Angular dependence of

sampling modulation transfer function

0. Hadar, A. Dogariu, and G. D. Boreman

Sampling modulation transfer function (MTF) as defined in Park et al. [Appl. Opt. 23, 2527-2582 (1984)]

as an x and y sampling can be generalized for image data not along x and y directions.

For a given

sampling lattice (such as in a laser printer, a scene projector, or a focal-plane array), we construct a
two-dimensional sampling MTF based on the distance between nearest samples in each direction.
Because the intersample distance depends on direction, the sampling MTF will be best in the directions
of highest spatial sampling and poorer in the directions of sparse sampling. We compare hexagonal and
rectangular lattices in terms of their equivalent spatial frequency bandwidth. We filter images as a
demonstration of the angular-dependent two-dimensional sampling MTF. © 1997 Optical Society of

America

1. Introduction

We investigate the effect of two-dimensional (2-D)
sampling on image quality with two different lattice
structures. A finite-sized sampling lattice yields
discrete image-sampling directions and a sample-to-
sample distance that varies with direction. Angles
with close nearest neighbors have high resolution
while other angles produce poorer resolution. The
number of angles and the distance between samples
determine the image quality resulting from the sam-
pling process. As we increase the number of lattice
points, the number of possible discrete angles in-
creases and the total resolution increases. In the
first section the mathematical development for aver-
age sampling modulation transfer function (MTF) in
one dimension is derived. Next we describe the der-
ivation of a nonseparable 2-D sampling MTF from the
definition of the one-dimensional (1-D) average sam-
pling MTF. The process of obtaining the MTF is
then demonstrated on two different lattices, rectan-
gular and hexagonal. An equivalent bandwidth for
the MTF is defined in the next section on the basis of
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noise-equivalent bandwidth. This figure of merit is
used for comparison of different lattice sizes and con-
figurations. We then present a simulation of these
results on a test image.

2. Average Sampling Modulation Transfer Function

Previous work in sampling MTF-4 has been per-
formed only in the context of x- and y-domain sam-
pling. Here we consider not only the two orthogonal
directions but also all other possible directions. Any
sampling grid has different spatial sampling rates in
different directions. We present the sampling MTF
for a 2-D sampling system. This analysis has appli-
cations to laser-printer systems, infrared scene pro-
jectors, and focal-plane arrays.

In the case of sampling by 2-D array of finite-sized
pixels, there are two distinct MTF contributions in-
volved: one for the sampling process associated with
the finite spacing between samples, and one for the
spatial-averaging process associated with the finite
size of the pixels. We assume that these two MTF’s
multiply to yield an aggregate MTF for the sampling-
and-averaging process. The multiplication of MTF’s
is dependent on assumptions of linearity and shift
invariance. The definition! of the sampling MTF in
terms of an average over all possible positions of the
scene with respect to the sampling locations essen-
tially defines a shift-invariant sampling MTF. This
separation of the MTF contributions allows our anal-
ysis of sampling MTF to proceed, considering only the
locations of the samples (essentially assuming point
receivers) and accounting for the finite pixel size by
the pixel MTF.



The MTF contribution of finite-sized pixels is al-
ready well known. For a 1-D rectangular pixel, the
pixel MTF is given by the sinc function formula,

MTFpixe] = Sinc(gp), (1)

where sinc(x) = (sin mx)/(wx), £ is the image spatial
frequency, and p is the pixel size. The square pixel
is the most common shape for imaging-array appli-
cations although other shapes such as circular, hex-
agonal,5 or tapered® are possible. As shown in Refs.
5 and 6, the pixel MTF is in general two dimensional.

In this research we consider the MTF of the 2-D
angular dependence of the sampling process. The
2-D pixel MTF must also be included (multiplicative-
ly) in the complete analysis, but because it is already
well known, we do not develop it further and we
present our development only for the sampling MTF.

The MTF in Eq. (1) does not account for the dis-
tance between the samples. We derive the sampling
MTF from the pixel MTF [Eq. (1)]. The indepen-
dence of these two processes allows us to multiply
these two MTF’s to derive the total MTF of the sam-
pling and spatial-averaging process. In this re-
search we concentrate on the sampling MTF.

