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The measurement of a two-dimensional spatial responsivity map of infrared antennas can be accom-
plished by use of an iterative deconvolution algorithm. The inputs of this algorithm are the spatial
distribution of the laser beam irradiance illuminating the antenna-coupled detector and a map of the
measured detector response as it moves through the illuminating beam. The beam irradiance distribution
is obtained from knife-edge measurements of the beam waist region; this data set is fitted to a model of
the beam. The uncertainties, errors, and artifacts of the measurement procedure are analyzed by
principal-component analysis. This study has made it possible to refine the measurement protocol and to
identify, classify, and filter undesirable sources of noise. The iterative deconvolution algorithm stops
when a well-defined threshold is reached. Spatial maps of mean values and uncertainties have been
obtained for the beam irradiance distribution, the scanned spatial response data, and the resultant
spatial responsivity of the infrared antenna. Signal-to-noise ratios have been defined and compared, and
the beam irradiance distribution characterization has been identified as the statistically weakest part of
the measurement procedure. © 2005 Optical Society of America
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1. Introduction

Novel techniques and devices have been developed
during the past decade to detect light. Among them,
our research is focused on antenna-coupled detectors.
They detect electromagnetic radiation in millimeter,
infrared, and visible regions. The response of
antenna-coupled detectors depends on the wave-
length, the state of polarization, and the direction of
the incident light.1–4 The detector’s size is of the same
magnitude as the detected wavelength, typically of
the order of a few micrometers, with spatial features
on a nanometer scale. Currently, an active area of
research is improvement of the sensitivity of these
devices and their robustness to the presence of noise.

In a previous paper the general procedure for ob-
taining the spatial response of an infrared antenna
when the device is illuminated with a focused laser

beam was described.2 The laser beam profile is char-
acterized by a knife-edge technique. This technique
scans an aperture that has a straight line (typically
made with a thin razor blade, a knife-edge) in such a
way that the beam is progressively blocked (or un-
blocked if we move it in the opposite direction). The
movement is perpendicular to the straight line that
defines the edge. The signal behind the knife-edge is
registered as a function of the position of the knife-
edge. The signal corresponds to an integration of the
irradiance of the beam. The limits of the integration
change along the direction of the scan. These mea-
sured data are fitted with a beam irradiance model
that takes into account diffraction and aberrations.
The actual laser beam waist is scanned with the an-
tenna in two dimensions. Thus this measured data
set is taken as a convolution of the beam irradiance
distribution at the beam waist and the true spatial
response of the antenna. Finally, the true spatial
response of the device is extracted from the measured
spatial response through an iterative deconvolution
technique.

Experimentally, we have two types of data: the
knife-edge measurements used for characterizing
the beam irradiance distribution and the maps of the
signal detected by the infrared antenna when the
beam waist plane is scanned. These two measure-
ments are both affected by two types of fluctuation
and uncertainty. On one hand, noise is present in the
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output of the infrared laser used to illuminate the
antenna.5 In our case the fluctuations in the optical
power emitted by the laser arise from the cooling
mechanism used to stabilize its emission. On the
other hand, there exists an uncertainty in the loca-
tion of the device and the knife-edge that is due to
positioning errors of the micropositioning system. For
both types of data, these sources of noise influence the
final output in a nonlinear manner.

Principal-component analysis (PCA) has proved its
utility to reveal subtle noise structure in a wide va-
riety of fields.6–9 It uses a covariance matrix to rein-
terpret original data as a collection of processes that
are mutually uncorrelated and that can be identified
with meaningful spatial–temporal structures, includ-
ing noise identification. PCA also facilitates filtering
of the original data to explicitly remove undesirable
sources of noise. In this paper we describe the use of
PCA to obtain an uncertainty map and to filter spu-
rious signals for each data set of the measurement
procedure. These uncertainty maps also define a
signal-to-noise ratio (SNR) for both data sets. In com-
paring these SNRs we identify the statistically weak-
est point in the measurement procedure. Also, the
PCA method makes it possible to define a threshold
value that stops the iterative deconvolution algo-
rithm at an appropriate point in the computation
before it reaches nonphysical spatial responses.

