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Abstract—A numerical model for signal-processing-in-the-element (SPRITE) detectors is developed that
incorporates both hole and electron motion, the effects of space charge and varying field, and boundary
conditions. The model is used to generate a spatial-frequency response for a rectangular SPRITE structure.
Further, we use this model to investigate two improved SPRITE structures: the tapered detector and the

modulation-doped detector.

NOTATION

Notes: Replace x with 7 or p to obtain symbol pertaining
to electrons or holes, respectively. Subscript / refers to finite
variable segment or boundary number. All primed variables
are normalized.

z distance (m)

L length of detector (m)

4, boundary area (m?)

v, segment volume (m?)

t time (s)

D hole density (m~?)

n electron density (m—?)

P, donor density (m~?)

N, acceptor density (m~*)
J. current density (Am~2)
Iy current (A)

E electric field (Vm™')

q charge of electron (C)

€ dielectric constant (Fm ')
d, electric flux (Vm)

D, diffusivity (m*s~')

I mobility (m?V-'s-")

G generation rate (m~>s-!)
T bimolecular lifetime (m~3s)
T minority lifetime (s)

R, charge ratio

e bias charge (C)
Q4 dopant charge (C)

R; generation ratio (C)

P, background charge (C)
R, mobility ratio

Ry noise voltage ratio

Uy noise voltage (V)

U, nominal bias voltage (V)
R, electric flux ratio

P, dopant induced flux (Vm)
b, nominal bias flux (Vm)

nominal scan speed (ms~')

& average normalized drift speed (ms~')
v, surface recombination velocity (ms™')
R, surface velocity ratio

1. surface current (A)
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1. INTRODUCTION

The  signal-processing-in-the-element  (SPRITE)
detector is widely used in infra-red imaging appli-
cations. These detectors work by utilizing the drift
motion of the photogenerated carriers to transfer and
delay the detected signal in space and time, respect-
ively. This concept has been applied to create mono-
lithic time-delay-and-integration (TDI) detectors,
eliminating most of the circuitry normally required
for the implementation of such a system.

The basis for the operation of SPRITE detectors is
the constant drift velocity of the minority carriers.
The drift velocity depends on the effective mobility of
these carriers and the electric field impressed on the
semiconductor. While linear analytic models[1, 2] can
be derived when both of these quantities are assumed
constant, they in fact vary over the extent of the
detector. This variation of drift velocity results in the
degradation of the modulation transfer function
(MTF) of the detector.

This effect was first analyzed using an ambipolar
approximation to reduce the consideration to only
the minority carriers[3]. Through consideration of the
effect of excess carriers on the mobility and the
electric field, the width of the detector was varied in
the along-scan direction such that the change in
cross-sectional area exactly compensated for the
change in both field and mobility. Detectors were
fabricated with their widths tapered according to this
analysis, and measurement of their MTF showed
improvement over the non-tapered devices[4]. While
this approach seems adequate from a design perspec-
tive, it does not allow a complete theoretical predic-
tion of the effect of background-induced variations.
More recent analyses have included the variation of
generation effect and have used numerical integration
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to study the behavior of devices of arbitrary length
and taper(5,6]. This more complete model was used
to compute the responsivity and revealed an intrinsic
saturation in output signal in SPRITE detectors[7].

In this paper, the analysis presented shall improve
on the previous work in several ways. First, and most
fundamentally, the ambipolar approximation will not
be used. While this is unprecedented in SPRITE
literature, this dual carrier electrostatic semiconduc-
tor model will be more flexible and accurate than
previous models, and will allow the investigation of
new structure designs. Second, the signal response
will be computed using a scanned impulse input. The
resulting output will be Fourier analyzed to produce
the MTF response of the detector. This is more in
keeping with the device’s imaging function. In Section
2, the theoretical basis of the model used in this paper
will be described. Section 3 will explain the details of
the numerical implementation used. The results for
rectangular and tapered SPRITEs will be given in
Section 4. A new type of structure, the modulation-
doped SPRITE, will be introduced in Section 5.
Finally, Section 6 will contain the conclusions we can
draw from this work.