The sampling MTF results from a reduction in
measured modulation depth because the image data
can exist at a random location with respect to the
sampling sites. Park et al.! performs an average
MTTF calculation over all relative positions of the im-
age data with respect to the sampling sites. This
statistical approach performs an average of the shift-
variant image quality that is seen in sampled data
systems to define a shift-invariant average MTF.
The derivation of the 1-D sampling MTF is based on
a statistical treatment of the intensity sampled by the
array of pixels.l-3 The image-quality effect of sam-
pling is equivalent to a convolution of the image data
with a rectangular function, whose width is equal to
the sampling interval.! Thus, the sampling MTF is
a sinc function, with first zero equal to the inverse of
the sampling interval.

The sinc function! can be obtained in a simple in-
tuitive manner. Assume a sinusoid with a spatial
period X and unity amplitude. We calculate the ex-
pected value of the modulation depth M of this sinu-
soid as a function of spatial sampling interval A and
the spatial frequency £ = 1/X. The sampling grid
statistically can have any phase ¢ with respect to the
maxima and the minima of the sinusoid.

We can begin with the expression for modulation
depth,3

M(gy Aa ‘P) = (Amax - Amin)/za (2)

where A, . and A, are, respectively, the maximum
and the minimum sampled values. If we define ¢ as
the smallest distance between the sampling grid and
the positive crest of the sine waves measured from
this crest, ¢ varies between ¢,;, = —A/2 and ¢, =
A/2. Two extreme cases for the value of M can be
obtained from the sampling process. The maximum
value is obtained for ¢ = 0, M = 1 while the

max

minimum value M, is obtained for ¢ = ¢,,;, = —A/2
or ¢ = ¢,.. = A/2. The value of M_;, can be found
with a simple trigonometric identity,

M, =2 cos(2frr§ 2)/2 = cos(wEA). 3)

Between the extreme cases MTF,;, and MTF, . are
many different MTF’s that can be derived from dif-
ferent values of the phase ¢ between the sine wave
and the sampling grid. It is possible to obtain the
average MTF by performing averaging over all pos-
sible locations of the sampling lattice with respect to
the waveform. The assumption is that the random
variable ¢ is equally distributed between ¢,;, =
—A/2 and ¢,,, = A/2 with a uniform probability
density function,

_J1/A for —A/2=0=A/2
folo) = { 0  elsewhere : @)
The average MTF (AMTF) is defined by the integral,
A/2
AMTF oy €, A) = f fol@)M(E, A, 9)do
—A/2

1 a/2
= Af cos(mép)de = sinc(éA).  (5)

—A/2

The result of Eq. (5) can be interpreted as follows.
For a nonzero sampling interval of A, we do not obtain
the true maxima and minima of the sinusoid on an
average basis but instead obtain an average maxi-
mum value and an average minimum value of the
sinusoid that are the average values of the waveform
over the interval A. The maximum average value of
the waveform is the average of the peak of the sinu-
soid over an interval A, while the minimum average
value of the waveform is the average of the valley of
the sinusoid over the same interval. This concep-
tual model yields the main result of Park et al.,!
namely the sinc function with the first zero location
Eutorr = 1/A.  Even for very sparse sampling, where
the spatial sampling interval A is less than the
Nyquist requirement of 1/2X, the notion of an aver-
age maximum value and an average minimum value
is still valid, even when the averaging is performed
over an interval A that is greater than half the period
of the waveform.

We can modify the result of Eq. (5) for the case of
2-D sampling by representing the MTF for the two
orthogonal axes x and y,

(g) - Slnc(g x) - (1T . g . Ax) 3 a
MTF(n) = sinc(nA,) = sin(mend) g
(m-m-A4,)

where ¢ and ) are the spatial frequencies in the x and
y axes, respectively, and A, and A, are the sampling
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Fig. 1. 4 X 4 lattice size with the high-resolution directions
marked by arrows: (a) rectangular lattice, (b) hexagonal lattice.

interval in the x and y axes, respectively. We allow
the MTF to be a bipolar function rather than use the
magnitude.

Note that these equations do not imply a separable
2-D MTF as the product of Egs. (6a) and (6b). The
sampling interval and associated sampling MTF for
spatial frequencies not along x or y will be calculated
separately.

