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Abstract: The monochromatic aberrations produced by the phase 
distribution reflected by resonant sub-wavelength metallic structures are 
studied both analytically and numerically. Even for normal incidence, the 
angular dependence of the re-radiated wavefront disturbs the overall 
performance of the reflectarray. This effect is modelled as combination of a 
linear and a cubic dependence. A complete numerical simulation of a 
multilevel focusing reflectarray is performed using computational-
electromagnetic and physical-optics-propagation methods. A modified 
Strehl ratio is defined to show the dependence of the focused spot behavior 
on aperture. The irradiance distribution is dependent on the polarization 
state. A small-aperture focusing reflectarray has been designed, fabricated, 
and tested. The irradiance distribution at the focusing plane is compared 
with the simulated one, showing a good agreement when residual wavefront 
aberrations are included. 
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1. Introduction 

Refractive or reflective optical elements are based on physical interfaces separating dielectric 
or metallic materials. They are the components of most conventional optical systems. 
Evaluations of optical path differences and wavefront distortions are made within the 
framework of classical optical aberrations. Diffractive optical elements are also widely used, 
alone or in combination with refractive optics, creating new degrees of freedom in optical 
design problems. As appropriate, scalar or vector propagation and interference laws model 
these elements. In this contribution we introduce a new kind of optical element based on the 
resonance of subwavelength metallic structures [1,2]. The metallic elements have geometric 
details well under the wavelength value. The resonance that is used in these structures is given 
by the cooperative effect of the regularly arranged elements. This resonant behavior may 
change the spectral distribution, the polarization state or the phase of the output wavefront. 
These can be configured as reflective or transmissive elements, and can be fabricated on a flat 
or conformal surface. The concept has been adapted from the radiofrequency portion of the 
spectrum where they are known as reflectarrays when denoting reflecting elements [3–5]. 
However, when moving to higher frequencies, the optical properties of materials at sub-
wavelength dimensions makes them behave as imperfect conductors [6]. This behavior 
changes the performance of these elements at infrared and optical frequencies. 

The fundamentals of resonant optical elements for phase-shaping applications are based on 
the interaction of the electromagnetic waves with metallic structures arranged as a quasi-
periodic pattern. Due to this resonant interaction, for a given geometry and material 
arrangement, the phase shaping depends on the wavelength, the angle of incidence, and the 
polarization state of the incoming wavefront. These dependences are intrinsically different 
from those obtained for refractive and diffractive optical systems. The capability to induce a 
phase shift by sub-wavelength resonant elements in the infrared was demonstrated for the 
material and the geometry used in this contribution [7]. Starting from that article an infrared 
reflectarray was fabricated and successfully characterized using a Soret configuration and 
resonant elements showing a π phase shift with respect to the phase produced by the ground 
plane [8]. With these previous results, an improvement in the design for better efficiency was 
proposed and realized in the form of a multilevel reflectarray acting as a focusing mirror. 
Figure 1 shows the structure of the sub-wavelength elements. The element is defined on a unit 
cell having a constant size along the reflectarray. In our case the unit cell is a 5 × 5 µm

2
 

square. A stand-off layer is grown on a metallic ground plane. On top of the stand-off layer, a 
metallic patch is deposited. The form and size of this metallic patch determines the phase shift 
given by the region of the reflectarray containing this individual element. The photographs of 
Fig. 1 show a square patch and also a slotted square patch of the type used to build a 
multilevel reflectarray. 

 

Fig. 1. The unit cell for an individual resonant element is sketched on the left of the figure. The 
visible microscope photographs show two geometries for the metallic patches of the resonant 
elements: squares, and slotted squares. 

In this contribution we evaluate the phase dependences with respect to angle of incidence 
and polarization state for a fixed wavelength. Our analysis is performed for resonant optical 
elements fabricated with square and square-slotted unit-cell designs arranged as a multilevel 
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Fresnel zone plate. Section 2 presents an approximate analytical model of some 
monochromatic aberrations of a reflectarray, under normal incidence conditions. In section 3, 
this analysis is extended by a numerical simulation of the phase shift as a function of the 
reflected angle and polarization state. The reflectarray is modeled as a phase screen and the 
reflected wavefront is propagated by a Rayleigh-Sommerfeld algorithm [9]. The analysis is 
performed under both small- and large-aperture conditions. Experimental results obtained 
from a small-aperture reflectarray are compared with the numerical results. Section 4 
summarizes the main conclusions of the paper. 