2. THEORETICAL BASIS

All the previous literature has utilized the ambi-
polar approximation in the analysis of SPRITE de-
tectors. As the lifetime and background doping level
of HgCdTe are improved, the ambipolar description
becomes less adequate. The approach taken in this
paper will be to use a dual-carrier electrostatic model
of electrical behavior in the SPRITE semiconductor.
The hole and electron densitics, denoted p and n,
respectively, are determined by two interrelated con-
tinuity equations:

=

dr q rh+G’

dn V-J

- =-—-24q )
dr q Ty

The current densities are driven by diffusion and
drift:

3, = ~4qD,Vp + qEy,,
J,=4qD,Vn +qEy,. (2)
Finally, Gauss’s law:
eV-E=g[P+p—N—n], (3)

is considered, where ¢ is the permeability, and P and
N are the positive (donor) and negative (acceptor)
dopant concentrations. It should be noted here that
the lifetime used in eqns (1), 7,, is the bimolecular
(two-body) recombination time, which is related to
the minority lifetime, 7, by the relation 7, = Pr,,.

SPRITE structures typically have high length-to-
width and length-to-thickness ratios, and can be
conveniently described with one-dimensional models.

In terms of numerical complexity, such models are
simpler and faster. However, the effect of device
shape and taper are important to this analysis, and
these features are markedly two- or even three-dimen-
sional. If it is assumed that the SPRITE is a rectangu-
lar solid with only a slowly varying width, then a
modified one-dimensional set of equations can be
written to describe the device.

To do this, it is convenient to write the equations
in the form where the current density and electric field
are integrated over the transverse directions. We let
the z axis be parallel to the long axis of the SPRITE.
Assuming that the current densities and electric field
are constant over any individual cross-sectional area
of the device, 4(z), then:

I"(z) =J,(2)A(z), I'(z) =J,(2)A4(2),
P(z) = E(z)A(2), @

where /,, I, are the hole and electron currents, and &
is the electric flux. Equations (1)—4) are the basis for
the model.

3. NUMERICAL METHOD

Given the above set of equations, the differentials
must be discretized so that they can be evaluated. We
define normalized variables to preserve the accuracy
of the numerical computation. This normalization
also aids in the interpretation of the input parameters
and the output results of the model.

The discretization of the equations can most easily
be viewed by considering the detector to be divided
into m segments, as pictured in Fig. 1 where m =12
for illustrative purposes (m = 100 was actually used).
Each segment has an equal thickness, Az, along z. We
number these elements from 1 to m. These elements
are bounded by planes, numbered 0 to m, each
perpendicular to the z axis. Each element is character-
ized by a volume, V,, and the densities of the holes,
electrons, donors, and acceptors are denoted p;, n,,
P,, and N,, respectively. The boundary planes are
described by an area, A,, the hole current, /7, the
electron current, /7, and the electric flux &,.

-
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Fig. 1. Diagram of SPRITE detector divided into segments,

each having a volume and densities of holes, electrons,

acceptors and donors. The boundaries between the segments

have an area, hole and electron currents, and flux associated
with them.
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The basic eqns (1)«4) can be written in terms of
these discrete variables by approximating the z de-
rivatives involved by their finite-difference equiva-
lents. This produces:

i

dpr 7 1*[{7 P,

b el
dt qV, Th
dnr 11" - I’rzf— 1 pin,
kRS sy s
ds qV, T, ’ )
Pi— P Di+ it
If_quDp A.'." +qd)uup 2 >
n+n
I - AD,, (R i ) i l+1, 6
i=q4; A TIPS (6)
,/
(pi_Qlfl:q—é_‘[P:+pl—"Vr_ni]' (7)

Normalized variables will be indicated by the prime
(') notation. The independent variables, z and 7 are
most easily normalized to the device length, L, and
the minority carrier lifetime, 1, thus:

14
I (8)
rm

1

Because we are interested in studying the effect of
device taper, the area of the boundaries and the
volumes of the elements will vary over the length of
the device. Here, these variables are normalized to A4,
and V,:

A/ = 4, V d 9)
o A(,' ’ Vu.
where A, is the area of the zeroth boundary, and ¥,
is defined to be the product 4,Az. The carrier and
dopant densities are normalized to the concentration
of donors in the first segment of the device. This
yields:

