing from a point source, is used as the basis of
calculations to compute the transfer of a scanned
incident-radiation distribution on the SPRITE detec-
tor bar into the output as seen at the readout
terminals.
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This theory does not show complete agreement with
the measurements of real devices.6 The definition of
the Green’s function implicit to the analysis omits key
physical phenomena in its development. The steps
subsequent to the generation of the Green’s function
are straightforward applications of linear-systems
theory and are generally valid for this type of analysis.
We have therefore used a different method, modal
analysis, to solve the charge-transport equation and
developed an equivalent analysis of the transfer
function of SPRITE detectors.
The method of modal analysis is more capable and

requires fewer assumptions than the previousGreen’s-
function method. The first improvement is that
modal analysis is multidimensional, whereas the
Green’s-function method is one dimensional.
Although the single-dimensional approach may suf-
fice for long, slender detector bars, most practical
devices have aspect ratios that are only near 10.
This fact requires consideration of the transverse
dimensions.
The second improvement is that the boundary

conditions are included in modal analysis. The
Green’s function method has no boundary conditions
because of the implicit assumption of an infinite solid.
The boundary conditions are important because 112
the readout is usually placed at one end of the
detector and 122 most contacts made to HgCdTe show
partial blocking behavior,7 which leads to carrier
accumulation at the contacts. Thus the inclusion of
boundary conditions has a considerable effect.
Our modal solution is found by use of the method of

separation of variables on the transport equation
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followed by determination of the eigenmodes of the
separated equations.8 This process is shown to in-
clude the pertinent features of the system while still
producing closed-form solutions. In Section 2 amore
complete definition of the SPRITE transport problem
is given. Then the modal solutions are developed
and described. After this, we use the modal solu-
tions to compute the impulse response, and then this
is converted into the MTF of the detector. Finally,
some conclusions are drawn about the general behav-
ior of the MTF and the modal parameters.

2. Transport Problem

SPRITE detectors are complex devices with many
features that are not easily analyzed. Among these
are details of the readout geometry, the electrical
properties of the passivated surfaces, and the current-
voltage characteristics of the electrical contacts.
Although a complete model of all these factors re-
quires a numerical solution,9 simplifications can be
made to yield a self-consistent model that can be
solved analytically and yet still contains the main
features. In this section such amathematical descrip-
tion of the SPRITE transport problem is given.
A diagram of our idealized detector is shown in Fig.

1. The detector is a rectangular solid with length,
width, and depth denoted 2l, 2w, and 2d, respectively.
The device has contacts on the two ends that are
nominally ohmic. The top, bottom, and side surfaces
are all passivated insulating boundaries. A sensing
lead is placed on the bar near the output end. This
lead measures the voltage across the readout zone of
the detector and is connected to a high-impedance
amplifier.
Operation of this detector hinges on the ambipolar

drift of photon-generated minority carriers. Most
HgCdTe-based SPRITE’s are made of an n-type
semiconductor, and thus the minority holes carry the
signal of interest. If the light source is scanned
along the length of the bar, and the carriers drift
along with it at the same speed, the detected signal is
amplified and reinforced. This process shows the
same character and advantages as a time-delay-and-
integration system but without the necessity of sepa-
rate delay-line electronics. When the intensified
charge reaches the end of the detector, it causes the
voltage on the sensing lead to change, thus generat-
ing a signal.

Fig. 1. SPRITE detector model geometry and coordinate system.
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The basis for the model is the transport equation:

≠r

≠t
5 D=2r 2 µ= · 1rEzk̂2 2

r

t
1 G. 112

This equation assumes that the carriers in the device
can be described by a volumetric density r, and the
material can be described by a diffusivity D, mobility
µ, and minority carrier lifetime t and that there is a
spatially invariant generation rateG. These assump-
tions ignore the particulate nature of the charge and
the resultant inherent randomness of their genera-
tion, motion, and recombination. Thus it can be said
that this equation deals with the average values for
all the quantities concerned and is deterministic.
This equation also neglects the momentum of the
carriers, assuming that the mean free path in the
material is short compared with any other dimension
of the device. This last assumption is valid in
SPRITE structures because the devices are long and
the electric fields are low.
The major assumption implicit in Eq. 112 is that the