2. Analytical solution for an on-axis reflectarray system 

The analysis of the aberration of a reflectarray begins with evaluation of the optical-path 
differences as a function of the location of the subwavelength element within the array. First, 
we present an analysis applicable to an off-axis incidence. The on-axis results are then 
obtained from it. Using a purely geometric approach, this location (in a Fresnel-zone 

arrangement), depends on the radial coordinate 2 2
r x y= + , with (x,y) as the coordinates 

within the reflectarray plane, the focal length, f ′ , and the angle of incidence, α. The phase 

difference can be related with the previous geometric quantities as follows: 
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where the approximate result given in the second line has been obtained by series expansion 
of the square root and the trigonometric functions [10,11]. The four terms in the square 
brackets of this equation can be identified as follows: the first one is the paraxial 
approximation to a spherical wavefront, the second term is spherical aberration, the third term 
is astigmatism and field curvature, and the fourth term is coma. Only the two first terms are 
different from zero for normal incidence, α = 0. 

Equation (1) only computes optical-path differences. For a reflectarray, besides these 
geometrical terms, an additional term describing the changes in phase introduced by the 
resonant patches has to be included. If all the geometrical aberrations were to be corrected, 
this residual wavefront error induced by the resonant elements would remain. When 
considering a monochromatic wave, this additional term depends on the angular behavior of 
the reflected field. This additional phase shift can be modelled as two terms, 

 ( ) ( ).
additional

α θΦ = Φ +Φ   (2) 

The first term depends on the angle of incidence, α, and the second term depends on the 
angle θ defined by the line joining a particular subwavelength element and the focal point, and 
the normal line to the reflectarray surface (see Fig. 2). In the following we will interested in 
the on-axis incidence, i.e., α = 0°. Actually, θ can be easily related with the location at the 
reflectarray plane as, 

 

3

1 1
tan ,
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up to a third-order expansion. This angle, θ, will be referred to as the aperture angle in this 
paper. Even for normal incidence conditions, α = 0, the second term of Eq. (2) does not 
vanish. It represents the phase shift observed in the re-radiated wavefront at a given direction 

defined by θ. This phase shift, ( )θΦ , can be calculated using computational-electromagnetic 
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methods and it depends not only on the angle θ, but also on the orientation of the incident 
electric field (the incoming polarization state of the electromagnetic wave). 

 

Fig. 2. Typical layout of a reflectarray focusing onto a plane. The resonant element is 
represented as the red square on a circular ring at the reflectarray plane having coordinates (x,y) 
with respect to the origin of the reflectarray O. The focal plane is situated at a distance f ’ from 
the reflectarray plane. Angles θ and β are the elevation and azimuth angles respectively. They 
describe the location of a given point of the reflectarray with respect to the focal point of the 
system, F’. The angle α is the angle of incidence of the incoming beam with respect to the 
optical axis. 

The numerically computed results for Φ(θ) are shown and discussed in the next section 
assuming normal incidence, α = 0 (see Fig. 2). Here we present an approximate form for the 
angular dependence of the phase shift analytically modelled using a sigmoid function [12]. 
Some other analytical functions can be proposed for this fitting. A sigmoid function is chosen 
since it has also been used to model the dependence of the phase shift with the size of the 
square patch in the unit cell [7]. Independently of the type of function used, the analytical 
fitting, and its power expansion, provides a simple connection between the geometric-
aberration theory and this new contribution to the wavefront error. As a possible form for this 
sigmoid we propose the following one 

 0( ) ,

1 exp

A

B

θ
θ

Φ = Φ +
 

+ − 
 

  (4) 

where Φ0, A, and B are fitting constants. Although a more accurate description of the angular 
effects will need a computational approach, the modelling using an analytic function makes 
possible some useful interpretation of the angular phase dependence. Using Eq. (4) to 
represent this dependence, and after expanding in powers of θ, we obtain: 
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this, by using Eq. (3), can be written as a function of r, 
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The first term in the square bracket is linear with r, and can be explained as an axicon-type 
phase dependence [13]. The second term is a third-order aberration similar in symmetry to 
spherical aberration, but having a cubic dependence on aperture instead of the usual 4th-
power dependence. In situations where the angular dependence may depend on the 
polarization of the incident field (as happens with meander-line structures [14]), the fitting 
coefficients A and B in Eqs. (4)-(6), may change when considering the polarization state of the 
incoming light. 

The previous analysis has some limitations. The most important is that the postulated 
angular behavior is applicable piece-wise over the reflectarray plane, the pieces defined by the 
regions where the same subwavelength resonant element is written. When moving to a 
different region populated with different resonant elements, the constants Φ0, A, and B have to 
be changed. Besides that, a complete analysis of this aberration behavior will imply more 
detailed dependences with respect to the polarization state of the incident light and the local 
decomposition in TE and TM modes on the reflectarrray plane. However, with this 
approximate analytical model we have shown that the resonant elements introduce by 
themselves some intrinsic aberrations. The total aberration function contributed by these 
elements should include these new terms. The new degrees of freedom thus generated may 
ultimately prove to be of some benefit for balancing other aberrations present in the system. 