P n,
=, n =,

pi=p 3

p=b NN (10)
BV 3

The currents are normalized to the bias current
applied to the device /,. The electric flux is normal-
ized to the value of @, required to establish the bias
current. This produces:

r I

L)
IP==_I"=s-"_ ¢/ =-"
P

0 [U 0
We can write eqns (5)—(7) in a dimensionless form:

(1)

Ap; Rt L

A =Ry it Re

An AT I
FzRQVT—p‘ni-'_RG, (12)
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17 = R A + @; s
i u|: N Azl 2 :I
ni —n; n+n;,,
["=Ryd -~ + @] , 13
' N Az 2 (13)

P - =R V[P +pi— N —nl]JAz". (14)

The differential of the normalized distance is now
given by:

Az’ =1/m. (15)

Five dimensionless numbers are introduced that
contain all of the parameters of the problem. Each
can be thought of as a ratio of two physical proper-
ties:

- Iyt Gr, P
Rp=—im Qo g _Gln P

qPyd L Q4 P, P
R“=ﬁ, RN=qP0m"A0VN=$,

m, I L U,

P,A,L F
R, =000 ¢ (16)

Fye F,

The charge ratio, Ry, is the ratio of the bias charge
flowing in one minority lifetime, Qy, and the total
dopant charge in the device, Q,. The generation ratio,
R, is the ratio of the equilibrium carrier concen-
tration resulting from generation, P, and the dopant
concentration, P,. The mobility ratio, R,, is the ratio
of the hole and electron mobility. The noise-voltage
ratio, Ry, is the ratio of the equivalent-noise voltage,
Uy, driving the diffusion process and the normal-bias
voltage, U,. Finally, the electric-flux ratio, Ry, is the
flux that would result from a positive charge equal to
the amount of donor dopant present in the device,
&4, over the flux required to establish the bias
current.

The scan velocity ¢, is nominally equal to the speed
of the minority carriers:

Vnominal = /lp E (1 7)

Because we are using normalized coordinates, we
write the following to obtain the normalized nominal
scan velocity, v

, T T, E
U nominal = z Unominal = £ = RQ R;‘ . (1 8)
To obtain the response of any detectors,

eqns (18)—~(20) must be integrated in time. The choice
of the time increment, At’, is critical for convergence.
In this work, the increment used is:

1
Al = ———.
m*RyR,d

(19

Here, m? helps to insure that the numerical code will
converge, because it is of the same order (m?) as the
second derivative implicit in eqns (12) and (13). The
inclusion of the scanning speed further improves
stability, and it results in the scanned spot moving
1/m elements per time increment. The use of a
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Tabie 1. The values of the six dimensionless

ratios used in this work. Of note is the particu-

larly high value of R,. This corresponds to the
high strength of the electrostatic interaction

Dimensionless ratio Typical value

R, 14
R, 0.04
R, 0.1
Ry 0.005
R, 1500
Re 0.004

correction factor, &, is made necessary by the depar-
ture of the ambipolar drift velocity from the nominal
value. This factor, &, is the average normalized
ambipolar velocity over the detector length.

To incorporate boundary conditions, the assump-
tion is made that the minority carriers exhibit a fixed
recombination velocity, v, at the ends of the detector.
It is also assumed that the detector is biased with a
constant current equal to /;. These two assumptions
result in eqns (20) and (21) for the normalized hole
and electron currents at the boundaries:

If = =Repy, I=1-1¢. (20)
I =RcAnp,, Ii=1-1F. (21
The new dimensionless ratio R. is given by:
e AgqPy 1
Re = Yedodlo Lo (22)
1y I,

where /. is the surface current resulting from a
minority-carrier concentration equal to the majority-
dopant concentration. These relations for the termi-
nal currents ensure that an equal amount of positive
and negative charge are always present in the detector
volume, which produces the required condition of
total charge neutrality.

In all preceding models, a rather ad hoc approach
was taken in that it was assumed that the readout
voltage was proportional to the total charge con-
tained within the readout region. In this model, the
normalized output voltage, U, can be computed by
simply integrating the electric field over the readout
and, given that the readout has k + 1 elements, this
implies:

@ AAz".
k

U= Y (23)

The preceding equations give, in a condensed and
dimensionless form, a two-carrier electrostatic model
of a quasi-one-dimensional SPRITE detector. In the
next section, this model will be used to analyze the
performance of given detectors, and also to syn-
thesize new detector structures.