In Section 2 of this paper we briefly introduce the
PCA method, devoting specific attention to the capa-
bilities of PCA method to identify, classify, and filter
noise structures and artifacts in a data set. It is im-
portant to note that the results of the PCA method
can be spatially displayed as images or maps. These
maps will yield valuable insight for processing the
measured data. In Section 3 we describe the sources
of error and uncertainty in detail. The section is di-
vided into three subsections, each devoted to an as-
pect of the measurement procedure: the beam
irradiance distribution characterization, the mea-
sured spatial response of the infrared antenna at the
beam waist, and the deconvolution algorithm used to
extract the true spatial response of the detector from
the measured response. PCA is introduced in each of
these subsections to produce three important results,
a mean value map, an uncertainty value map, and a
SNR for each facet of the measurement. Finally, the
main conclusions of the paper are summarized in
Section 4.

2. Principal-Component Analysis

The general structure of a measurement is the esti-
mation of a quantity g that is obtained from N vari-
ables, xk. Typically, they are related by a function

g � f(x1, . . . , xk, . . . , xN). (1)

The uncertainty in variable xk is characterized by its
standard deviation. If quantity g can be described as
in Eq. (1), we characterized the uncertainty of g by
propagating the uncertainties of variables xk in a
well-known manner, following the so-called rule of

the propagation of variance.10 In the previous general
framework it was assumed that we had a known
functional relationship among the variables. But in
some cases the relationship among variables is not
functional and depends on complicated experimental
procedures. Such is our case, for which the final re-
sults are obtained after fitting procedures and the
application of an iterative deconvolution algorithm.
To best estimate an uncertainty for our final result,
we propose the use of a multivariate technique, PCA,
in which not the original set of variables, x1, . . ., xN,
but a linear combination of these variables is studied.
These linear combinations produce a new set of vari-
ables, the principal components Y, that are mutually
uncorrelated. The coefficients of these linear combi-
nations are the eigenvectors of the covariance matrix,
and the variances of the new variables Y are given by
the eigenvalues of this matrix. The covariance matrix
is defined by the following procedure: If M observa-
tions are taken of each k variable, these M instances
can be arranged as Xk

T � �x1, k, x2, k, . . ., xMk�, where
xi, k is the value of variable k at instance i. By use of
this method the set of data is placed in an M � N
matrix, X. The covariance of this set of data is defined
by the following matrix: S � �1��M � 1��X�T � X�,
where X� is a set of data that has zero mean. We
obtained this modified set of data from the original
set by subtracting its mean from each variable. A
more detailed description of this procedure is given in
Ref. 6. The relation between the original data and the
principal components can be expressed as follows:

Y� � �
k�1

N

e�(k)xk, (2)

where e��k� is element k of the � eigenvector. More-
over, the extraction of eigenvectors and principal
components is arranged in decreasing order of the
amount of variance contained in the given principal
component. This means that the first principal com-
ponents (those with the most variance) are the most
important to describe the results. Furthermore, it is
possible to define a parameter

�� � ����
��1

N

�� (3)

that quantifies the percentage of the total variance
explained by the � principal component, Y�. Nor-
mally, a few principal components describe a large
amount of the data variability. If such is the case, one
can reconstruct data by using Eq. (3), taking into
account only the relevant principal components6,11:

xk � �
��1

N

e�(k)Y�. (4)

Previously, a method to group principal components
into relevant noise structures was developed6,7 based
on a study of the uncertainties of ��. If two principal
components have approximately the same variance,
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they explain the same amount of data variability.
When this happens, the two principal components
form a process, and we have to grouped them together
in Eq. (4) to reconstruct the relevant data set.

The PCA method is well suited for application to
the analysis of measurement uncertainties. During
the measurement, some artifacts could be introduced
into the data by the experimental apparatus. Some of
these artifacts may have spatial–temporal structures
that are clearly different from the signal or from ran-
dom signal fluctuation. The PCA technique can be
useful for classifying, quantifying, and filtering some
of these structures. In this sense, it can be used
as a tool for the characterization of measurement
protocols.