product of the electric field and mobility, which equals
the carrier-drift velocity, is assumed to be constant.
This implies that the device is designed and operated
in a manner that generates this condition at steady
state. For simple rectangular detectors, integration
of the background radiation causes this product to
vary slowly over the length of the bar, with a total
change of ,25%.9 By tapering the detector bar, this
nonuniformity can be reduced to insure a constant
drift velocity. Also Eq. 112 assumes that the photogen-
erated carriers themselves do not generate significant
space-charge fields. This is true for SPRITE’s be-
cause the bias current and its associated electric bias
field are much stronger than the detected image
signal and its field.
The boundaries of the bar, as mentioned above, are

nominally either ohmic or insulating. Observations
on actual devices,10 however, indicate behavior that
differs from ideal conduction or insulation. Although
real surfaces are difficult to describe fully, we take the
first level of complexity, which is to ascribe a surface
velocity Vs to the passivated surfaces and to the
contacts.11 The surface velocity relates the carrier
density at the surface to the carrier flux, leaving
through that surface according to

F · n̂ 5 Vsr. 122

Carrier flux F is a vector quantity, and the normal
unit vector n̂ is defined to be pointing out of the
detector volume. The flux is caused by diffusion and
drift in our model and thus can be written as

F 5 2D=r 1 µEZr. 132

If we apply this definition to the six surfaces of the
detector bar, using the coordinate system shown in
Fig. 1, we can produce three pairs of equations that



describe the boundary conditions:

D
≠r

≠x
5 Vxr 0 x5 2w, D

≠r

≠x
5 2Vxr 0 x51w, 14a2

D
≠r

≠y
5 Vyr 0 y52d, D

≠r

≠y
5 2Vyr 0 y51d, 14b2

D
≠r

≠z
5 1µE1Vz2r 0 z52l, D

≠r

≠z
5 1µE2Vz2r 0 z5l. 14c2

Note that Eqs. 142 assume that the bias contacts are
formed exclusively on the endfaces of the detector bar,
neglecting any geometrical details of the actual con-
tacts. Real contacts are typically formed partly on
the endface and partly on the top face. Such a
contact dictates boundary-condition equations that
cannot be easily incorporated into our solution. Our
idealized bias-contact geometry is a close approxima-
tion to reality when the top contact length is small
compared with the thickness of the detector bar.
Also, Eqs. 142 ignore any effects of the sensing contact.
This is a good approximation if this contact is made
small and if the amplifier used has a sufficiently high
impedance.
The transport equation and the three pairs of

boundary conditions fully describe our SPRITE-
transport model. This model does not ignore any
feature of the detector that is vital to its operation.
As shown in Section 3, it also has a closed-form
solution. These factors result in amodel that is more
realistic than other models described previously.

3. Modal Solutions

The first step in the solution of Eq. 112 is to perform a
transformation of the dependent variable to make the
equation homogeneous. This discards that part of
the charge distribution, equal to Gt, caused by back-
ground illumination. As mentioned above, the back-
ground charge influences detector performance in a
deleterious way by making the drift velocity vary over
the length; however, in all the following calculations it
is assumed that steps have been taken to correct for
this problem and the effect is ignored. Regardless of
its spatial distribution, the background charge is
constant in time. It therefore represents an unchang-
ing offset on the signal and is of no interest as far as
signal transfer is concerned. The transformation is

r 5 r8 1 Gt. 152

Next, we scale all the independent variables to the
natural metrics of the problem, namely, the detector
dimensions for the spatial coordinates and the carrier
lifetime for the time:

x8 5
x

w
, y8 5

y

d
, z8 5

z

l
, t8 5

t

t
. 162

The scaled coordinates are all denoted by a prime,
which results in the following equation 1with vector
operators expanded2:

≠r8

≠t8
5 tD1 ≠2r8

w2≠x82
1

≠2r8

d2≠y82
1

≠2r8

l2≠z822 2
µEzt

l

≠r8

≠z8
2 r8.