4. COMPUTATIONAL RESULTS

The model was implemented on a 486DX2/66-
based desktop computer using a Microsoft FOR-
TRAN compiler. We found that breaking the
detector into m =100 elements was sufficient to
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produce good results. This was confirmed by repeat-
ing the calculations with twice as many elements and
observing no change in the output. We found that a
complete analysis typically takes only 5 min of com-
putation time.

The first task for the new model is the computation
of the MTF of a simple non-tapered SPRITE detec-
tor. This is done both to test the model and also to
observe any new phenomena not predicted by the
previous work. Table 1 lists typical dimensionless
ratios. These are computed from data drawn from
Refs [S, 7]. These numbers will be used throughout
the remainder of this paper.

Before responses can be produced, however, the
detector must first be initialized to its steady state.
The model is run without any inputs other than the
constant background. The progress of the charge-
equilibration process is monitored by observing the
mean-square derivative. Figure 2 is a graph of the
resulting electron and hole charge densities. Note the
strong influence of the boundaries on the charge
densities. This distribution is not simply exponential
as predicted by the linear theories[8], however, be-
cause the electric field is no longer constant and the
charge distribution is distorted.

To obtain the impulse response, a small charge
input is scanned across the detector to mimic the
process of scanning a small light spot. The input is
taken to have a normalized width of Az’, and it is
moved Az'/n elements in At’ time. Figure 3 is a graph
of such an impulse response. The pulse is approxi-
mately Gaussian, as predicted by the Green’s func-
tion analysis. Two new features can be noted. First,
the response is skewed to the right, because of
causality and the boundary-blocking effect that delay
charge transport and produce the slow exponential
tail seen. Second, the response has a second small
pulse that occurs just after the input spot begins to
scan. This new pulse can be attributed to the voltage
transient that must occur at the readout bias terminal
that compensates for the new charge deposited near
the other bias terminal. This peak is not important
because of its small scale.

The voltage temporal response can be fast-Fourier
tranformed to generate the frequency response of the
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Fig. 2. Steady-state charge densities for constant back-
ground illumination. Notice the slow exponential rise near
zero and the sharp apparent accumulation near 100.
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Fig. 3. Computed impulse response of typical detector.

The main peak is skewed to the right, and there is a small
secondary peak at the beginning of the scan (see inset).

detector. The normalized magnitude of this complex-
valued function is the MTF. The graph of the MTF
is shown in Fig. 4. Also shown for comparison is the
MTF given by the Green’s-function analysis[1]. The
numerical analysis predicts a lower cut-off frequency
than the classical analysis. This is caused by signal-
degrading effects such as the boundary effects and the
nonlinearity of transport.

As mentioned above, the actual drift velocity does
not equal the nominal value and, further, it is not
even a constant. The local ambipolar drift velocity at
position i depends on several factors: the flux, the
area, the concentration of electrons, and the concen-
tration of holes. The ratio of this speed to the
nominal speed is denoted z,, and can be written:

?;
!= lx
Al

(ri+n,, —p,—p.)
ni+nl + R +p )

A graph of this velocity ratio is shown in Fig. 5.
Considerable deviations are evident, especially at the
boundaries. Without changing the parameters of the
problem, the best scanning velocity available is given
by the average value of the ambipolar velocity &. This
average ratio is the correction constant used in
eqgn (19). and in this case has a value of about 0.92.

One approach cited in the literature to combat this
speed variation is the variation of cross-sectional area
along the device. With an appropriate variation or

L0 =
o Lv\

X

(29)

i
Green's |

& 06 reer
2 . | Nurﬂﬂwal | :
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o . lrereree.ed

5 10
Spatial frequency (cyc./det. length)

Fig. 4. Comparison of MTF curves computed using the

Green's function method and the numerical method. Notice

that the numerical solution is considerably lower than its
analytical counterpart.
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Fig. 5. The local ambipolar velocity ratio for the normal
rectangular detector, and cross-sectional area and velocity
ratio of the tapered detector.

taper, the local velocity can be made almost constant.
By using the following iterative rule relating the new

area, A, to the previous area, 4);:
. %
A new. — Lllld,i g ’ (25)

the total mean-square deviation of the velocity can be
reduced. By repeating the process of correction, the
procedure will converge and produce a taper descrip-
tion. The taper obtained in this manner for the given
parameters is also shown in Fig. 5.

