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It is desirable for design purposes to model a signal-processing-in-the-element 1SPRITE2 detector simply
as a discrete-element detector with an integration-enhancedD*. We present amethod for normalization
of measuredD* for SPRITE detectors to yield an equivalent-discreteD*. The multiplicative factor is the
square root of the ratio of two noise-equivalent bandwidths: one is that of the SPRITE detector with no
boost filter, and the other is that of the SPRITE detector with a boost filter that approximately compensates for
carrier diffusion, yielding a spatial resolution that approaches that of a discrete detector the same size as
the readout. This approach allows a resolution-equivalent D* comparison of SPRITE detectors with
discrete-element detectors and facilitates such comparisons among SPRITE detectors. We find that, to
obtain theD* of an equivalent-discrete detector, a measured SPRITED* should typically be multiplied by
a factor ranging from 0.85 to 0.57 for 8- to 12-µm SPRITE detectors and by a factor ranging from 0.50 to
0.23 for 3- to 5-µm SPRITE detectors.
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1. Introduction

Signal-processing-in-the-element 1SPRITE2 detec-
tors1–6 are widely used in high-performance thermal
imagers. The primary advantage of a SPRITE detec-
tor is an increased signal-to-noise ratio 1SNR2, ob-
tained by means of a time-delay-and-integration 1TDI2
operation. The TDI operation is implemented in the
SPRITE detector itself, which avoids the external
delay-line electronics that would be required for
implementing TDI if discrete-element detectors were
used. However, SPRITE detectors have limited spa-
tial resolution, caused by charge-carrier diffusion.
It is convenient for conceptual and design purposes to
be able to model a SPRITE detector simply as a
discrete-element detector with a TDI-enhanced D*.
However, this equivalent-discrete D* is not the D*
that is typically measured and quoted at the compo-
nent level. We present a method for normalization
of the measured D* for a SPRITE detector, with
respect to carrier diffusion, to yield the equivalent-
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discrete D*. This facilitates resolution- and noise-
equivalent comparisons between SPRITE detectors
and discrete-element detectors.
The primary figure of merit for discrete-element

infrared detectors isD*, which specifies a SNRnormal-
ized with respect to a detector area and a temporal
measurement bandwidth. The spatial resolution of
a discrete-element detector is defined by the dimen-
sion of the photosensitive area. Thus the SNR and
the spatial resolution are independent quantities for
a discrete-element detector. A SPRITE detector is
more complex because spatial resolution and SNR are
not independent. For example, a longer SPRITE
detector allows a longer dwell time, which yields a
better SNR. However, this increase in SNR is ob-
tained at the expense of spatial resolution2,3 because a
longer dwell time gives the charge carriers more time
to diffuse, degrading the spatial resolution.
SPRITE detectors are typically used with boost

filters4 that sharpen the image by partially compensat-
ing for the modulation transfer function 1MTF2 reduc-
tion caused by carrier diffusion. However, increas-
ing the spatial resolution in this way results in an
increased noise level, because the noise-equivalent
bandwidth of the detector channel is increased by the
boost filter. The details of any individual boost-filter
implementation are at the discretion of the system
designer, so component-level measurements of D* are
usually made without a boost filter.
D* is calculated from a measured narrow-band
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SNR, SNRNB, which uses a lock-in amplifier with a
narrow bandwidth, Dflock-in:

D* 5
SNRNB

fdet
1A21@21Dflock-in21@2, 112

where A is the detector area and fdet is the signal flux
on the detector. Flood illumination is used with a
chopping frequency that is less than the inverse of the
carrier lifetime. The D* is normalized with respect
to bandwidth because the rms noise is proportional to
the square root of the noise-equivalent bandwidth.
Thus the D* can also be written in terms of the
full-bandwidth SNR and the noise-equivalent band-
width of the detector channel:

D* 5
SNR

fdet
1A21@21Dfchannel21@2. 122

Equation 122 can be inverted to yield the SNR expected
from a detector under conditions of actual use:

SNR 5
fdetD*

1A21@21Dfchannel21@2
. 132

Substituting Eq. 112 into Eq. 132, we find the expected
in-use SNR in terms of the bandwidths of the lock-in
amplifier and the detector channel:

SNR 5
SNRNB1Dflock-in21@2

1Dfchannel21@2
. 142

2. Equivalent- Discrete D*

Given the interdependence of resolution and SNR in
SPRITE’s, a resolution-equivalent comparison re-
quires the use of a boost filter to make the MTF of the
boosted SPRITE as close as possible to that of a
discrete element of dimension equal to the along-scan
readout length of the SPRITE.
From Eq. 142 we form the ratio of the expected SNR

of the equivalent-discrete SPRITE used at the full
boosted bandwidth to the expected SNR of the SPRITE
used at full bandwidth but without boost:

SNRequivalent-discrete

SNRSPRITE
5

SNRNB1Dflock-in21@2

1Dfwith-boost21@2

SNRNB1Dflock-in21@2

1Dfno-boost21@2

5
1Dfno-boost21@2

1Dfwith-boost21@2
. 152

We then define D*equivalent-discrete as the D* of the
ficticious single-element detector that would operate
into the full 1but unboosted2 channel bandwidth of
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the SPRITE and yield the sameSNRas the equivalent-
resolution boosted SPRITE:

D*equivalent- discrete ;
SNRequivalent-discrete

fdet
1A21@21Dfno-boost21@2.

162

We use Eqs. 122, 152, and 162 to define h, the ratio of the
D* of the equivalent-discrete element to themeasured
D* of the unboosted SPRITE:

h ;
D*equivalent-discrete

D*SPRITE
5

SNRequivalent-discrete

fdet
1ADfno-boost21@2

SNRSPRITE

fdet
1ADfno-boost221@2

5

SNRNB1Dflock-in21@2

1Dfwith-boost21@2

SNRNB1Dflock-in21@2

1Dfno-boost21@2

5
1Dfno-boost21@2

1Dfwith-boost21@2
. 172

The factor h is the square root of the ratio of two
noise-equivalent bandwidths: that of the SPRITE
with no boost filter and that of the SPRITE with the
boost filter in place. Thus h is proportional to the
ratio of the rms noise levels for the two cases. Larger
amounts of carrier diffusion will require more boost
for correcting the MTF and, consequently, the equiva-
lent-discrete D* will drop. The equivalent-discrete
D* defined in Eq. 172 is a simple model for the SPRITE
that is both resolution equivalent and SNR equivalent.
The equivalent-discrete reference condition facili-
tates comparison of SPRITE’s with different D*’s and
resolutions, in addition to the comparison of SPRITE’s
with discrete-element detectors.

3. Boost-Filter Transfer Function

We calculate the noise-equivalent bandwidth of the
SPRITE detector, with and without the boost filter, by
using an analytical expression for the SPRITE MTF
that accounts for the effects of charge-carrier diffu-
sion and the finite along-scan dimension of the read-
out. Including only these two terms is consistent
with standard modeling practice but gives a some-
what optimistic prediction of the MTF.5 If desired,
measured SPRITE data for MTF and noise power
spectra can be used in the following bandwidth calcu-
lations.
The MTF caused by the diffusion of charge carriers

during transfer along the SPRITE element is given
by3

MTFdiffusion1k2 5

1 2 exp52 31 1 12pkQ224
L

vt6
31 1 12pkQ22431 2 exp12 L

vt24
, 182



where k is the spatial frequency in cycles per unit
length, Q is the charge-carrier diffusion length, L is
the total length of the SPRITE element, v is the
charge velocity along the element 1the product of
mobility and electric field2, and t is the charge-carrier
lifetime. The term L@vt is the integration time di-
vided by the carrier lifetime.
We take the readout geometry for the SPRITE

detector as a rectangle of along-scan dimension X.
Tapered readouts6 are sometimes used to provide a
smallMTF enhancement 1reducing the required boost2,
but the assumption of a rectangular readout is particu-
larly convenient for comparison with a discrete detec-
tor of the same size. The MTF for a rectangular
readout is given by

MTFreadout1k2 5
sin1pkX 2

pkX
; sinc1pkX 2 . 192

The total MTF of the SPRITE is written as

MTFSPRITE1k2 5 MTFdiffusion1k2MTFreadout1k2 . 1102

We want a boost filter that produces an MTF
approximating just that of the readout. The desired
boost-filter voltage transfer function G1k2 is the in-
verse of the diffusion MTF:

G1k2 5

31 1 12pkQ22431 2 exp12 L

vt24
A1 2 exp52 31 1 12pkQ224

L

vt6B
. 1112

The diffusion MTF given by Eq. 182 approaches 0 for
large k. Thus, to keep G1k2 bounded, the boost must
be implemented over a finite range of frequencies.
In our analysis of both the boosted and the unboosted
channels, we use one cycle per readout length
1k 5 1@X 2 as the cutoff frequency. This is consis-
tent with usual practice, because the MTF of the
readout will force the SPRITE MTF to be 0 at k 5

1@X, and the gain in image quality resulting from the
use of a higher cutoff frequency is negligible. Imple-
mentation of the boost in Eq. 1112 from k 5 0 to k 5

1@X will approximately compensate the MTF of the
SPRITE to that of a discrete detector of dimension X.
The boosted impulse response is then the desired
rectangular impulse response 1limited to a bandwidth
of 1@X 2 of a discrete detector that is the same length as
the readout.