3. Measurement Procedure

In this section we describe the measurement proce-
dure. In infrared antennas the light of a CO2 laser is
focused onto the antenna through appropriate optics.
The optical train contains collimation and focusing
optics in addition to polarization state selection and
temporal modulation subsystems. This procedure
yields a linearly polarized and modulated laser beam
focused on a small region. The antenna is then lo-
cated inside this focal region, and a two-dimensional
(2D) raster-scanned map of the detector response is
measured. This measured map is the convolution of
the beam shape with the true spatial response of the
antenna. This response can be obtained by an itera-
tive deconvolution algorithm.2 The algorithm uses a
modeled beam irradiance distribution that has been
obtained from transverse knife-edge measurements.

Experimentally, the measurements are of two cat-
egories: signal and position. A signal is obtained ei-
ther from the antenna, in the form of a voltage signal,
or from an optical powermeter located immediately
behind the knife-edge; the latter signal is propor-
tional to the beam irradiance that is unobscured by
the knife-edge. The position of the elements with re-
spect to the laser beam is measured as a distance,

usually in micrometers. For the signal category, the
optical output of the laser is affected by fluctuations
of its cooling system.5 The temporal period of these
fluctuations is approximately 100 s. These fluctua-
tions are transferred to the measured signal and af-
fect the calculation of the location of the focus region.
Moreover, there are random fluctuations of the laser
mean output power superimposed upon the fluctua-
tions that are due to the cooling system. For the
position category the motorized stages used to pro-
duce the 2D scan maps are affected by uncertainties

Fig. 1. Flowchart of the measurement procedure, highlighting
the steps in which the PCA method is applied.

Fig. 2. Top, Knife scan original data after differentiation with
respect to the scan coordinate (along the vertical axis); Horizontal
axis, axis of beam propagation. Center, Eigenvalues and their
uncertainties obtained after the PCA method is applied to the
original data set. Bottom, filtered data set removal of random noise
that corresponds to a principal-component group from Y4 to Y100.
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in position, both absolute and incremental. These
uncertainties arise as a result of errors of stage mo-
tion such as backlash and wobble. These uncertain-
ties further affect the evaluation of the beam
irradiance and the fidelity of the 2D maps.

In the next subsections we describe how to process
the data with respect to these error sources and the
possibility of filtering some of their effects and arti-
facts. PCA is applied to filter undesirable contribu-
tions after their origins are identified. The original
data are reconstructed by use of only meaningful
principal components. The filtered data set is used to
define a SNR for each type of measurement. A flow-
chart of the measurement procedure proposed here is
shown in Fig. 1. The diagram shows how the exper-
imental uncertainties are propagated in the charac-
terization of the beam and to the scan of the detector
response, finally to influence the map of the antenna’s
spatial responsivity. The PCA method makes possible
the definition of the spatial map of the responsivity as
well as the spatial map of the associated uncertainty.

A. Characterization of the Beam Irradiance

As stated above, the evaluation of the true spatial
response of the antenna requires knowledge of the
illuminating beam’s irradiance distribution. To mea-
sure the antenna’s spatial response, we locate the
antenna where the irradiance is the largest. Our ex-

perimental setup contains an apertured and weakly
aberrated Gaussian beam, so the beam irradiance is
largest at the beam waist plane. The parametric
characterization of the beam propagation establishes
that the beam waist appears where the centered
second-order moment of the beam irradiance reaches
its minimum value (centering requires evaluation of
the first-order moment of the irradiance distribu-
tion). However, this parametric characterization is
not enough, because the spatial irradiance distribu-
tion is needed for the spatial characterization of the
antenna response. Thus the characterization of the
beam is made in two steps. The first step locates
the position of the beam waist by monitoring the
evolution of the knife-edge measurements and by cal-
culating the first- and second-order moments. The
second step fits the knife-edge scan data obtained in
the beam waist region to the modeled beam.

