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Abstract. The image quality resulting from a 2-D image-sampling pro-
cess by an array of pixels is described. The description is based on a
Fourier transformation of the Wigner-Seitz cell, which transforms a unit
cell of the sampling lattice in the spatial domain into a bandwidth cell in
the spatial-frequency domain. The area of the resulting bandwidth cell is
a quantitative measure of the image fidelity of the sampling process. We
compare the image-quality benefits of three different oversampling ge-
ometries in terms of the modulation transfer function (MTF) as a function
of the amount of oversampling used. © 1999 Society of Photo-Optical Instrumen-
tation Engineers. [S0091-3286(99)00205-6]
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1 Introduction and Motivation

The spatial sampling rate of the detector array is an imp
tant parameter in pixelated-imager systems. Focal-plane
rays~FPAs! are being developed with ever increasing nu
bers of pixels. In the infrared~IR! portion of the spectrum
the need to develop scene-projection~SP! systems capable
of characterizing the performance of these high-quality
agers has resulted in steadily increasing requirements
the test equipment. An IRSP system must be designe
test a number of different imager systems with vario
pixel formats and fields of view. Thus, it is not feasible
expect that the ideal situation of a pixel registered one
one match between the IRSP and the IRFPA will be p
sible in general, even assuming a continuous zoom ma
fication of the projector. Hence, it is desirable
oversample the imager under test, that is, to project a hig
number of pixels than the imager can resolve. It is intuit
that an IRSP system with a large number of pixels c
approximate a continuous scene more accurately than a
tem with fewer pixels. Because the number of independ
pixels in an IRSP is an important cost driver, however, i
of interest to quantify the incremental image-quality be
efits that can be expected from a given amount of overs
pling. We have developed a procedure that enables IR
pixel-count specifications to be developed as a tradeoff
tween performance and cost, using an image-quality me
based on the area of the bandwidth cell in the spat
frequency domain. The bandwidth cell is the Fourier tra
form of the unit cell of the sampling lattice in the spati
domain.

2 Sampling MTF

Sampling by a 2-D array of finite-sized pixels involves tw
distinct modulation transfer function~MTF! contributions:
one for the sampling process associated with the fi
spacing between samples and one for the spatial avera
process associated with the finite size of the pixels.
assume that these two MTFs multiply to yield an aggreg
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MTF for the sampling-and-averaging process. Validity
the multiplication of MTFs depends on assumptions of l
earity and shift invariance. Shift invariance does not ap
to pixelated-imager systems, and it is necessary to defin1 a
shift-invariant sampling MTF as an ensemble average o
all possible positions of the scene with respect to the s
pling locations.

The MTF contribution of image averaging over pixels
finite dimension is well known. For a 1-D rectangular pixe
the pixel MTF is a sinc function

MTF~j!pixel5sinc~pj![
sin~pjp!

pjp
, ~1!

wherej is the image spatial frequency, andp the full width
of the pixel. Square pixels are the most common shap
practice, but others are possible such as hexagonal2 or
tapered,3 for which the pixel MTF is inherently a nonsepa
rable 2-D function. The pixel MTF in Eq.~1! does not take
into account the effect of the pixel spacing on image qu
ity. We previously derived4 the sampling MTF using a sta
tistical treatment of the intensity sampled by an array
pixels. The sampling MTF can also be expressed as a
function,

MTF~j!samp5sinc~Dj!, ~2!

whereD is the distance between the samples. The ove
sampling-and-averaging MTF is given by multiplication
these two functions,

MTF~j!total[MTF~j!pixel3MTF~j!samp

5sinc~pj!3sinc~Dj!. ~3!

