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Abstract. The image quality resulting from a 2-D image-sampling pro-
cess by an array of pixels is described. The description is based on a
Fourier transformation of the Wigner-Seitz cell, which transforms a unit
cell of the sampling lattice in the spatial domain into a bandwidth cell in
the spatial-frequency domain. The area of the resulting bandwidth cell is
a quantitative measure of the image fidelity of the sampling process. We
compare the image-quality benefits of three different oversampling ge-
ometries in terms of the modulation transfer function (MTF) as a function
of the amount of oversampling used. © 1999 Society of Photo-Optical Instrumen-
tation Engineers. [S0091-3286(99)00205-6]
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1 Introduction and Motivation

The spatial sampling rate of the detector array is an impor-
tant parameter in pixelated-imager systems. Focal-plane ar
rays(FPAS9 are being developed with ever increasing num-
bers of pixels. In the infraredR) portion of the spectrum,
the need to develop scene-projecti®@P systems capable
of characterizing the performance of these high-quality im-
agers has resulted in steadily increasing requirements for
the test equipment. An IRSP system must be designed to
test a number of different imager systems with various
pixel formats and fields of view. Thus, it is not feasible to .
expect that the ideal situation of a pixel registered one-to- \yre(s . — sing(pg)= sin(pém) &

one match between the IRSP and the IRFPA will be pos- pixel pém '

sible in general, even assuming a continuous zoom magni-

fication of the projector. Hence, it is desirable to where¢is the image spatial frequency, apdhe full width
oversample the imager under test, that is, to project a higherof the pixel. Square pixels are the most common shape in
number of pixels than the imager can resolve. It is intuitive practice, but others are possible such as hexa§aomal
that an IRSP system with a large number of pixels can tapered for which the pixel MTF is inherently a nonsepa-
approximate a continuous scene more accurately than a sysrable 2-D function. The pixel MTF in Ed1) does not take
tem with fewer pixels. Because the number of independentinto account the effect of the pixel spacing on image qual-
pixels in an IRSP is an important cost driver, however, it is ity. We previously derivetithe sampling MTF using a sta-

of interest to quantify the incremental image-quality ben- tistical treatment of the intensity sampled by an array of
efits that can be expected from a given amount of oversam-pixels. The sampling MTF can also be expressed as a sinc
pling. We have developed a procedure that enables IRSPfunction,

pixel-count specifications to be developed as a tradeoff be-

tween performance and cost, using an image-quality metric MTF(¢)samg=SINC(A €), 2
based on the area of the bandwidth cell in the spatial-

frequency domain. The bandwidth cell is the Fourier trans- whereA is the distance between the samples. The overall
form of the unit cell of the sampling lattice in the spatial sampling-and-averaging MTF is given by multiplication of
domain. these two functions,

MTF for the sampling-and-averaging process. Validity of
the multiplication of MTFs depends on assumptions of lin-
_earity and shift invariance. Shift invariance does not apply
to pixelated-imager systems, and it is necessary to dedine
shift-invariant sampling MTF as an ensemble average over
all possible positions of the scene with respect to the sam-
pling locations.

The MTF contribution of image averaging over pixels of
finite dimension is well known. For a 1-D rectangular pixel,
the pixel MTF is a sinc function

MTF(g)totalE l\/r“:(f)pixel>< MTF(g)samp
=sinc(pé) Xsinc(A¢). 3

2 Sampling MTF

Sampling by a 2-D array of finite-sized pixels involves two
distinct modulation transfer functioTF) contributions:
one for the sampling process associated with the finite  Equation(3) shows that two parameters determine the
spacing between samples and one for the spatial averagingjuality of the sampled image: the pixel sige&and the dis-
process associated with the finite size of the pixels. We tance A between the pixels in the array. Decreasing the
assume that these two MTFs multiply to yield an aggregate dimensions of either of these parameters will improve the
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Fig. 1 WS cell for a square lattice and a hexagonal lattice. ’ \

image quality. In the limit ofp and A going to zero, the \ X | | y /
sampling-and-averaging MTF approaches unity, because 210 N [7 330
the sampled signal approaches a continuous one. A similar S y

analysis can be applied for the case of a 2-D sampling
\ 300

lattice, where the pixel widtlp is replaced by the normal-

180

ized pixel functionp(x) 240

270
(X)= 1/A,, for x inside the pixel 4) Fig. 3 BW cell BW, for a square sampling lattice.
P 0, for x outside the pixgl’

3 Bandwidth Cell

whereA, is the area of the pixel andis the 2-D position ~ We now describe the spatial-frequency-domain figure of
vector. Similarly, the sample spacinyis replaced by the ~ merit for the sampling process, the bandwidth cell, which is
Wigner-Seitz cell, definedas the region of space surround- & Fourier transformation of the WS cell in the spatial do-
ing a sample point that is closer to that point than to any main. Figure 2 shows the relationship of the bandwidth cell

other. We define Wigner-SeitaV/'S) function w(x), nor- for a rectangular lattice according to the distance between
malized with respect to the area of the WS d&|j: the center point of the WS cell and !ts edge pom.ts. This
distanceA , depends on the angkrelative to the horizon-
_ | YAy, for x inside the WS cell tal axis as
w(x)= 0, for x outside the WS cell (5 A
Ar=Cose @