3. Definition of Nonseparable Two-Dimensional
Sampling Modulation Transfer Function

In this section the main steps of deriving the sam-
pling MTF for both rectangular and hexagonal lat-
tices are described. We develop the MTF not only
along £ and m but also along the other directions that
are involved in the sampling process. For any given
lattice, there are directions with relatively smaller
sampling intervals. Image information in those di-
rections is reproduced with higher fidelity than image
information in those directions for which sampling is
less frequent. These directions can be derived from
all the possible lines that can be reproduced by the
lattice. We assume that each of these lines passes
through the exact center of sampling points in the
grid. Our research extends the research of previous
authors mainly in that we use the sinc function of Eq.
(5) as valid for any sampling direction in a 2-D lattice.
This allows us to calculate a sampling MTF in any
direction of the lattice.

We show portions of the two sampling lattices (rect-
angular and hexagonal) investigated in Figs. 1(a) and
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1(b). We define the distance between two adjacent
points of the rectangular lattice in the x and y direc-
tions as A. If we take the lower left point of the grid
as the origin of the lattice, any other point in the
lattice has a certain distance from the origin, A,
which is a function of A and 6, the angle between the
point and the positive direction of the x axis. For
example, the sampling distances for the five highest-
resolution directions in the lattice in a sector of 90°
are Age = Agge = A, Agse = V2 - A, and Agg - =
Ags 4o = V5+A.  Forother angles the sampling is less
frequent, and the sinc function associated with the
sample-to-sample distance will have a correspond-
ingly lower cutoff frequency. The sinc function MTF
of Eq. (5) can be generalized to a nonseparable equa-
tion in terms of a 2-D spatial frequency &,, where the
wave vector for any particular spatial frequency is
along the 6 direction,

MTF (&) = sinc(§,Ay) = sin(m&A,)/(1EAy).  (7)

In Fig. 1(b) the same analysis is implemented for
the hexagonal lattice. Let us set the sampling dis-
tance along the x direction, Ag. = A, to be equal for
both the square lattice and the hexagonal lattice.
We construct the hexagonal lattice from the rectan-
gular lattice by moving the odd rows a distance of A/2
to the right and setting the distance between rows in
the vertical direction to (V/3/2)A. This configura-
tion provides us a symmetric lattice within a 60°
sector. This kind of lattice is particularly appropri-
ate for printing applications because it is the most
compact lattice? for round pixels.

For the hexagonal lattice of Fig. 1(b), the minimum
sample distance is Ay = Agp. The highest-
resolution directions in the 60° sector with their sam-
pling distances are Age = Agge = A, Agge = V3 - A, and
Ajg1o = Agg1e = \/é) A. The MTF here is also a
function of the sampling direction as in Eq. (7). The
application of Eq. (7) will yield a nonseparable MTF
with sinc functions in each direction. This function
is difficult to visualize because of its discontinuous
variation with angle.

Figures 2(a) and 2(b) represent the three highest-
resolution MTF’s in the rectangular lattice and the
|he|xagonal lattice, respectively, plotted as functions of
£,

We can obtain a more complete picture of the an-
gular dependence of the MTF by using a top view.
In Fig. 3 we plot a line in each direction; the length of
the line in that direction is equal to the distance along
&, to the first zero of the sinc function in that direc-
tion. Figures 3(a) and 3(b) show the results in a 90°
sector for a 10 X 10 lattice size for both rectangular
lattice and hexagonal lattice, respectively. A long
line in a certain direction represents high resolution
in that direction. For each lattice, the MTF is a
discontinuous function of angle 6, with some direc-
tions having high resolution, some having low reso-
lution, and some directions having MTF = 0 (no
sampling in that direction for a finite-sized lattice).
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Fig. 2. Three highest-resolution MTF’s in a 1-D plot:
angular lattice, (b) hexagonal lattice.
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4. An Equivalent-Bandwidth Figure of Merit

In this section we define a useful measure for quan-
tifying the sampling process. The equivalent band-
width of the sinc function for any direction in the
lattice is derived. A common definition for equiva-
lent bandwidth is the equivalent-noise bandwidth.8
We thus define an angle-dependent bandwidth:

1 o

0

where MTF(§) is the MTF in a certain angle 6 rela-
tive to the x direction, and MTF(0) is the maximum
value of the MTF, which is unity. To compare the
image-quality performance for various lattice sizes
and configurations, we use the equivalent bandwidth
(BW) of the sinc function as the MTF in Eq. (8),

BW, = J. sinc(£,A,)dE = Ai . ©)
0 0

Equation (9) has the simple geometric interpreta-
tion as the distance to first zero (1/A,), which defines
the &, .. Of the sinc function, shown as the length of
the line in the plot in Fig. 3.