172

Next we employ the technique of separation of
variables, which assumes that the solution for r8 can
be written as

r8 5 T1t82X1x82Y1 y82Z1z82exp1µEzl

2D
z82 . 182

This generates one time equation and three space
equations:

≠T

≠t8
1 k2T 5 0, 19a2

≠2X

≠x82
1 kx2X 5 0, 19b2

≠2Y

≠y82
1 ky2Y 5 0, 19c2

≠2Z

≠z82
1 kz2Z 5 0. 19d2

We have defined the time separation constant to be k2
and the x, y, and z separation constants to be kx2, ky2,
and kz2, respectively. These constants are related by
the simple equation

k2 5 Nsxkx2 1 Nsyky2 1 Nszkzr2 1 Ndz
2Nsz 1 1. 1102

We have defined the dimensionless combinations of
constants in Eq. 1102 as follows:

Nsx 5
Dt

w2
, Nsy 5

Dt

d2
, Nsz 5

Dt

l2
, Ndz 5

µEzl

2D
. 1112

The constants denoted Nsx, Nsy, Nsz are the ratios of
the carrier recombination lifetime to the carrier
spatial-relaxation lifetimes, and they depend on the
physical dimensions of the detector, the diffusivity,
and the carrier lifetime of the material. By the
spatial-relaxation lifetime, we refer to the characteris-
tic time for localized disturbances in the carrier
distribution to spread because of diffusion. The
magnitude of Nsx, Nsy, Nsz determines whether diffu-
sion or recombination is the dominant process of
carrier-distribution relaxation. The constant Ndz re-
lates the lifetime of the charge distributions to the
transit time of carriers in the device. It determines
the degree of diffusional spreading that occurs during
the time the carriers drift and accumulate in the
detector.
We note that the time equation is of first order and

has the solution

T1t82 5 exp12k2t82. 1122
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The x, y, and z equations are second order and have
general solutions:

X1x82 5 cxp cos1kxpx8 1 p
p

22 , 113a2

Y1 y82 5 cyq cos1kyqy8 1 q
p

22 , 113b2

Z1z82 5 czr cos1kzrz8 1 r
p

22 , 113c2

where p, q, and r are the serial numbers for the x, y,
and z solutions, respectively.
Now that the general solutions have been written,

the boundary conditions can be applied. Because the
variables have been scaled and separated, Eqs. 142
must be modified, producing new equations:

≠X

≠x8
5 NbxX 0 x8521,

≠X

≠x8
5 2NbxX 0 x8511, 114a2

≠Y

≠y8
5 NbyY 0 y8521,

≠Y

≠y8
5 2NbyY 0 y8511, 114b2

≠Z

≠z8
5 NbzZ 0 z8521,

≠Z

≠z8
5 2NbzZ 0 z8511, 114c2

where we define three new dimensionless boundary
numbers:

Nbx 5
Vxw

D
, Nby 5

Vyd

D
, Nbz 5

Vzl

D
. 1152

These constants describe the ratio of the boundary
velocities with the diffusion velocity, that is, the
velocity at which diffusion spreads disturbances across
the device. It provides a comparison of the speed of
surface recomination with the speed of diffusion.
By substituting the general solutions into these

equations, we can find the allowed values of the
separation constants, thus completing the solution.
This results in the following transcendental relations:

kxp 5 Nbx cot1kxp 1 p
p

22 , 116a2

kyq 5 Nby cot1kyq 1 q
p

22 , 116b2

kzr 5 Nbz cot1kzr 1 r
p

22 . 116c2

Figure 2 is a graph of the first few roots of any of Eqs.
1162 as a function of the boundary parameter, Nbx, Nby,
or Nbz. A series of roots results from this type of
equation because the mode indices, p, q, or r, can
assume all positive integer values. For small or
large values of the boundary parameter, the curves
tend toward limiting asymptotes.
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So far we have named seven independent dimen-
sionless numbers that describe the model of the
SPRITE detector. We now show that this is the
correct number of constants needed to describe the
problem as given. The model developed in Section 2
has nine independent parameters: length, width,
and depth of the detector; surface velocities of the
ends, sides, and faces; diffusivity; lifetime; and drift
velocity. With this problem two units of measure are
used, length and time. The p theorem12 states that
the number of independent dimensionless constants
needed to describe a problem is equal to the number of
measured parameters less the number of units of
measure. Thus for our problem this states that
seven numbers are necessary. Because the seven
numbers defined here are independent from one
another, they must form a sufficient, complete set of
numbers completely describing the problem. To pro-
vide a feeling for the usual ranges for these numbers,
typical values for these numbers have been computed
with the data in Refs. 2 and 7 and are shown in
Table 1.
Although our set of dimensionless numbers are