4. Noise-Equivalent Bandwidth

We can now calculate the noise-equivalent band-
widths of Eq. 172, both with and without the boost
filter. We express these bandwidths in spatial fre-
quencies, easily converted to the more familiar band-
width units of hertz by use of the scan velocity, v.
For the case of the unboosted SPRITE detector, the
noise-equivalent bandwidth is just the integral of the
power spectrum of the noise up to k 5 1@X. We use
the normalized noise power spectrum S1k2 presented
in Ref. 1, which has been validated by measurements:

S1k2 5
sinc21pkX 2

1 1 12pkQ22
. 1122

Using Eq. 1122, we express the noise-equivalent band-
width of the unboosted SPRITE

Dfno-boost 5 e
0

1@X

S1k2dk 5 e
0

1@X sinc21pkX 2

1 1 12pkQ22
dk. 1132

For the case of the SPRITE detector boosted by the
voltage transfer function G1k2, the noise-equivalent
bandwidth is given7 by the integral from k 5 0 to k 5
1@X of the product of S1k2 andG21k2:

Dfwith-boost 5 e
0

1@X

31 1 12pkQ224

3 3
sinc1pkX 231 2 exp12 L

vt24
A1 2 exp5231 1 12pkQ224

L

vt6B4
2

dk.

1142

5. Comparison of Equivalent-Discrete D* and Measured
SPRITE D*

Using Eqs. 172, 1132, and 1142, we find the ratio of the
equivalent-discrete D* to the measured SPRITE D*:
h ;
D*equivalent-discrete

D*SPRITE
5 E

e
0

1@X sinc21pkX 2

1 1 12pkQ22
dk

e
0

1@X

31 1 12pkQ224C
sinc1pkX 231 2 exp12 L

vt24
A1 2 exp5231 1 12pkQ224

L

vt6BD
2

dkF
1@2

. 1152
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Solving Eq. 1152 numerically, we plot h as a function of
L@vt in Fig. 1 for three different values of Q: 25, 40,
and 60 µm. In each case, we take the readout length
X to be the typical value of 50 µm. A charge-carrier
diffusion length Q of 25 µm is typical of 8- to 12-µm
SPRITE’s, and a Q of 60 µm is typical of 3- to 5-µm
SPRITE’s.1 As expected, h = 1 for small values of L
andQ, and the resolution-equivalentD* is reduced for
larger values of diffusion length and for longer integra-
tion times.
To calculate a resolution-equivalent D* for an 8- to

12-µm SPRITE, the measured D* should be multi-
plied by 0.85 for L@vt 5 0.5, by 0.73 for L@vt 5 1.0, or
by 0.57 for L@vt 5 3.0. For a 3- to 5-µm SPRITE, the
measured D* should be multiplied by 0.50 for L@vt 5
0.5, by 0.34 for L@vt 5 1.0, or by 0.23 for L@vt 5 3.0.

6. Conclusions

We have presented a method for the calculation of an
equivalent-discrete D* for SPRITE detectors, based

Fig. 1. Ratio h of equivalent-discrete D* to measured SPRITE D*
forQ 5 25, 40, and 60 µm, as a function of L@vt. A readout length
of X 5 50 µm is assumed.
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on the use of a boost filter that approximately corrects
the SPRITEMTF to that of a rectangular element the
size of the readout. The method facilitates a simple
and unbiased comparison of the performance of
SPRITE detectors, taking into account both spatial
resolution and noise. It also provides a comparison
with conventional discrete elements. We find in
typical cases for an 8- to 12-µm SPRITE that the
measuredD* should be multiplied by a factor ranging
from 0.85 to 0.57. For a 3- to 5-µm SPRITE, the
measuredD* should be multiplied by a factor ranging
from 0.50 to 0.23.
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