We can write BW, in each possible direction of the
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Fig. 3. First zero location of the MTF as function of the angle 6 in
a radial plot: (a) rectangular lattice, (b) hexagonal lattice.

lattice as function of A, which is the basic sampling
interval along the x axis (Ay. = A),

BW, —i—kl (10)
e_Ae_ GA?

where &, is a constant that represents the length of a
certain line in Fig. 3 in units of 1/A. To construct a
figure of merit for any given lattice, we sum up the
BW’s for all the possible directions. This gives a
total BW, BW,,.;, for the sampling lattice and can be

interpreted as the area in polar coordinates under the
curves plotted in Fig. 3,

6=90° 6=90° 1 1

BW,y = E BW, = E ky—=K—, (11)
6=0° 6=0° A A

where K is the sum of all the &, constants that exist
between 6 = 0° and 6 = 90°.

The new measure BW, ., allows us to investigate
the influence on the image quality of an increase in
the lattice size. The difference in image quality
when a larger lattice is used is twofold: one increase
is from the larger number of angles for which there
exists a nearest neighbor. This tends to fill in the
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Fig. 4. Scaling the cutoff frequency by doubling the lattice size,
original 3 X 3 points rectangular lattice (closed circles), 6 X 6
points rectangular lattice (open circles).

angles for which the MTF is small but not exactly
equal to zero. The second and more important rea-
son for an increase in image quality when a larger
lattice is used is that for a given image field size, more
sampling points imply a higher spatial sampling rate
with higher cutoff frequencies in all directions.

In Fig. 4 the influence of a doubling of the lattice
size on the total frequency bandwidth of the sampling
system is demonstrated. The original rectangular
lattice has a size of 3 X 3 points (closed circles) with
sampling interval of A in the two main orthogonal
axis directions x andy. There are five angles for this
case, and they are marked by the thick arrows at 0°,
26.56°, 45°, 63.43°, and 90°. The higher-resolution
lattice shown as the 6 X 6 array of open circles con-
tains twice the number of points as the lower-
resolution lattice. The sampling rate increases by
factor of 2 in these directions, and the sampling in-
terval decreases from A to A/2 in the x and y direc-
tions.

The second reason for increasing the resolution is
the additional angles in the higher-resolution lattice.
More than 20 possible directions (thin short arrows)
are seen as four new directions between each two of
the former directions. These angles contribute to
the summation of BW, in the larger lattice.

For comparison of different lattice configurations
on this basis (square versus hexagonal), we keep the
total number of lattice points equal (100 points in a
10 X 10 square and 100 points in the hexagonal).
This allows us to compare directly the BW, ., as a
figure of merit. The results for this comparison are
for the rectangular lattice BW,,,, = 111.44 [Cy/A]
and for the hexagonal lattice BW, ., = 126.01 [Cy/
A]. There is a benefit of 13% from the use of the
hexagonal lattice compared with the use of the rect-
angular lattice for a 10 X 10 lattice size.

We investigate the influence of an increase in the
number of points of the lattice in 1-D N (lattice size
equal to N X N) on the total number of angles. Fig-
ure 5 represents the number of angles possible for
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Fig. 5. Number of possible angles as a function of number of

points in 1-D, N (lattice size equals N X N points).

both the rectangular and the hexagonal lattices as a
function of N. We take the lower left point of the
grid and consider it as the reference point for the all
other points in the lattice.

For both lattices, increasing the number of points
of the lattice produces more possible angles. How-
ever the rate of increase of possible angles in the case
of the hexagonal lattice is higher than in the case of
the rectangular lattice. Analytical functions are fit-
ted for both the numerical functions in Fig. 5, gielding
0.58N? for the rectangular lattice and 0.63N? for the
hexagonal lattice. Hence there are 8.6% more an-
gles in the hexagonal lattice than in the rectangular
lattice for the same number of sampling points in the
lattice.