Equation~3! shows that two parameters determine t
quality of the sampled image: the pixel sizep and the dis-
tanceD between the pixels in the array. Decreasing t
dimensions of either of these parameters will improve
© 1999 Society of Photo-Optical Instrumentation Engineers
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image quality. In the limit ofp and D going to zero, the
sampling-and-averaging MTF approaches unity, beca
the sampled signal approaches a continuous one. A sim
analysis can be applied for the case of a 2-D samp
lattice, where the pixel widthp is replaced by the normal
ized pixel functionp(x)

p~x!5 H1/Ap ,
0,

for x inside the pixel
for x outside the pixelJ , ~4!

whereAp is the area of the pixel andx is the 2-D position
vector. Similarly, the sample spacingD is replaced by the
Wigner-Seitz cell, defined5 as the region of space surroun
ing a sample point that is closer to that point than to a
other. We define Wigner-Seitz~WS! function w(x), nor-
malized with respect to the area of the WS cellAw :

w~x!5 H1/Aw ,
0,

for x inside the WS cell
for x outside the WS cellJ . ~5!

Figure 1 shows WS cells for square and hexagonal s
pling lattices. The Fourier transforms of the pixel functio
and the WS function areP(f) and W(f), respectively,
wheref is a 2-D spatial frequency vector. Analogous wi
Eq. ~3!, we express the sampling-and-averaging MTF as
product of these two transforms:

MTF~ f! total[MTF~ f!pixel3MTF~ f!samp5P~ f!3W~ f!. ~6!

For a given distanceD between the samples,Aw for the
hexagonal case is smaller than for the square case by fa
of)/2. This implies that the MTF of the hexagonal lattic
is better than the MTF of the square lattice, which corrob
rates a previously derived result.2

Fig. 1 WS cell for a square lattice and a hexagonal lattice.

Fig. 2 Derivation of Du from a WS cell for a square lattice.
r

-
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3 Bandwidth Cell

We now describe the spatial-frequency-domain figure
merit for the sampling process, the bandwidth cell, which
a Fourier transformation of the WS cell in the spatial d
main. Figure 2 shows the relationship of the bandwidth c
for a rectangular lattice according to the distance betw
the center point of the WS cell and its edge points. T
distanceDu depends on the angleu relative to the horizon-
tal axis as

Du5
D

cosu
, ~7!

and represents the minimum distance between sample
any given direction. The distanceDu is smallest for the
horizontal and the vertical directions, in which there is
minimum distanceD between lattice points. In all othe
directions, the distance between adjacent lattice point
longer than the minimum value. Using Eq.~7!, it is possible
to denote the sampling MTF at a given angle as

MTF~ju!samp5sinc~juDu!. ~8!

The reciprocal ofDu is the location of the first zero of the
sinc function, which represents the equivalent-squ
spatial-frequency bandwidth BWu of the sampling process
in each direction

BWu[
1

Du
5

cosu

D
. ~9!

This function is seen in Figs. 3 and 4 for square and h
agonal lattices, respectively. For a square lattice, BWu is
principally defined over245 deg,u,45 deg, while for the
hexagonal lattice, BWu is principally defined over
230 deg,u,30 deg.

Let us define an aggregate image-quality figure of me
the BW area~BWA! as the area encircled by the BWu

function over the angular region 0 deg,u,360 deg, repre-

Fig. 3 BW cell BWu for a square sampling lattice.
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senting the 2-D spatial-frequency bandwidth of the sa
pling process. Using Eq.~9!, we can express BWA as

BWA5Fp2 1
p

4

sin~2umax!

umax
G , ~10!

where umax545 deg for the square lattice andumax

530 deg for the hexagonal lattice. This yields

BWAsquare5S p

2
11D52.57, ~11!

and

BWAhex5S p

2
1

3)

4 D52.87. ~12!

The ratio between these two bandwidth are
BWAhex/BWAsquare51.12, which verifies the bandwidt
advantage4 of 12% of the hexagonal lattice over the squa
lattice.