3. Computational modeling of a multi-level reflectarray focusing mirror 

The modeling of the angular and polarization response has been made using two different 
computational tools: a finite-element package (HFSS by Ansoft) and a method-of-moments 
algorithm (Designer by Ansoft). For our present situation, we are interested in the angular 
dependence of the resonant elements. With this in mind we have calculated the irradiance 
distribution at the focal point of the resonant optical element, by modeling the resonant optical 
element as a phase screen. The phase screen has a dependence as follows: 

 ( , , , , ),x y sλ θΦ = Φ   (7) 

where, x and y are the spatial coordinates on the plane of the phase screen, λ is the 
wavelength, θ denotes the angle of the optical path with respect to the normal to the surface, 
and s represents the polarization state. As far as we are presently interested in the 
monochromatic dependences we will assume λ as a constant and consequently drop it from the 
dependence. 

After demonstrating the focusing capabilities of a focusing reflectarray with a binary 
phase FZP [8], we have upgraded the design into a multilevel Fresnel subzone arrangement, 
where the phase shift is distributed over the 2π range. The zone boundaries are determined 
from diffractive considerations, and the actual dimensions of the individual elements are 
obtained from the computational-electromagnetic results. The goal is to optimize behavior for 
normal incidence conditions. Therefore, the aberration analysis, including the effect of the 
resonant elements, is of primary importance. This is why the variations of the phase shift with 
angle and polarization state have been calculated. All these dependences are plotted in Fig. 3.a 
and Fig. 3.b that show the modulus and the phase for the eight discrete phase-step elements 
used in this design. These modulus and phase values define a complex reflectivity, ρ, for each 
polarization component. The complex reflectivity has been obtained from the computational 
electromagnetic results, and could be calculated for any other geometry or spectral range. 
Therefore, although illustrated here for a specific reflectarray unit cell, this treatment and 
analysis method can be considered applicable in general. 
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Fig. 3. Magnitude (top) and phase shift (bottom) produced by the eight elements of the subzone 
as a function of the angle and the polarization state (TE, perpendicular, and TM, parallel, 
components). The color coding is the same for both graphs. The labels are GP for the ground 
plane, and SQ for the square patches, being the number the size of the patch in nm, and SS for 
square slotted patches, being the number the size of the slot in a 4500 nm square patch. The 
vertical lines correspond with the maximum value of θ for the small aperture (red) and large 
aperture (blue) reflectarrays referred in the text. 

From these figures we see that the phase remains quite constant for an angular range of 
about ± 20 degrees. This corresponds quite well with the paraxial range that is commonly 
used in conventional optical design. This general behavior was also obtained when checking 
the angular application range of meander-like resonant structures for polarization control [14]. 
Then, the phase shift begins to depart from the one obtained at normal incidence. Even larger 
variations are observed in the modulus of the reflectance. Besides, although the patches are 
designed as square so as to have not a preferential state of polarization, when we go towards 
larger angles, we see that the TE (perpendicular component) and TM (parallel component) 
states of polarization behave differently. This situation is treated using a Jones-matrix 
formalism. The two components of the Jones vector are treated as spatial maps of a complex 
electric field. These components are transformed as follows: 
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The incoming map of the electric field, characterized by the two components of the 
electric field, is transformed by the complex reflection coefficients, ρ(x,y). They behave 
differently for each subzone of the reflectarray because the patches are different. When 
considering the calculation for the focal point and its neighborhood the angular dependence on 
θ can be transformed into a x,y dependence. These reflection coefficients are different for each 
polarization orientation with respect to the incidence plane. Besides, this polarization state 
changes along the reflectarray plane. For example, a given Ex,in component will move from a 
parallel component when impinging at those locations having y = 0 (β = 0°), to a 
perpendicular component for the locations on the reflectarray at x = 0 (β = 90°). The 
dependence with β is represented by the two rotation matrices R(β), and R(-β), where β is also 
a function of the location at the reflectarray plane (see Fig. 1). In our numerical simulations 

we will neglect the contribution from the cross-polarization coefficients (
, ,

0ρ ρ⊥ ⊥= ≈
� �

). The 

angular dependence of 
,

ρ
� �

 (TM mode) and 
,

ρ⊥ ⊥  (TE mode) are obtained from the calculated 

values represented in Fig. 2. The two components of the field obtained after the phase screen 
are propagated to the focal plane by using a Rayleigh-Sommerfeld algorithm [9]. The results 
have been obtained for two reflectarrays having different aperture. One of them is a small-
aperture focusing mirror constructed with 100 Fresnel semiperiodic zones and having a focal 

length f ′  = 0.152 m and an F/6 aperture. The maximum value of θ for this element is θmax = 

4.76°. The other element is more extreme design having 200 Fresnel semiperiodic zones and a 

focal length of f ′  = 800 µm. Here, the F# is much lower and the system is having an F/0.24 

aperture. Then, the maximum value of the angle involved in the calculation is θmax = 64.66°, a 
value that is clearly far away from the paraxial regime. 