The success of this taper pattern is demonstrated
through the computation of the local velocity ratio,
as shown in Fig. S. Positive control of the velocity has
been achieved, with a reduction of the mean-square
deviation of over six orders of magnitude compared
with the untapered detector. The MTF of the tapered
detector, shown in Fig. 6, along with the MTF of the
untapered SPRITE, shows some modest improve-
ment. The increase is small because diffusive spread-
ing of the charge is much more important than scan
mismatch in our case, when the worst-case mismatch
was only about 10%.

5. MODULATION-DOPED SPRITE

Tapering is used to obtain optimum performance
within the basic SPRITE concept. Even the tapered

Rectangular

Tapered

MTF

Modulated

Spatial frequency (cyc./det. length)

Fig. 6. The comparison of the MTF of the rectangular,
tapered, and modulation-doped SPRITE detectors. The
taper produces a better MTF at low and intermediate
frequencies and a more definite zero in response about 10
cycles per detector length whereas the modulation-doped
detector improves the response at all frequencies.
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Fig. 7. The stead;/-state charge pattern of the modulation-doped SPRITE. The separation of positive and
negative charge produces strong space-charge fields, which tend to prevent the backward motion of holes.

SPRITE suffers from the fundamental resolution
limit of diffusion. One possible method to counteract
the effect of diffusion is to build into the SPRITE
some kind of structure that would curtail the spread-
ing of charge. One method would be to modulate the
doping level in each segment so that there would be
a regular periodic structure along the length of the
detector. Figure 7 shows the doping level for six
segments near the middle of the detector. The doping
is made to have a saw-tooth profile. This kind of
doping variation has several impacts. The conduc-
tivity and thus the electric flux induced by the bias
current varies from point to point. Second, the
majority carriers will redistribute themselves under
the influence of diffusion, which will cause the for-
mation of space-charge fields. Third, the large vari-
ations in local carrier density will produce variations
in the ambipolar mobility. Taken all together, it is
suggested that this doping profile might reduce diffu-
sion and improve the MTF.

The steady-state carrier distributions are also
shown in Fig. 7 for the same six detector segments.
The partial depletion of the highly-doped regions and
the consequent over-charging of the lightly-doped
regions can be seen, as indicated in Fig. 7 by the dark
shading for negative charge and light shading for
positive charge. This creates a permanent space-
charge field in the structure; specifically, there is a
high positive field interface in each cycle of the
pattern, as shown. Any holes trying to travel back-
ward across this boundary are impeded, which re-
duces the overall diffusion rate and improves
performance. This can be seen by computing the
MTF of the modulation-doped detector, shown in
Fig. 6. Again, a small improvement in MTF can be

seen. It should be noted that this result was achieved
with a relatively simple doping profile. Revision and
refinement of the profile might well provide further
improvement.

6. CONCLUSIONS

In this work, a new model of carrier transport in
SPRITE detectors is developed. This model uses a
two-carrier electrostatic formalism to produce a sys-
tem of discrete numerical equations that describe the
motion of carriers in the detector. The model is
one-dimensional in scale, but the provision for vary-
ing the detector cross-section enables the analysis of
nonuniform photoconductor filaments. The steady-
state carrier distributions produced show a marked
deviation from those predicted by previous linear
models. The impulse response derived is asymmetric
and exhibits a second peak not explained by the
classical theory. The MTF generated from this model
predicts a lower spatial resolution than predicted by
Green’s function analysis and is in closer agreement
with the measured data than previous analysis[9].

The model is then used to optimize the shape of a
tapered detector. This technique is shown to improve
uniformity of the ambipolar velocity and the MTF
behavior of the final design. Further, the possibility
of modulation-doping of the SPRITE is investigated.
This doping reduces the diffusive spreading of car-
riers within the SPRITE. One possible doping profile
is demonstrated to improve the MTF,
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