complete, they do not represent the only set of num-
bers that could be formulated that have this property.
What makes them particularly useful for our analysis
is that they appear so naturally and explicitly in the
differential equations and their solutions. This both
eases the expression of the solutions and provides
insight into the actual influence of the device param-
eters on device performance. This can be seen in the
case of the boundary numbers.
Intuitively the best detector will have no recombina-

tion on the sides and faces and have ohmic contacts at
the ends. Any realistic fabrication process cannot

Fig. 2. Solutions to the modal wave numbers versus boundary
number. Note how the solutions approach the asymptotes.

Table 1. Typical Values of the Detector Numbers for SPRITE Detectors

Parameter Value

Ndz 75
Nbx 15 3 1023

Nby 2.5 3 1023

Nbz 3.75
Nsx 1.0
Nsy 36
Nsz 6.4 3 1023



achieve such surfaces, however, and thus the question
is raised as to how good the surfaces need to be. This
question can be answered through use of the bound-
ary numbers. The asymptotic behavior shown in
Fig. 2 demonstrates that, for sufficiently large or
small values of the boundary number, no further
change in the modal wave numbers occurs. Because
these wave numbers are the only way in which the
boundary conditions can affect the final solution, we
can justifiably say that, for practical purposes, a
boundary number of less than 1@100 is insulating and
that a boundary number greater than 100 is ohmic.
The equations above describe the complete family

of solutions to the transport problem. Their applica-
tion requires finding the roots of Eqs. 1132, which are
transcendental. This makes their use difficult. It
is thus interesting to look at the idealized case where
the contacts are purely ohmic 1Nbz 5 `2 and the insu-
lating surfaces are truly blocking 1Nbx 5 Nby 5 02.
This results in a simple set of solutions for kxp, kyq, kzr.

kxp 5 p
p

2
, kyq 5 q

p

2
, kzr 5 1r 1 12

p

2
. 1172

These ideal boundary conditions enable us to write
the full solution for r8 as

r81x8, y8, z8, t82 5 o
p,q,r

cpqr exp12kpqr2t82cos3p
p

2
1x8 1 124

3 cos3q p

2
1 y8 1 124sin3r p

2
1z8 1 124 ,

118a2

kpqr2 5
p2

4
1Nsxp2 1 Nsyq2 1 Nszr22

1 NszNdz
2 1 1. 118b2
In Section 4 we show that the assumption of these
boundary conditions greatly simplifies the computa-
tional form of the transfer function.

4. Modulation Transfer Function

Now that the behavior of the individual modes of the
SPRITE structure have been determined, we can
derive the modulation transfer function 1MTF2 of the
detector. The MTF provides the most convenient
expression of signal fidelity performance for imaging
systems. Thus it is useful to compute the MTF from
the physical parameters of the device. In this sec-
tion we derive a general form for the MTF and special
cases that result in simplification. Several families
of MTF curves are computed and compared to detect
trends in the general character of the MTF as a
function of detector parameters.
We first define the input presented to the detector.

Because the SPRITE is used as a one-dimensional
detector, we use a one-dimensional d function that can
be scanned across the detector aperture:

qi1z8, t82 5 d1z8 2 z082, 1192

where the scanned location z08 is given by

z08 5 n8t8 5 t8@n8. 1202

The constants in Eq. 1202, n8 and n8, represent the
normalized scanning velocity and its inverse, respec-
tively. Because the scan is typically matched to the
drift velocity, we can write

n8 5
t

l
µEz 5 21

µEzl

2D 21
Dt

l2 2 5 2NdzNsz. 1212

Although this input is one-dimensional, the three-
dimensional nature of our solution does not necessar-
ily vanish. When decomposed, this input produces a
three-dimensional series of modes, each with its own
decay-time constant. We now decompose this input
into the modes of the structure:

qi 5 o
p,q,r

cpqrXp1x82Yq1 y82Zr1z82exp1Ndzz82. 1222

Because the circular-function portion of the eigenfunc-
tions are orthogonal, we can solve for the amplitudes
of the individual modes arising from the input at any
particular point z08, giving
cpqr 5

eee dx8dy8dz8Xp1x82Yq1 y82Zr1z82exp12Ndzz82d1z8 2 z082

eee dx8dydz8Xp
21x82Yq

21 y82Zr
21z82

, 1232
Performing the indicated integrations over the entire
domain of the detector, 21 , x8 , 1, 21 , y8 , 1,
21 , z8 , 1, we obtain

cpqr 5
0sinc1kxp2 0

31 1 0sinc12kxp2 0 4

0sinc1kyq2 0

31 1 0sinc12kyq2 0 4

3

exp12Ndzz082cos1kzrz08 1 r
p

22
31 1 0sinc12kzr2 0 4

1242

if p and q are even. If p or q is odd, cpqr 5 0. These
mode coefficients represent the amplitude of each
1 August 1995 @ Vol. 34, No. 22 @ APPLIED OPTICS 4655



mode that results from the d-function input at the
specified z8 coordinate z08. These amplitudes then
fully specify the carrier distribution inside the detec-
tor for all time after the input. Thus these mode
coefficients essentially translate the given input into
a charge distribution inside the detector.
We next evaluate the output voltage resulting from

a given set of modes as they decay over time. In the
SPRITE the measured output voltage is proportional
to the charge in the readout region. The output
resulting from charge generation located at z08 is thus
proportional to the charge in the readout volume Q
given by

Q1t8, z082 5 o
pqr

cpqru1t8 2 n8z082

3 exp32kpqr21t8 2 n8z824bpqr, 1252

where bpqr are the mode output weighting factors,
given by the integration of the eigenfunctions over the
scaled readout volume:

bpqr 5 e
21

1

dx8 e
21

1

dy8 e
12lr8

1

dz8Xp1x82Yq1 y82Zr1z82

3 exp12Ndzz82. 1262

Evaluation of these integrals give the result
4656 A
bpqr 5
0sinc1kxp2 0 0sinc1kyq2 0

Ndz
2 1 kzr2

exp1Ndz2 5
31 2 cos1kzrlr8243Ndz cos1kzr 1 r

p

22 1 kzr sin1kzr 1 r
p

224
1 sin1kzrlr823Ndz sin1kzr 1 r

p

22 1 kzr cos1kzr 1 r
p

224 6 , 1272
if p and q are even. If p or q is odd, bpqr 5 0.
The total scanned impulse response U as a function
of time is the point impulse response Q integrated
over the entire scan, that is, over the entire detector.
Thus

U1t82 5 e
21

1

dz08Q1t8, z082. 1282
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Because we are ultimately interested in obtaining the
transform of the scanned function U, we choose to
take the transform now, yielding

U1v82 5 e
21

1

dz08Q1v, z082. 1292

We thus need the time-domain Fourier transform of
Q1t, z2, which can be found to be

Q1v8, z082 5 F 5Q1t8, z0826

5 o
pqr

cpqrbpqr
exp12 jn8v8z082

kpqr2 1 jv8

. 1302

Substituting this into the integral for the total output,
we can write

U1v82 5 e
21

1

dz08 o
pqr

cpqr8
exp12Ndz 2 jn8v82z08

kpqr2 1 jv8

3 cos1kzrz08 1 r
p

22 , 1312

where we have defined a new set of constants cpqr8,
which contains all the factors independent of the
position of the input z08. We do this because we
must integrate over this variable, and these factors
will not play a role in this integration. These con-
stants are defined as
cpqr8 5 bpqr
0sinc1kxp2 00sinc1kyq2 0