Although the beam characterization can be made
at any time during measurement, our experience
with the measurement of infrared antennas indicates
that the knife-edge measurements should be made
before the measurement of the antenna spatial re-
sponse. By performing the measurement in this man-
ner, we may detect misalignments in the optical train
and correct them before placing the detectors that we
want to characterize. At this point we emphasize that
knife-edge techniques intrinsically integrate the
beam irradiance along the direction perpendicular to
the scan. The experimental setup used in this task
produces two knife-edge data sets by scanning the
knife-edge along the two orthogonal directions per-
pendicular to the propagation axis. Then, if we as-
sume that we have P points in each scan, we finally
obtain 2P points in the measurement. It is clear from
here that we will need some additional information to
develop a 2D map of the irradiance distribution �P
� P points�. This additional information is obtained
from the physical model of the beam irradiance
distribution.

We locate the focal region by taking successive
knife-edge measurements over different ranges of ax-
ial coordinate Z (Z is along the direction of beam
propagation). By varying the step in Z (from coarse to
fine, which is limited in our experimental setup to
1 �m resolution) while contracting the range of Z as
the resolution is increased, we may finally locate the
focal region and adapt the scanning to the finest step.
To characterize this region of exact focus, we perform
two orthogonal transverse scans in that focal region.
Then we take the spatial derivative of each trans-
verse scan profile with respect to the scanning coor-
dinate. The differentiated profiles are used to
evaluate the first- and second-order moments of the
laser beam as a function of the axial coordinate.
These derivatives contain the integration along the
coordinate orthogonal to the scanning direction. This
fact does not affect to the validity of the evaluated
second-order moments. Beam waist position is lo-
cated by a parabolic fit of the second-order moment.
The waist location is also obtained from this fit. The

Fig. 3. Evolution of the first-order and second-order moments for
the horizontal and vertical filtered knife-edge data. The plots of the
first-order moment show a residual misalignment of the optical
train. This misalignment is �2.8° for the horizontal axis and �4.2°
for the vertical axis.
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beam waist constitutes the focal region where the
antenna is located during its characterization.

The main limitation of this procedure is the sensi-
tivity of the second-order moment estimation to the
noise level of the data set. The top portion of Fig. 2
shows the derivative of the original knife-edge scans.
The noise is superimposed upon this image. This
noise comes primarily from the slowly varying power
fluctuations of the laser. To reduce these fluctuations
we include a reference detector that measures the
optical output of the laser at the same instant as the
knife-edge data are taken. Then the knife-edge scan
data are normalized with respect to this reference.
This procedure takes into account the variation in the
mean signal value but not other sources of noise
fluctuation.

The experimental data are processed by PCA. Each
knife-edge scan data set is taken as a random vari-
able. The center of Fig. 2 represents the eigenvalues
obtained from the PCA method applied to the top
map of Fig. 2. Four processes can be defined: The last
process comprises the majority of principal compo-
nents (from Y4 to Y100) and can be identified with a
random noise. It explains 6% of the total data vari-
ance. When the data set is reconstructed without this
process, the bottom map of Fig. 2 is obtained. The
spatial beam evolution is maintained, and the ran-
dom noise is removed. With this filtering procedure it
is possible to locate the center of beam waist with
better accuracy. We then located the beam waist by
fitting the second-order moment evolution to a para-
bolic function (see Fig. 3). The location of the mini-

Fig. 4. Top, filtered knife-edge data for the horizontal (left) and vertical (right) directions. After the beam waist location and depth are
defined it is possible to obtain the averaged beam profiles (center) and their uncertainties (bottom).