4 Image-Quality Improvement by Oversampling

The oversampling process can be described as follows
image irradiance in watts per square centimeter falls
and is sampled by, an array of pixels. This sampled inf
mation is first recorded, then the image is shifted by a fr
tion of the pixel pitch and resampled.6–9 The information
from the second sample is interlaced with that from the fi
sample to produce an oversampled image. This process
be repeated as many times as desired. The order of o
samplingn is defined as the number of extra samples tak
For instance, order 4 means that the array is shifted c
secutively four times by a distance ofp/5 to obtain four
extra samples, giving a total of five samples. Using the to
MTF at the spatial Nyquist frequency of the array (jNy

51/2D) as the figure of merit, we investigate the amount

Fig. 4 BW cell BWu for a hexagonal sampling lattice.
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improvement that can be obtained by oversampling an
ray of contiguous 1-D (p5D) pixels. Using Eq.~3!, we
find

MTFtotal~jNy!5sinc~1/2!3sinc~1/2n!. ~13!

A graph of MTFtotal at the Nyquist frequency as a functio
of the order of oversamplingn is shown in Fig. 5. It is clear
that the greatest improvement in image quality is obtain
whenn is changed from zero to first order. The amount
improvement falls off rapidly forn.1. A similar analysis
can be applied to a 2-D pixel array, including the angu
dependence of the WS cell@Eq. ~8!#. We calculate the value
of MTFtotal at jNy , averaged over all anglesu. We investi-
gated three types of oversampling geometries for squ
contiguous pixel arrays: horizontal oversampling only@Fig.
6~a!#, both horizontal and vertical oversampling@Fig. 6~b!#,
and oversampling along the diagonal axis@Fig. 6~c!#. In
each configuration the array is shifted by a distance ofp/n
consecutivelyn21 times along the sampling direction. A
graph of the angle averagedMTFtotal~jNy! as a function ofn
is shown in Fig. 7. The optimum oversampling geometry
to shift with position increments along the diagonal ax
because there are more sampling points per unit area a
the 45 deg diagonal axis. Sampling along the diagonal a
with an interval size ofp/n is equivalent to sampling a
both horizontal and vertical directions with a smaller inte
val size ofp/(n&). It can be shown that the WS cell are

Fig. 5 Total MTF at the Nyquist frequency as a function of the order
of oversampling n for a 1-D contiguous array of square pixels.

Fig. 6 Three different oversampling geometries for oversampling:
along (a) the horizontal direction, (b) the horizontal and vertical di-
rections, and (c) the 45 deg diagonal axis.
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Aw that arises from sampling along the diagonal axis@Fig.
8~c!# is smaller than for sampling along the horizontal a
vertical directions@Fig. 8~b!# by factor of 2, and by factor
of 2n from the case of sampling only along the horizon
direction @Fig. 8~a!#. This agrees with the results fo
MTFtotal~jNy! in Fig. 7. Similar results can be shown als
for the hexagonal pixel array, while in this case, the op
mum sampling direction is atu530 deg. As in the 1-D
cases, the greatest improvement for all 2-D cases is
tained when going fromn50 to n51.

5 Conclusions

A new quantitative metric for describing 2-D sampling w
introduced. This metric, the BW cell in the spatia
frequency domain, is the area bounded by the Fourier tra
form of the WS cell in the spatial domain. The BW ce
enables the comparison of different sampling lattice geo
etries. According to this measure, the hexagonal lattice
formance in the sense of average BW is superior to
square lattice by 12%. Three different configurations of
2-D sampling process were considered. The optimum o
sampling geometry was found to be that of shifting t
pixel array along the 45 deg diagonal axis for a square p

Fig. 7 Angle-averaged total MTF at the Nyquist frequency as a
function of the order of oversampling n for a contiguous 2-D array of
square pixels, for three different oversampling geometries.

Fig. 8 WS cell for oversampling along (a) the horizontal direction,
(b) the horizontal and vertical directions, and (c) the 45 deg diagonal
axis.
-
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-

-
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array and along the 30 deg for a hexagonal pixel array. T
largest amount of improvement occurs along the direct
of the poorest initial MTF.
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