31 1 0sinc12kxp2 0 431 1 0sinc12kyq2 0 431 1 0sinc12kzr2 0 4
, 1322
If we now integrate Eq. 1312 term by term, we arrive at
the final result:
U1v82 5 o
pqr

cpqr85
3exp12Ndz 2 jn8v8z82 1 1212rexp1Ndz1 jn8v8z824

3 3kzr sin1kzr 1 r
p

22 2 1Ndz 1 jn8v82cos1kzr 1 r
p

2246
3kpqr2 1 jv8431Ndz 1 jn8v822 1 kzr24

. 1332
This is an expression for the Fourier transform of
the impulse response of a SPRITE detector as
described by our model. The MTF is simply
the normalized magnitude of this function, writ-



ten as

MTF1 fz2 5 0U12pln8fz2

U102 0 , 1342

where fz is the spatial frequency measured in cycles
per unit length 1i.e., cycles@mm2. Note that in the
figures cited in Section 5, the frequency is given in
terms of cycles per detector length.
This transfer function is admittedly complex, but

one can observe a few general facts about its structure.
It is an infinite sum of terms, each composed of three
factors. The first factor cpqr8 is a modal weight that
depends on the particular parameters of the structure.
These weights decrease in size with increasing modal
serial numbers, which ensures a bounded response.
The second, the denominator in Eq. 1332, is a combina-
tion of complex poles that describes the main low-pass
filtering of the device. The characteristic frequency
of these poles increaseswith themodal serial numbers.
The third, which is the factor of Eq. 1332 enclosed in
braces, is a phasing factor that describes the coher-
ence of the signal integration over the length of the
device, which depends on the scanning velocity.
These three properties all contribute to the proper
functioning of the SPRITE detector.
If the boundary parameters are either very small

1less than 0.012 or very large 1greater than 1002, as
mentioned above, considerable simplification can re-
sult. We demonstrate this by two steps: first, by
making the walls of the device perfect insulators and,
second, by adding the constraint that the contacts are
perfectly ohmic.
When the walls are perfect insulators, their recom-

bination velocity is zero; thus the x and y boundary
numbers are also zero. This greatly simplifies the
modal weights, and all elements where p or q is
nonzero vanish. The remaining modal weights can
be written as
cpqr8 5
exp1Ndz2

1Ndz
2 1 kzr2234 1 4 0sinc12kzr2 0 4 5

31 2 cos1kzrlr8243Ndz cos1kzr 1 r
p

22 1 kzr sin1kzr 1 r
p

224
1 sin1kzrlr823Ndz sin1kzr 1 r

p

22 1 kzr cos1kzr 1 r
p

224 6 1352
if p 5 q 5 0; cpqr8 5 0 otherwise.
This simplification collapses the three-dimensional
sum of Eq. 1332 into a one-dimensional sum over the
integer values of r alone and yields considerable
savings in numerical effort in the calculation of the
MTF.
When the contacts are made completely ohmic, in

addition, all three factors in the terms of the transfer
function are affected. The modal weights can then
be written

c00r8 5
1212rexp1Ndz2

43Ndz
2 1 1p22

2

1r 1 1224

3 55
1 2 cos31p221r 1 12lr8461p221r 1 12

1 Ndz sin31p221r1 12lr84 6 , 1362

and the total output spectrum can be written
U1v82 5 o
r
c00r8

31212rexp321Ndz 1 jn8v824 1 exp1Ndz 1 jn8v824
p

2
1r 1 12

5Nsz3Ndz
2 1 1p22

2

1r 1 1224 1 1 1 jv631Ndz 1 jn8v822 1 1p22
2

1r 1 1224
. 1372
At this point the solution does not involve transcenden-
tal roots which enables us to write the solution in a
closed form.
The finite extent of the readout area was intrinsic

to the development of the results here. To remove
the filtering effects caused by the spatial convolution
of the readout with the image,13 we can take the limit
of the result as the readout length approaches zero.
This changes only the modal weights, generating

c00r8 5

1212rexp1Ndz2Ndz1p221r 1 12lr8

43Ndz
2 1 1p22

2

1r 1 1224
. 1382

These modal weights can then be substituted back
into the transfer function 3Eq. 13724.
Because the MTF is expressed as an infinite sum,

we can compute only an approximation of its value.
This inaccuracy is in the computation only and can be
arbitrarily reduced through the inclusion of more
1 August 1995 @ Vol. 34, No. 22 @ APPLIED OPTICS 4657



terms in the series and by the use of higher-precision
computation. It is important to determine the num-
ber of terms necessary to achieve a given level of
accuracy. The x and y summations are driven to
converge by the sinc2 functional dependence of the
modal weights. Our studies show that, for the typi-
cal values listed above, the x and y series converge to
0.1% in very few terms 1of the order of 102. The
z-series behavior can be understood best by observing
the simplified case of perfect boundary conditions.
The sum, whose terms alternate sign, is driven to
convergence by the factors Ndz

