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ABSTRACT: Two-dimensional arrays of log-periodic antenna-coupled
microbolometers were fabricated using VOx and Nb thin films as bolo-
metric materials, which have different temperature coefficients of resis-
tance. Noise, response, and angular characteristics of both types of mi-
crobolometer arrays were measured and compared. VOx-based devices
presented a 4.5� better response and 5.5� better signal-to-noise ratio
than Nb-based devices. Radiation patterns show that a further increase
in response can be obtained by better matching the VOx bolometer to
the antenna elements. © 2003 Wiley Periodicals, Inc. Microwave Opt
Technol Lett 38: 235–237, 2003; Published online in Wiley InterScience
(www.interscience.wiley.com). DOI 10.1002/mop.11024
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tors

1. INTRODUCTION

Two-dimensional arrays of antenna-coupled microbolometers are
used as fast infrared detectors that can be integrated into commer-
cial readout integrated circuits (ROICs) [1], however, their mea-
sured responsivity is lower than the required for commercial
infrared imaging applications [2]. The voltage responsivity of a
bolometer is given by [3]:

�v � � � �Zth� � Vbias, (1)

where � is the temperature coefficient of resistance of the bolom-
eter, Vbias is the dc bias voltage across the device, and Zth is the
thermal impedance of the device. The temperature coefficient of
resistance (TCR) is the material parameter used to quantify the
temperature T dependence of the resistance R of the material and
is defined as

� �
1

R

dR

dT
. (2)

As we can see form Eq. (1), the TCR of the bolometric material
is directly proportional to the responsivity of the detector; there-
fore, the choice of the thin-film heat-sensitive material is an
important factor in achieving good response from the microbolom-
eters. A thin films of sputtered Nb, which has a TCR close to
0.003K�1, was used as bolometric material in [1]. Vanadium is a
metal with a variable valence forming a large number of oxides
which have a very narrow range of stability [4], films of vanadium
oxide (VOx) consisting of a mixture of various oxides present a
TCR � 0.02K�1 and have been used in the past to fabricate
microbolometers [5]. Films of stoichiometric VO2 with TCRs
greater than 0.05K�1 and a more involved deposition process
have also been reported [6]. In this paper the performance of a
VOx-based antenna-coupled microbolometer is evaluated and
compared to a Nb-based device.

2. METHOD

Two dimensional arrays of log-periodic-antenna-coupled microbo-
lometers with a 50 �m � 50 �m pixel area were used in this study
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(Fig. 1). The antenna arrays were patterned using electron-beam
lithography and lift-off at the Cornell Nanofabrication Facility
(Ithaca, NY). The antenna elements and the dc bias line that
serially connects them are made of 100-nm thick evaporated gold;
for every antenna element there is a 0.8 �m � 0.5 �m patch of
bolometric material at the feed. On one set of wafers, 60 nm of
VOx was RF-sputtered at 5 mtorr of Argon pressure and on
another set of wafers, a 70-nm film of Nb was DC-sputtered. These
detectors were all fabricated on 3-in. high-resistivity (� � 3000
�cm) Si wafers with 200 nm of thermally grown SiO2.

The processed wafers were diced into 1 cm2 chips and bonded
into specially made chip carriers. Testing of the devices was done
using a CO2-laser at 10.6 �m focused by an F/8 optical train
which had an almost diffraction-limited spot with a 1/e2 radius of
200 �m and an irradiance of 25 W/cm2 at the focus. Noise,
response, and angular measurements were made on both sets of
wafers using the procedure described in [1].

The 2D arrays of microbolometers presented an average dc
resistance of 1.2 � 0.1 k� for the Nb-based detectors and 450 �
50� for the VOx detectors. The measurements were made at a bias
voltage of 300 mV.

3. RESULTS

The response of the antenna arrays to 10.6 �m radiation was
measured, and the Nb-based detectors gave a polarization depen-

dent signal of 5.1 � 1 �V while the measured response of the
VOx-based devices was 22.5 � 2.5 �V, which corresponds to a
4.5� increase in response. Figure 2 shows the noise frequency
spectrum measured with an HP3585B spectrum analyzer. The
Nb-based devices had a noise voltage spectrum of 54.3 � 2.7
nV/�Hz at 12 kHz, while the VOx-based devices presented a
noise voltage spectrum of 44.3 � 2.0 nV/�Hz at the same
frequency. This represents a 5.5� increase in signal-to-noise ratio
of the VOx-based devices over the Nb-based ones.

Figure 3 shows the measured angular patterns of the Nb-
based devices and the VOx based devices, the radiation char-
acteristics for similar antenna array configurations show that the
impedance at the feed does alter the electromagnetic character-
istics of the antenna array; in this particular case, the Nb-based
array presents a more directive pattern than the VOx-based
detector, which indicates that the impedance of the Nb patch is
a better match for the individual log-periodic elements of the
array. The thickness of the VOx bolometer can be varied to
better match its impedance to the antenna elements and obtain
a further increase in response.