20 July 2005 � Vol. 44, No. 21 � APPLIED OPTICS 4561



mum of this parabolic fit is the focus. It is possible to
obtain an uncertainty for this focal position that is
due to the uncertainty of the fitting. The previous
procedure is applied to laser knife-scans in two trans-
verse directions (horizontal and vertical), orthogonal
to the beam propagation direction. After that, the
integrated beam shape in each direction is calculated
at this focus position by use of filtered data. The
uncertainty in the best focus position defines a re-
gion, instead of a point, where the beam waist is
located. Then an uncertainty in the integrated beam
irradiance distribution is calculated as the standard
deviation of the integrated beam profiles within the
focal region. Figure 4 shows the filtered knife-edge
data at the top, the beam irradiance profiles in the
center, and the uncertainty of this irradiance at the
bottom.

Previously the laser beam profile was modeled as
the irradiance distribution that results from the con-
volution of a Gaussian beam with an aberrated and
diffracted field distribution.2 Owing to the character-
istics of the optical train, it is possible to ensure that
the main contribution to the wave-front aberra-
tion comes from coma. Actually, the presence of coma
��0.1 �� in the wave-front aberration function) can be
detected when one is analyzing some measured scans
made with antenna-coupled detectors. The typical co-
matic shape is observed in those scans. In our optical
train, coma appears because of residual misalign-
ment. This misalignment is evaluated from the evo-
lution of the first-order moment of the differentiated
knife-edge measurements (shown in Fig. 3). The an-
alytical form of the beam model is

E(x, y) � exp��
x2 � y2

	0
2 �(2J1(v)

v � � cos 

2J4(v)

v

� �2
1
2v � 	J1(v)

4 �
J3(v)
20 �

J5(v)
4 �

9J7(v)
20

� cos 2

2J3(v)
5 �

3J7(v)
5 ��), (5)

where

v �
2�

�

a
z (x2 � y2)1�2, (6)

� is the laser wavelength, 	0 is the Gaussian beam
width, a is the size of the aperture, z is the distance
of observation (here it coincides with the focal length
of the illumination system), � is the amount of aber-
ration expressed as a fraction of the wavelength, and
� is the angle of orientation of the coma aberration.
This model was used successfully previously for the
deconvolution of the spatial response of several types
of infrared antenna.2,3,12

Once the model is set, we obtain the beam profile
used in the deconvolution by fitting the experimen-
tal data obtained from the knife-edge measure-

ments to simulated knife-edge data based on the
modeled beam. We make the fit by minimizing a
merit function that is defined as the mean-square
difference between the experimental and the simu-
lated data. This procedure was studied by the PCA
method as follows: We have shown that the knife-
edge measurement produces two mean integrated
profiles, one for each transverse direction, along
with two profiles of uncertainty (as shown in Fig. 4,
bottom). By using the means and uncertainties in
the profiles we generated a collection of 100X�Y pairs
of knife-edge profiles. We obtained the knife-edge pro-
files by assuming at each point a Gaussian probabil-
ity distribution with a mean value given by the mean
value at this point, and a standard deviation given by
the uncertainty at that same point. Each pair of
knife-edge scans was independently fitted to a laser
beam irradiance based on the beam model of Eq. (6).
Finally, PCA was applied to the modeled set of beam
irradiance distributions. Our objective was to identify
the spatial structures arising from the uncertainty of
this fit. These structures have an important role dur-
ing the deconvolution required for recovering the spa-
tial response of the antenna. The eigenvalues of the
principal components appear to be grouped into two
subsets (see Fig. 5). The largest subset comprises
principal components from Y 15 to Y100, and it de-
scribes the numerical uncertainties introduced by the
fitting algorithm. The other subset of principal com-
ponents, Y1–Y14, is responsible for the spatial struc-
ture of the beam irradiance. The first component
comprises 99.99% of the total beam-shape variance.
This shows the high sensitivity of the PCA method to
subtle differences between structures.