The contribution from the angular and polarization dependences is given as a modified 
Strehl ratio that we have calculated as a function of the aperture angle, θ. The Strehl ratio is 
usually defined as the quotient between the observed maximum irradiance at the focal point, 
and the theoretical maximum irradiance at the same point for the diffraction-limited case [15]. 
This ideal case is taken as the reference and a larger Strehl ratio means a better performance. 
In this contribution, we have modified the reference value of the Strehl ratio to properly 
account for the different terms degrading the performance of the reflectarray. For the small-
aperture reflectarray we have defined the reference for this Strehl ratio as follows. It is the 
irradiance obtained at the nominal focal point for an ideal reflectarray having a uniform 
reflectance with modulus equal to one, and 8 phase levels shifted consecutively by π/4. Figure 
4.a shows this Strehl ratio when considering the change in amplitude and phase due to the 
angular dependence applied to the small-aperture F/6 system. The value of this parameter is 
almost constant and close to 0.7 for the elements considered. This is mainly due to the value 
of the modulus of the reflectance coefficient shown in Fig. 3.a. By using this modified Strehl 
ratio we account for the discrepancies in amplitude and phase with respect to the ideal case. 
The irregularities observed for the first zones are due to the presence of focal shifts with 
respect to the nominal focus where we evaluate the irradiance [16]. The maximum angle 
involved in this design corresponds to the nearly flat region around θ = 0° for amplitude and 
phase (see Fig. 3). Hence, Fig. 4.a mostly describes the variability in magnitude of the 
subzone contributions, and the discrepancies of the consecutive phase shift from the ideal π/4 
value. 
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Fig. 4. Modified Strehl ratio as a function of the aperture angle θ. On the left (a) we have 
represented the small-aperture reflectarray. The maximum reflection angle is 4.77°. The figure 
at the right (b) is for the larg- aperture reflectarray that reaches an angle of 64.66°. The 
modified Strehl ratio has been calculated at discrete points, represented by circles. The solid 
line joining the circles has been validated numerically, and represents the smoothness and 
continuity of the dependence. 

As we mentioned before, in order to recognize the effect of the angular and polarization 
dependence of the resonant elements, we have simulated a more extreme situation realized 
with a very low F# element having a diameter of 3.38 mm and a short focal length of 0.8 mm. 
The maximum angle of incidence is now 64.66°. This design shows a strong angular 
dependence that is plotted in Fig. 4.b. Here the reference to represent the modified Strehl ratio 
is given by the irradiance at the focal point obtained for a reflectarray showing a constant 
value of the complex reflectance, independently of the aperture angle θ. The values of the 
complex reflectance of this reference (magnitude and phase) are those obtained at θ = 0°, 
showing no polarization dependence. Thus, our normalization accounts for the angular 
dependence. 

The dependence with the polarization state of the incoming light is not noticeable for the 
case of a small-aperture system. Also, when calculating the modified Strehl ratio for different 
azimuth angles of the incident linear polarization state no significant variations are observed 
in this parameter for both reflectarrays considered here (small and large aperture) 

However, the shape of the focal spot shows a clear dependence on the polarization state. 
The dependence in shape also appears for the small-aperture case, but it is not noticeable and 
can be neglected. The results for the large-aperture reflectarray are shown in Fig. 5. We have 
represented the central portion of the focal spot for three representative cases. The irradiance 
distribution is obtained from the calculation of the reflected electric field components using 
Eq. (8). Then, the two orthogonal electric field distributions are propagated to the focal plane 
using a Rayleigh-Sommerfeld algorithm. Then, after obtaining the maps of the components of 
the electric field at the focal plane, the irradiance is easily obtained as the squared modulus of 
the resulting electric field. On the left we show a circularly symmetric spot obtained when no 
polarization dependence is present. The central spot is for a linearly polarized wavefront 
aligned along the horizontal axis (Ey,in(x,y) = 0). The spot in the right shows the results for a 
linearly polarized wavefront having a 45° azimuth orientation. 
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Fig. 5. Irradiance distribution at the focal plane of a large-aperture reflectarray for three 
different cases. a) No polarization dependence, b) linear polarization at an azimuth of 0°, and c) 
linear polarization with azimuth of 45°. The colormap is the same for the three figures and it is 
normalized to the maximum of the irradiance. 

