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Use of a Shack–Hartmann wave-front sensor to measure
deviations from a Kolmogorov phase spectrum
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Experimental results indicate that the statistics of phase measured across a telescope aperture do not always
obey the power laws associated with the Kolmogorov model of atmospheric turbulence. We show that the
statistical relations between a wave front and its aperture-averaged first derivative previously derived for a
Kolmogorov spectrum can be easily generalized for any power law. We also show that a Shack–Hartmann
sensor can be used to measure the form of the structure function of phase f luctuations, and experimental data
are presented.  1995 Optical Society of America
Optical propagation through turbulence has tradition-
ally been described in terms of the power spectral
density of phase (w) f luctuations derived from the
Kolmogorov model of turbulence1:

Fwskd ­
0.023k211/3

r0
5/3

. (1)

r0 is the so-called Fried parameter2 that conveniently
describes the statistics of the wave front in a single
variable.

However, detailed investigations into the statistics
of the phase f luctuations have indicated signif icant
departures from this behavior.3 – 5 These observations
have led to a more general prediction for the form of the
phase spectrum:

Fwskd ­
Abk2b

r0
b22

. (2)

The phase structure function, defined as

Dwsrd ­ kjwsr0d 2 wsr0 1 rdj2l , (3)

can easily be shown to be proportional to rb22.
Although, in its original form, the parameter r0 has
no meaning unless the statistics are Kolmogorov, an
analogous quantity r0 can be defined so that the
wave front variance over an aperture of diameter r0
averages 1 rad2:

Dwsrd ­ gb

µ
r

r0

∂b22
. (4)

Boreman and Dainty6 recently applied this formu-
lation to a modal wave-front expansion. The relative
weighting of the different modes is found to be affected
by changes in b, a result that has implications for the
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design of an adaptive-optics system. The purpose here
is to suggest a method of measuring b with a standard
Shack–Hartmann wave-front sensor and to use the re-
sults to analyze atmospheric data.

There are at least two known methods of reducing
Shack–Hartmann centroid measurements to obtain
the statistics of the phase f luctuations. One can
estimate r0 by calculating either the covariance or
the differential variance of pairs of centroids. The
centroid measurements provide an estimation of the
aperture-averaged wave-front angle of arrival. The
methods rely on the fact that the angle-of-arrival sta-
tistics may be directly related to the wave-front phase
statistics as long as the form of the structure function is
known. In the past, this form has been assumed to be
Kolmogorov. However, any non-Kolmogorov behavior
immediately renders such analysis invalid. The
analysis methods will now be extended to non-
Kolmogorov structure functions.

The relative motions of individual pairs of sub-
images produced by the Shack–Hartmann can be
analyzed in terms of their covariances. Roddier7 de-
rived the dependence of the angle-of-arrival covariance
on the Fried parameter, r0. If the angle of arrival is
arbitarily defined along the x axis,

asx, yd ­ 2

µ
l

2p

∂
≠

≠x
wsx, yd , (5)

then the angle-of-arrival covariance is defined as

Bas m, hd ­ kasx, ydasx 1 m, y 1 hdl . (6)

The covariance can easily be related to the structure
function of phase by simple Fourier theory7:

Basm, hd ­ 2
l2

8p2

≠2

≠m2 Dwsm, hd . (7)
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The non-Kolmogorov phase structure function of
Eq. (4) can be written as

Dws m, hd ­ gbr0
2b12s m2 1 h2dsb22d/2 . (8)

By substituting Eq. (8) into Eq. (7), we obtain the
following results for longitudinal and transverse co-
variance:

Basd, 0d ­ 0.0127gbl2r0
2b12sb 2 2dsb 2 3ddb24 ,

(9)

Bas0, dd ­ 0.0127gbl2r0
2b12sb 2 2ddb24 . (10)

Hence the ratio of these two quantities is given by

Basd, 0d
Bas0, dd

­ b 2 3 . (11)

This analysis produces a very elegant result; how-
ever, for b values much less than 4, aperture averaging
effects become signif icant even for large subaperture
separations. Furthermore, covariance measurments
are extremely sensitive to telescope tracking errors,
and a differential method is preferable.

The method of Sarazin and Roddier8 uses differential
angles of arrival to estimate the statistics of the wave
front. In this case, aperture averaging effects must
be taken into account, and for this reason it is very
difficult to make an analytic calculation. Sarazin and
Roddier provide an approximate formula for the Kol-
mogorov case, but Fried9 gives a general-case formula
for a differential angle of arrival for any form of struc-
ture function and position of (circular) apertures:
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Here D is the diameter of a single aperture, S is the
ratio of the subaperture separation to D, and c is
the angle between the x axis and the line joining the
centers of the two apertures. This method avoids any
effects that are due to tracking errors.

The non-Kolmogorov structure functions intro-
duced earlier to this equation can now be applied to
Eq. (12). The transverse and longitudinal differential
angle-of-arrival variances (st

2 and sl
2, respectively)

are represented by values of 0 and py2 for c. It is
useful to obtain the ratio between these two quantities,
since several factors cancel and the result depends
only on b and S. In particular, the ratio does not
depend on the actual value of the seeing at the time (or
on the factor gb). A numerical integration has been

Fig. 1. Dependence of the ratio of transverse-to-
longitudinal differential angle-of-arrival variance on
the exponent (b) of the power spectrum of the phase.
Fried’s calculated values for a Kolmogorov spectrum
are shown by the dotted curve; Sarazin and Roddier’s
approximate formula is plotted as the dashed curve.

Fig. 2. Comparison of simulated centroid motions (sym-
bols) with theory (solid curves).

Fig. 3. Ratio of differential variances found in experimen-
tal data taken at La Palma (symbols) compared with theo-
retical curves for varying b.
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Fig. 4. Ratio of differential variances found in experimen-
tal data taken at Calar Alto (symbols) compared with theo-
retical curves for varying b.

performed, and curves of st
2ysl

2 against S for a range
of b values are shown in Fig. 1. Fried’s calculated
values for Kolmogorov turbulence (b ­ 11y3, dotted
curve) are shown, together with a plot of Sarazin and
Roddier’s approximate formula (dashed curve).

We have calculated the differential variance ratio
for 1000 simulated Kolmogorov wave fronts using cen-
toids calculated by a Shack–Hartmann simulator with
square lenslets. It can be seen from Fig. 2 that the
points lie close to the curve predicted for a Kolmogorov
spectrum (i.e., the 44/12 line).

The theoretical curves have been compared with ex-
perimental data taken by the 1-m Jacobus Kapteyn
telescope in La Palma (see Fig. 3). These data were
taken in December 1993 with square lenslets. Each
point represents the mean value over 1000 frames of
the variance ratio for a number of spot pairs with sim-
ilar separations. The graph suggests that b is much
closer to 3 than to the Kolmogorov prediction of 11/3 for
these data. It should be recognized that this graph is
by no means intended to be representative of the prop-
erties of the spectra associated with atmospheric tur-
bulence in general. Figure 4 shows an equivalent plot
from 20,000 frames taken at the 1.23-m telescope at
Calar Alto. In this case, the behavior is much closer to
that expected from Kolmogorov turbulence.
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