According to the process described by Eq. (4), the
beam shape is filtered to suppress the numerical fit-

Fig. 5. PCA applied to the modeled beam irradiance distribution.
The original distributions are generated by fitting of the modeled
beam with the data obtained for the beam waist region after a
collection of knife-edge profiles is generated that takes into account
the uncertainties of the data. The general spatial structure of the
beam is explained by Y1–Y14. The rest of the principal components
(PCs) are related to numerical noise introduced by the fitting al-
gorithm and therefore can be filtered out.
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ting noise; only principal components Y1 to Y14 are
taken into account. The mean value of the filtered
data set is a 2D beam distribution, which we define as
the signal. The standard deviation within the filtered
data at each spatial location can be seen as a 2D map
of the uncertainty (or noise) in the determination of
the beam irradiance. From these two spatial distri-
butions one can obtain a SNR map by dividing the
signal and the standard deviation at each location.
Plotting the mean value versus the standard devia-
tion allows us to consider the slope a global SNR for
the laser beam. In this case SNRbcam � 13.27
� 0.02. The uncertainty in this value is due to the
linear fit of this slope. All maps and fit data are
represented in Fig. 6. The value of the SNR can also
be used to define the relative noise of this part of the
measurement process. This relative noise is given as

 � 1�SNR. (7)

Then, applying this definition, we obtain bcam
� 0.07536 � 0.00011.

B. Infrared Antenna Measurement

In this analysis we measure dipole antenna-coupled
infrared detectors. The length of the dipole under test
is 5 �m. The antenna is located within the beam waist
region. We find this location by moving the detector in
front of the beam to maximize the value of the detected
signal. We assume that the maximum signal is ob-
tained when the center of the beam waist coincides
with the center of the infrared antenna. After that,
several 2D scans are taken, and the PCA method is
applied. In the case considered here, we have nine 2D
maps. Each consists of a matrix of 85 � 85 points with
a step (resolution) of 1 �m. These points are succes-
sively obtained in a raster-scan fashion.

Because of uncertainties in the reset position of
the motorized stages, the responsivity maps are not
centered at the same position for different maps.
Moreover, the fluctuations of laser signal are going
to affect the response signal level of each map. To
quantify these effects, we again apply PCA to two
2D scan data sets. The first set contains the original

Fig. 6. Mean irradiance distribution (left, top) and its standard deviation (STD; right, top). The SNR map is obtained after division of the
previous two maps (left, bottom). Representing the SNR for all the points yields the figure at bottom right. Fitting these points to a linear
function yields a global SNRbeam.
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2D scan data set, and the second set is obtained
after the data are centered to coincide with the first
data set. The second data set is obtained and repo-
sitioned after the first-order moments of both maps
along each direction are calculated because the
first-order moment of the detected signal map de-
fines its center. Then the original maps are cropped
to produce images of a reduced size �71 � 71
points) and coinciding centers.

In the center of Fig. 7 we have plotted original 2D
scan maps #1 and #9. The difference between these
two maps is the largest of all the mutual differences
between two maps. It is possible to see how the po-
sition of the center of the original scans changes from
one image to the other. The right-hand side of Fig. 7
contains the subtraction of the original scans, scan
map #1 minus scan map #9. The result of this sub-
traction is clearly similar to the second principal com-
ponent, Y2. The top of Fig. 8 shows the eigenvalues of
PCA decomposition with and without centering of the
images. The eigenvalue analysis shows more compo-
nents for the decentered than for the centered case.
Therefore we may conclude that these additional
components are related to decentering artifacts, as
we can also prove by analyzing the principal compo-
nents obtained for the original data. The left-hand
side of Fig. 7 shows principal components
Y1, Y2, Y3, Y4, and Y5 obtained from one of the origi-

nal 2D scans. Furthermore, when the PCA method is
applied to the centered data sets, only two types of
principal component appear (see Fig. 9). At the bot-
tom of Fig. 8 we have plotted the evolution of the
location of the center of the data for the nine exper-
imental scans. The center positions of the maps
change as a result of uncertainties in resetting the
motorized stages after each scan. This figure shows
how the vertical direction (Y direction) is more af-
fected by this error because the vertical stage is sup-
porting the weight of the antenna circuit, and this
introduces more uncertainty when the stage returns
to the fiducial position.