2 1 1p@2221r 1 122 in the
denominator of each term. Thus it is necessary to
continue the sum until the z serial number is much
larger than the drift numberNdz. We find that of the
order of 10,000 terms are necessary to achieve 0.1%
accuracy.

5. Results and Discussion

A computer program was developed to evaluate Eq.
1332 for a given set of parameters and frequencies.
We used a Microsoft FORTRAN compiler running on a
486DX2@66-based desktop personal computer. Double-
precision computations were used to preserve the
accuracy of the sum because the sum’s oscillatory
behavior tends to amplify round-off errors. MTF
curves could be generated in less than 10 min with
this system, thus proving the tractability of this
numerical approach.
Figure 3 shows the MTF for a detector with the

typical values given in Table 1 along with the curve as
computed with the Green’s-function analysis for the
same parameters in Refs. 3–5. Both show similar
low-pass behavior, but the modal analysis predicts a
lower roll-off frequency than the Green’s-function
analysis. This would put the modal analysis in
better agreement with the measured responses of real
SPRITE devices.
Because the modal analysis includes the boundary

conditions in the solution of the problem, we can
study their effects. In Fig. 4 we have plotted MTF’s
of detectors with different insulating surface-recombi-
nation rates. The velocity was varied from 1@100 to
100 times the nominal value in Table 1. The resul-
tant curves show little or no effect on the MTF until

Fig. 3. Computed MTF’s for the Green’s-function method and the
eigenmode method.
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the surface recombination becomes fairly strong.
It is interesting that the less insulating the sides
become, the wider the MTF’s become. This can be
understood by considering the surface recombination
as a modal-damping effect. Higher recombination
makes the higher transverse modes of the device
dissipate faster, and this makes the overall response
faster. However, dissipation of the signal charge
also reduces the absolute signal levels. This can be
seen in Fig. 5, which shows the signal transfer
function 1SiTF2 for the same conditions as in Fig. 4.
The SiTF shown is obtained by normalizing all the
curves by the zero-frequency response of the typical
parameter response. From this figure it is clear that
the broadening of the MTF comes at the cost of a
reduction in the level of the signal at all frequencies.
Figure 6 shows the zero-frequency SiTF plotted as a
function of the insulating boundary condition. The
signal level is normalized to one at the nominal value
of insulating boundary parameters, and it drops as
these parameters are made more conductive. We
can thus conclude that it is best to reduce the surface
recombination, but only because it improves the sig-
nal efficiency of the detector and not because of MTF
considerations.
The effect of the width of the SPRITE detector can

be studied directly with modal analysis. It was

Fig. 4. MTF versus the frequency as top, bottom, and side
boundary parameters are varied from 0.01 to 100 times the normal
value.

Fig. 5. SiTF versus the frequency as top, bottom, and side
boundary parameters are varied from 1 to 100 times the normal
value.



found that, with the top, bottom,, and side boundary
parameters set to their normal values, changing the
width had little effect. Because the normal values
were almost totally blocking, the placement of the
side boundaries 1i.e., the width2 would have almost no
importance. When we set the side, top, and bottom
boundary conditions to be 50 times their normal
velocity, we obtain the data in Fig. 7, which is the
MTF versus frequency as the width spreading num-
ber Nsx was varied. The MTF broadens as the width
number increases, which corresponds with the actual
width becoming smaller because, as the detector
narrows, the carriers have less room to wander and
blur. This gain in MTF also results in a reduction of
the total signal level, as can be seen in Fig. 8. Here is
plotted the SiTF of the SPRITE in the same condi-
tions as in Fig. 7. These SiTF numbers are corrected
for the changing area of the detector by virtue of the
normalization scheme used in the analysis, and so the
reductions of signal caused by reductions of area are
already compensated. As the width parameter is
increased, the overall signal level goes down. The
zero-frequency SiTF function is plotted in Fig. 9, and
the gradual roll-off of the signal level can be seen
distinctly. The conclusions that one can draw is that
the width of the detector can be important if the side
boundary conditions are leaky, and, if so, increasing
the width increases the signal level to a certain point

Fig. 6. Variation of the zero-frequency SiTF as top, bottom, and
side boundary parameters are varied from 1 to 100 times the
normal value.