5. Influence of N on BW,,,

We now discuss the influence of an increase in the
number N on the new measure BW, ;. The basis
for this calculation is the maintenance of the lattice
size at a constant value and the change of only the
number of points in the lattice. By incrementing the
number of lattice points, we decrease the sampling
distance and scale the spatial frequency each time to
the new sampling rate. Figure 6 represents the re-
sults for BW,, for both the rectangular and the
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Fig. 6. Total equivalent bandwidth BW,,,; as function of N.
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Fig. 7. Description of the degradation process.

hexagonal lattice, where BW,,,, is plotted as function
of N. As we expected, BW,,,,, increases with an in-
crease in the value of N for both lattices because both
the sampling rate and the number of possible angles
increase. BW, ., is always higher for the hexagonal
lattice. This result was expected because the dis-
tance between rows in the hexagonal lattice is
smaller by 15.4% when compared with the rectangu-
lar lattice, and the number of angles in the hexagonal
lattice is higher. Analytical functions for the depen-
dence of BW, ., of N were fitted to the numerical
results. For the rectangular lattice BW,.,, was
1.09N?, and for the hexagonal lattice BW,,,,, was
1.23N2. The benefit of choosing the hexagonal lat-
tice for any lattice size is 13%.

6. Pictorial Comparison-Demonstration

We constructed the sampling MTF for a given lattice
size and configuration. The original image is 512 X
512 pixels. The degradation process is described by
the block diagram in Fig. 7. The first step is to
derive all the possible directions for which informa-
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Fig. 8. Original image.
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Fig. 9. Degraded image by a sampling MTF of 100 X 100 points
lattice size: (a) rectangular lattice, (b) hexagonal lattice.

tion can be reproduced by the lattice in a sector of 90°
(a quarter of the original sampling lattice size). For
our purposes the origin of the lattice is the center
point of the lattice. The next step is to associate a
sinc function with each of these directions and scale
the cutoff of the sinc to correspond with the desired
cutoff frequency. The MTF is then multiplied by the
Fourier transform of the original image. The sam-
pling degradation is associated only with a decrease
of the amplitude. The MTF is thus applied only on
the magnitude of the image Fourier transform.
Therefore, the original phase is kept while the am-
plitude is degraded by the MTF. The lines in Fig. 7
indicate the existing directions for a given lattice, for
which the amplitude is multiplied by the MTF. In
all the other directions the image amplitude is set to
zero. Using the degraded amplitude function com-

1 October 1997 / Vol. 36, No. 28 / APPLIED OPTICS 7215



bined with the original phase function and taking the
inverse Fourier transform, we obtain the degraded
image in the spatial domain.

The original image is plotted in Fig. 8; it is a black
ring on a white background, with a width of 10 pixels
and an inner radius of 90 pixels. The image is de-
graded by a sampling MTF that corresponds to a
100 X 100 lattice size. Results for the rectangular
lattice and the hexagonal lattice are presented in
Figs. 9(a) and 9(b), respectively. The degraded im-
age is affected differently for different angles. The
blur size is not equal in all the directions of the
blurred image. In the image degraded by the rect-
angular lattice [Fig. 9(a)] the least degraded direc-
tions are the x and y directions. This phenomenon
can be shown by the sharp edges of the thin lines in
these directions. All the other directions are more
degraded and have smeared edges. Also it can be
shown that the degraded image is symmetrically de-
graded within one cycle of the 90° sector.

In the image degraded by the hexagonal lattice
[Fig. 9(b)] it can be seen that the two lines perpen-
dicular to the x direction are sharper than the lines
that are perpendicular to the y direction. The rea-
son is that in the hexagonal lattice the resolution in
the x direction is higher than the resolution in the y
direction by a factor of /3.

7. Conclusions

An average MTF for the sampling process is obtained
by an average over the sampling locations. The re-
sulting MTF is the sinc function with the first zero
location at the reciprocal of the sampling interval.
The sinc function MTF is generalized to a nonsepa-
rable MTF in terms of a 2-D spatial frequency at all
the possible directions of the sampling lattice. We
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extend this research beyond that of previous authors
in that we use the sinc function as valid for any
sampling direction in a 2-D lattice. The MTF deri-
vation is demonstrated for two lattice configurations,
the rectangular lattice and the hexagonal lattice. A
useful quantitative measure is defined as the total
equivalent bandwidth of the sampling lattice; this
measure allows us to compare different lattice con-
figurations and sizes. A pictorial demonstration is
presented for two different lattices.

This study was supported by the Hewlett-Packard
University Grants Program and the Clore Scholar
Foundation for doctoral students in Israel.
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