The first principal component of the centered
data set, Y1, cent, has the same weight in every cen-
tered scan. Also, it is equal to the first principal com-
ponent obtained from the original (noncentered) data.
The rest of the principal components resemble the
structure of component Y4 and consecutive compo-
nents obtained from the original data (Fig. 7, left).
The structure of this last group of principal compo-
nents is quite interesting and reveals other sources of
spatial–temporal noise. They have a structure of
lines that correspond to different levels on the signal.
This structure is caused by fluctuations of laser op-
tical power. This conclusion is supported in the tem-
poral dependence of the data. The map obtained here
is collected after a 2D raster scan. The time from one

Fig. 7. Images that correspond to principal components Y1, Y2, Y3, Y4, and Y5 obtained from a collection of nine experimental 2D scan
maps (left) column from upper to lower). These scan sets are not centered. Center, original 2D scan maps #1 and #9. The difference between
these maps reveals the effect of decentering the data. This subtraction image resembles the Y2 map, again illustrating the filtering power
of PCA.
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datum to the next is �1 s. When one is rearranging
the map into a temporal series, it is possible to per-
ceive a temporal variation that has a period of
�100 s. This period coincides with the laser cooling
system’s time cycle. Despite its mixed spatial–
temporal structure, one can remove this signal from
the data by filtering with the PCA method.

From the previous analysis we may reconstruct the
original data with only the first principal component
obtained from the PCA method after centering the
data, Y1, cent. The new set of data consists of nine im-
ages. The mean value of this data set is the 2D scan
map that we define as the signal. The standard devi-
ation for each pixel can be taken as a 2D map of the
uncertainty of the signal. From these two maps we can
obtain another SNR map by dividing the signal and
the standard deviation at each location, as shown in
Fig. 10. The value of SNRscans is 54.13 � 0.08. On
applying the definition for the relative noise, [Eq. (7)]
we obtain scans � 0.01847 � 0.00003. This procedure
rejects the influence of spurious laser fluctuations and

takes into account the uncertainties introduced by the
centering procedure. The value of SNRscans is larger
than that of SNRbcam.

C. Deconvolution Procedure

At this point we have a 2D map representing the ex-
perimental response of the infrared antenna illumi-
nated by the laser beam (and its associated 2D map of
uncertainties) and another 2D map that contains the
modeled laser beam irradiance distribution (and its
map of uncertainties). The 2D map of the experimental
response is taken as the convolution of the beam irra-

Fig. 8. Top, eigenvalues for decentered and centered data. Bot-
tom, evolution of the location of the data center in the XY plane.

Fig. 9. The PCA method applied to the centered data provides a
first principal component Y1 (top), which is the same as that ob-
tained from the original data, and a second principal component Y2,
which contains information about the effect of the cooling system’s
influence on the laser output.
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diance distribution with the actual spatial responsivity
of the antenna-coupled detector. The final goal in the
characterization of these detectors is the evaluation of
their actual spatial responsivity map, which we obtain
by deconvolving the beam irradiance distribution from
the experimental signal map. A Lucy–Richardson al-
gorithm is used for this purpose.13,14

We use the following procedure: First we generate
different pairs of beam shape and 2D scan map re-
sponses, using their mean values and uncertainties.
We accomplish this by adding to each pixel of the
mean value map a random number according to a
Gaussian distribution with a standard deviation
given as the uncertainty of that pixel. Then the beam
irradiance distribution is deconvolved from the 2D
scan map response. After each step, a merit function
is calculated as the mean-square error of the differ-

ence between the convolution of the beam irradiance
distribution with the calculated spatial response and
the original measured 2D scan map. It is possible to
calculate a threshold of this merit function because
we know the uncertainty of each pixel of the 2D scan
map response. Therefore it is possible to calculate a
mean-square error. When the mean-square error ob-
tained by the deconvolution procedure is lower than
the threshold value, the iterative algorithm stops and
the actual spatial responsivity of the infrared an-
tenna is taken as the result of the algorithm.