The element actually fabricated and tested is one having a small aperture of F/6. We have 
simulated the distribution at the focal point of this element. The results are shown in Fig. 6. 
The experimental distribution has been obtained using a pyroelectric camera having a pixel 
pitch of 100 µm. The simulated spot has been obtained adding 2 waves of spherical aberration 
and slightly displacing the center of the calculated beam with respect to the center of the 
central pixel of the camera. The simulated irradiance is sampled and integrated within the 
pixel area to obtain a distribution that could be compared with the experimental one. Spherical 
aberration is included because of the optical train used to illuminate the reflectarray. This is 
comprised of two positive meniscus lenses in the form of an inverted telescope. The laser 
beam is actually filling the whole aperture of the second lens. Also the wafer used for 
fabricating the reflectarray was not optically flat. It shows a fringe distribution revealing an 
astigmatic asphericity of about 2 wavelengths from the center to the edge of a 5 cm wafer. 
Other impacts on the shape and extent of the focal spot may arise from the Gaussian beam that 
is delivered by the CO2 laser. This beam is specified as having M

2
 = 1.1. Therefore, the 

illuminating beam also contributes to the wavefront error. 

 

Fig. 6. Experimental (a) and calculated (b) irradiance distribution onto a pyroelectric camera. 

4. Conclusions 

Reflectarrays are optical elements that modify the incoming phasefront using resonant 
metallic structures having subwavelength dimensions. It is possible to customize the geometry 
of these structures to produce a desired phasefront. The reflected amplitude, both in 
magnitude and phase, has been evaluated as a function of the wavelength and the polarization 
state. 

A simple analytic model of the aberrations produced by the reflectarrray elements has 
been presented and discussed. Besides the geometrical aberrations, the angular dependence of 
the phase shift produced by the resonant sub-wavelength is present even for normal incidence 
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conditions. The angular dependence of the phase shift is modeled using a series expansion of 
a sigmoid function. The terms of the expansion can be interpreted as a linear phase (axicon-
type) plus a cubic dependence on aperture height. Although the limitations of this analytic 
model motivate a complete electromagnetic simulation of the actual behavior of the resonant 
elements, this simple model helps to show that there is a new term whose contribution adds to 
the classical geometric aberrations. A more complete picture is provided by the 
computational-electromagnetic results, which describe the angular dependence for each 
selected geometric parameter. Both amplitude and phase are calculated. Also, the dependence 
of the amplitude and phase is split in the two possible components of the incoming electric 
field with respect to the incidence plane: transverse magnetic (TM or parallel component) 
transverse electric (TE or perpendicular component). The complex reflection coefficient 
derived from these calculations describes the behavior of the reflectarray element and can be 
obtained for any other geometry or situation. The complex reflectivity map of the reflectarray 
is obtained in a piece-wise fashion over the Fresnel zone arrangement. 

This analysis has been applied to a reflectarray having eight phase zones regularly 
distributed in phase along the 2π interval. The phase shifts are calculated from the 
computational electromagnetic analysis. The aberration of the reflectarray is evaluated as a 
function of the aperture size (parameterized in terms of the aperture angle subtended by the 
focal point from the outer edge of the reflectarray). A modified Strehl ratio is defined to 
account for the angular effect that is more relevant as the aperture increases. This is because 
the angles involved to focus the light are larger for larger apertures. However, when changing 
the polarization state of the incoming light no relevant changes in the value of the Modified 
Strehl ratio are observed. The polarization state changes the shape of the irradiance 
distribution around the focus, as we have shown for a large-aperture reflectarray. The focused 
spot becomes slightly asymmetric and rotates with the azimuth of the linearly polarized light. 

Using our simulation procedure, a small-aperture eight-subzone focusing mirror has been 
designed, fabricated, and tested. The experimental and simulated results fit quite well, and the 
origin of the discrepancies has been identified: spherical aberration from the illuminating 
optical train, surface deformation of the reflectarray substrate, and the departure from strict 
Gaussianity of the incident laser beam. 

In summary, we have described the focusing behavior of an optical element fabricated 
with resonant structures. The nature of these resonances makes this element dependent upon 
the polarization state and the aperture of the element. The actual modeling of this dependence 
is strongly dependent on the geometry and material characteristics of the sub-wavelength 
resonant elements. 
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