4. CONCLUSIONS

We have measured the response, noise, and radiation patterns of
Nb-based and VOx-based 2D arrays of log-periodic antenna-cou-
pled microbolometers. The VOx-based devices present a response
4.5� higher and a 5.5� better signal-to-noise ratio than the
Nb-based devices. Measured radiation patterns showed that the
gain in response and in signal-to-noise ratio can be further in-
creased by better matching the impedance of the bolometric de-
tector to the antenna elements, which would yield an increase in
response closer to the 5–10� expected due to the better TCR of
VOx as compared to Nb thin films.
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Figure 1 Scanning electron micrograph of a 2D array of log-periodic
antenna coupled detectors

Figure 2 Noise frequency spectrum for Nb- and VOx-based detectors

Figure 3 Radiation patterns of (a) Nb-based 2D array, and (b) VOx-
based 2D array
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ABSTRACT: This paper presents magPEEC, a new 3D electro-mag-
netic modeling technique that extends the existing PEEC approach to
analyze arbitrary conductor-magnet structures by accounting for ficti-
tious magnetized currents on a magnetic material surface. Applications
for magnetic-cored/layered spiral inductors demonstrate validity and
accuracy of magPEEC. Possible solutions to improve RF IC inductors
using magnetic cores are discussed. © 2003 Wiley Periodicals, Inc.
Microwave Opt Technol Lett 38: 237–240, 2003; Published online in
Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.
11025
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1. INTRODUCTION

Nowadays, magnetic materials have been widely used to make
electro-magnetic (EM) devices such as micro electro mechanical
systems (MEMS) and on-chip spiral inductors for RF IC applica-
tions to improve inductance and quality factor. Inductors using
magnetic films operated at multi-GHz frequency have been re-
ported [1]. It is impractical to analyze these structures with mag-
netic films or cores by using existing full-wave approaches, such as
finite-difference or finite-element methods, due to their computa-
tional deficiency. The simulation approaches given in [2] and [3]
have limited applications due to their 2D nature. A new simulation
program called Fastmag, was reported in [4], which can only deal
with structures with magnetic materials separated from electrical
conductors and is not suitable for true 3D structure simulation due
to the equivalent loop-structure mesh cell used. PEEC approach
was firstly proposed to model 3D multi-conductor systems in [5],
which was later extended to include dielectrics [6]. The PEEC
method allows for calculations being reduced to static calculations
by neglecting retardation, while still maintaining high accuracy
analogous to the full-wave methods [6]. This paper presents a new
modeling technique, called magPEEC, which extends the PEEC
approach to analyze arbitrary 3D electro-magnetic structures that

permits conductors to be outside, touching or inside magnetic
materials—a desired feature for modeling many sophisticated elec-
tro-magnetic structures.

2. magPEEC: MAGNETIC MATERIALS INCLUDED

For an arbitrary 3D EM structure with conductors and magnetic
materials, currents are distributed in three regions, that is,
conductor bodies carrying bulk currents outside magnetic ma-
terials (denoted as region �), conductor-magnet interface car-
rying surface currents (denoted as region �), and magnetic
surfaces carrying surface currents without contacting conduc-
tors (denoted as regions �). By using fictitious magnetized
currents on a magnetic material surface, the magnetic problem
is equivalent to the free-space problem. The real conductive
currents and fictitious magnetic current densities at a point r� are
denoted as J�c(r�) and J�f(r�), respectively. The total equivalent
current density denoted as J�t is based on the equation J�t(r�) �
J�c(r�) � J�f(r�). For each mesh cell mentioned in this paper, the
total through currents through it due to J�c, J�f, and J�t are denoted
as Ic, If, and It, respectively.

Region � is discretized into N� filament cells, as shown in
Figure 1(a). Related parameters for the ith filament cell include
current flowing direction l̂i

�, through electrical voltage Vi
�, fil-

ament bulk Bi
�, current crossing area Ai

�, and current flowing
length Di

�. Regions � and � are discretized into N� and Nr panel
cells, respectively, as shown in Figure 1(b). Related parameters
for the ith panel cell in region x (with x � �, �) include current
flowing direction l̂i

x, panel’s normal direction n�i
x, through elec-

trical voltage Vi
x, panel area Si

x, surface current crossing width
Wi

x, and current flowing length Di
x. For convenience, the normal

direction is defined as pointing from b side to a side of the
panel, as shown in Figure 1(b). �a

x(i) and �b
x(i) are the perme-

abilities of both sides, with �ra
x (i) and �rb

x (i) the corresponding
relative permeabilities. Current densities over these cells all are
assumed locally constant.

Analogous to problems of currents distributed in free space, the
magnetic vector potential is obtained as follows:
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Figure 1 (a) A filament cell in region �; (b) A panel cell in region x
(with x � �, �)
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