After R iterations of the previous procedure we
obtain a collection of R antenna responsivity maps.
Again, it is possible to calculate a mean responsivity
map and its uncertainty map by taking the mean
value and the standard deviation of each pixel (see
Fig. 11). The SNR is calculated according to the pro-

Fig. 10. Application of the PCA method to the 2D maps permits definition of an averaged map (top left) and a map of its standard deviation
(STD; top right). From these two images it is possible to obtain the map of the SNR (bottom left) and a mean value of this parameter
SNRscan after the SNR data are fitted with a linear function.
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cedure explained above. The result is SNRrespons
� 12.73 � 0.02. The corresponding value for the rel-
ative noise is respons � 0.07855 � 0.00012. The spatial
map of SNRrespons is shown in Fig. 11.

We may check whether the beam irradiance distri-
bution calculation and the measured response of the
device are statistically independent. We can do this
by evaluating bcam

2 � scans
2 � �602 � 7� � 10�5. This

result is quite close to, but less than, respons
2 � �617

� 2� � 10�5. The uncertainties’ intervals almost over-
lap. We conclude that both inputs are approximately
statistically independent.

4. Conclusions

In this paper we have presented a detailed procedure
with which to calculate the spatial response of an

infrared antenna and the uncertainties in its evalu-
ation. We have taken into account the principal
sources of uncertainties in the measurement proce-
dure, using the PCA method. Our approach has de-
tected subtle signal fluctuations and artifacts:
influence of the laser cooling system on the laser
optical power, decentering artifacts of the detector
positioning stages, and numerical fluctuations that
arise from the fitting algorithms. PCA has also been
used to filter the original data sets, permitting calcu-
lation of spatial maps of the signal mean value and
uncertainties.

Two types of data have been analyzed separately.
On one hand, we have taken knife-edge measure-
ments and the fit of these data with a beam irradi-
ance distribution model. On the other hand, we have

Fig. 11. Antenna’s spatial response (top left) and its uncertainties [standard deviation (STD), top right]. These maps are obtained after
deconvolution of the signals and application of the PCA method to the deconvolved results. Bottom left, spatial structure and value of the
SNR. Linear fitting of the individual values of the SNR provides a global SNRrespons value.
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processed the data measured from the scanned re-
sponse of the antenna-coupled detectors. We utilized
both types of data to obtain the actual spatial re-
sponse of the antenna by means of a Lucy–
Richardson deconvolution method. The uncertainties
in the measured scanned data define a mean-square
error threshold. Therefore, after defining a merit
function of the deconvolution algorithm, we used this
threshold to stop the iterative deconvolution algo-
rithm automatically. Employing this procedure, we
obtained a collection of antenna spatial response
maps and a mean response map with associated spa-
tial uncertainties. SNR maps have also been defined
for each portion of the measurement procedure. From
each of these maps we obtained a global SNR value.
The values obtained here are SNRbcam � 13.27
� 0.02. and SNRscans � 54.13 � 0.08. These two ele-
ments serve as inputs for the deconvolution algo-
rithm that calculates the final spatial responsivity
map of the detector. The final SNR for the spatial
responsivity is SNRrespons � 12.73 � 0.02. On compar-
ing these SNR values we may conclude that the input
from the scanned detector response is of better qual-
ity than the input from the beam irradiance distri-
bution. At the same time, by evaluating the relative
noise we conclude that these two measurements can
be taken as almost statistically independent because
bcam

2 � scans
2 � respons

2.
The beam-shape characterization is thereby iden-

tified as the most prominent source of uncertainty in
the whole measurement procedure. It limits the max-
imum achievable SNRrespons. To understand this we
need to look back to the source of the data. Assuming
that we need an irradiance distribution of P
� P points to input into the deconvolution algorithm,
the available amount of knife-edge data comes from
two series of P points (assuming for simplicity that
the step in the knife-edge and the step in the antenna
scan measurements are equal and that the number of
points along the transverse directions are identical).
Therefore, the beam model has to satisfy the lack of
information between the 2P measured points of the
knife-edge scan and the P2 points of the 2D scanned

antenna response maps. It is evident that a refine-
ment either of the beam model or of the knife-edge
measurement strategy would improve the SNR of the
final spatial responsivity output.
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