Figure 1 shows WS cells for square and hexagonal sam-
pling lattices. The Fourier transforms of the pixel function and represents the minimum distance between samples in
and the WS function ard>(f) and W(f), respectively, any given direction. The distanc®, is smallest for the
wheref is a 2-D spatial frequency vector. Analogous with horizontal and the vertical directions, in which there is a
Eq. (3), we express the sampling-and-averaging MTF as the minimum distanceA between lattice points. In all other
product of these two transforms: directions, the distance between adjacent lattice points is
longer than the minimum value. Using E@), it is possible
MTF(f) ota™=MTF(F) pixe X MTF(f) samg= P(F) X W(f).  (6) to denote the sampling MTF at a given angle as

For a given distancé between the sampleg, for the MTF(£9)sams=SINA £6A ). ®

hexagonal case is smaller than for the square case by factofe reciprocal ofp , is the location of the first zero of the
of v3/2. This implies that the MTF of the hexagonal lattice gjnc function, which represents the equivalent-square

is better than the MTF of the square lattice, which corrobo- spatial-frequency bandwidth By\bf the sampling process
rates a previously derived resdlt. in each direction

1 cosé
- BW,= A A 9
) c:se/v This function is seen in Figs. 3 and 4 for square and hex-
0 agonal lattices, respectively. For a square lattice, ,B8V
"""" - principally defined over-45 deg< <45 deg, while for the
<o = hexagonal lattice, BW is principally defined over
A2 —30 degc §<30 deg.
WS cell Let us define an aggregate image-quality figure of merit,
the BW area(BWA) as the area encircled by the BW
Fig. 2 Derivation of A, from a WS cell for a square lattice. function over the angular region 0 d€g<360 deg, repre-
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Fig. 4 BW cell BW,, for a hexagonal sampling lattice.

senting the 2-D spatial-frequency bandwidth of the sam-

pling process. Using Ed9), we can express BWA as

T SIN(26may

==+
BWA >t12 .

; (10

where 6,,,=45deg for the square lattice and,,,
=30deg for the hexagonal lattice. This yields

v
BWAquare= | 5 +1| =257, (12)
and
T 3V3
BWA o= | =+ —|=2.87. (12
2 4
The ratio between these two bandwidth

lattice.

4 Image-Quality Improvement by Oversampling

areas
BWA,ex/BWAquaré= 1.12, which verifies the bandwidth
advantag®of 12% of the hexagonal lattice over the square
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Fig. 5 Total MTF at the Nyquist frequency as a function of the order
of oversampling n for a 1-D contiguous array of square pixels.

improvement that can be obtained by oversampling an ar-
ray of contiguous 1-D f=A) pixels. Using Eq.(3), we
find

MTFgtal(ény) = Sinc(1/2) X sinc(1/2n). (13

A graph of MTRg, at the Nyquist frequency as a function
of the order of oversamplingis shown in Fig. 5. It is clear
that the greatest improvement in image quality is obtained
whenn is changed from zero to first order. The amount of
improvement falls off rapidly fon>1. A similar analysis
can be applied to a 2-D pixel array, including the angular
dependence of the WS cglg. (8)]. We calculate the value

of MTF, at §\y, averaged over all angles We investi-
gated three types of oversampling geometries for square
contiguous pixel arrays: horizontal oversampling drifig.
6(a)], both horizontal and vertical oversampliffgig. 6(b)],

and oversampling along the diagonal aki§g. 6(c)]. In
each configuration the array is shifted by a distancp/of
consecutivelyn—1 times along the sampling direction. A

graph of the angle averag®liTF ., (&vy) as a function oh

is shown in Fig. 7. The optimum oversampling geometry is
to shift with position increments along the diagonal axis,
because there are more sampling points per unit area along
the 45 deg diagonal axis. Sampling along the diagonal axis
with an interval size ofp/n is equivalent to sampling at

The oversampling process can be described as follows. Anpoih horizontal and vertical directions with a smaller inter-

image irradiance in watts per square centimeter falls on

' val size ofp/(nv2). It can be shown that the WS cell area

and is sampled by, an array of pixels. This sampled infor-
mation is first recorded, then the image is shifted by a frac-
tion of the pixel pitch and resampléd® The information

Ay=p/n A, o=pin
from the second sample is interlaced with that from the first b aepin P N /v“
sample to produce an oversampled image. This process can [T ' Lenpln
be repeated as many times as desired. The order of over- o] 2l °]

samplingn is defined as the number of extra samples taken.

For instance, order 4 means that the array is shifted con-

secutively four times by a distance pf5 to obtain four @ ® ©

extra samples, giving a total of five samples. Using the total _. . . i )
Fig. 6 Three different oversampling geometries for oversampling:

MTF at the spgtial Nyquisj[ frquency. of the arragi along (a) the horizontal direction, (b) the horizontal and vertical di-
=1/2A) as the figure of merit, we investigate the amount of rections, and (c) the 45 deg diagonal axis.
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Total MTF at Nyquist array and along the 30 deg for a hexagonal pixel array. The
06 " ' ' ' largest amount of improvement occurs along the direction
Diagonal direction of the poorest initial MTF.
0.55 1
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A, that arises from sampling along the diagonal dkifg.
8(c)] is smaller than for sampling along the horizontal and 4
vertical directiongFig. 8b)] by factor of 2, and by factor

of 2n from the case of sampling only along the horizontal
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tained when going fronm=0 ton=1.
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