Fig. 7. MTF versus the frequency as the width-spreading param-
eter is varied from 0.01 to 100 times the normal value. The side
boundary conditions are 50 times the normal value.
after which no further gains can be made. In the
case of our typical detector, that point wasNsx 5 1.
In Fig. 10 we generated MTF curves for detectors

with different contact recombination rates. The ve-
locity was varied over the range of 1@100 to 100 times
the nominal value. As expected, the higher the
surface velocity, the faster the response. This broad-
ens the MTF curves and indicates that the contact
quality affects the MTF. These curves do not ad-
dress the absolute signal levels, however. A set of

Fig. 8. SiTF versus frequency as the width-spreading parameter
is varied from 0.01 to 100 times the normal value. The side
boundary conditions are 50 times the normal value.

Fig. 9. Variation of the zero-frequency SiTF as the width-
spreading parameter is varied from 1 to 100 times the normal
value. This corresponds to widths ranging from 1 to 1@10 normal.

Fig. 10. MTF versus frequency as the contact boundary param-
eter is varied from 0.01 to 100 times the normal value.
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SiTF curves, each normalized by the same normaliza-
tion constant, is shown in Fig. 11. The boundary
number here varies between 1@100 and 1 times the
nominal value. These graphs show that for low or
high values of contact velocity, the response is reduced.
This reduction is so great that it swamps the broaden-
ing of the MTF at high surface velocities.
This counterintuitive finding, that better contacts

actually produce worse performance, can be explained
by looking at the effect of boundary condition on the
modes. The two extreme cases of ohmic contacts
and blocking contacts are shown in Fig. 12. The
figure shows a typical mode profile in the two cases at
the readout end of the SPRITE detector with the
readout region demarcated. The signal is related to
the total charge inside the readout zone, and this is
signified by the shaded areas. In the case of ohmic
contacts, all the modes of charge distribution have a
zero at the end of the detector. This reduces the
amount of charge in the readout, as shown by the
smaller shaded area. In the case of perfectly block-
ing contacts, all the modes have their maximum at
the end of the detector, which results in a relatively
large amount of charge in the readout, as demon-
strated by the larger shaded area. This is what
causes the increase of signal for partially blocking
contacts and the reduction of signal for ohmic con-
tacts.

Fig. 11. SiTF versus frequency as the contact boundary param-
eter is varied from 1 to 0.01.

Fig. 12. Diagram of the charge distribution in the SPRITE in
ohmic and blocking boundary conditions. The shaded regions
represent the readout charge.
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Because SiTF performance degrades as the contact
conditions become either too high or too low, it stands
to reason that an optimum value exists between these
two extremes. This optimum can be seen in Fig. 13,
where the SiTF at zero frequency is shown as a
function of the boundary parameter. This figure
clearly illustrates that the signal strength goes
through a maximum when the contact boundary
parameter is approximately 0.50. This corresponds
to a surface recombination velocity, for our typical
detector, of 40 cm@s. If possible, such tailoring of the
contact velocity of SPRITE detectors could result in
large increases in their signal-level performance.

5. Conclusions

In this paper we have presented a new solution to the
problem of carrier-transport dynamics in SPRITE
detectors through the use of eigenmodal analysis.
In doing so, we developed a self-consistent model for
the detector. This model and method intrinsically
include boundary conditions and full dimensionality
and thus are more complete. Through the analysis,
certain dimensionless numbers arise that can be used
to characterize SPRITE structure parameters and
clarify how these parameters affect device perfor-
mance. Expressions for the MTF have been derived,
and various representative computed functions are
presented. From these curves, optimum values for
the insulating and contact boundary numbers have
been determined.

This work was supported by Westinghouse Electric
Corporation, Orlando, Fla.
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