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Abstract. We consider the problem of the characterization of beams by moments of the field
intensity in the aperture and its moments in the far field. The well known beam propagation
factor,M2

P, is considered. We give convergence criteria for these factors and also discuss a new
approach to optimization of the even moments of the far-field intensity.

1. Introduction

The beam propagation factor

M2
P = 4πσxσs (1.1)

is frequently used as a simple measure of laser beam quality [1]. In this formula the
variance of the intensity in the transverse plane at the beam waist and the variance of
the far-field intensity distribution are denoted byσ 2

x and σ 2
s , respectively. This factor

has been the subject of much discussion since it was first introduced, mainly because of
questions of computational stability [2] and because it diverges in some cases, i.e. the case
of diffraction from a hard-edge aperture. Attempts have been made to overcome these
problems by truncating the intensity distribution in the far field or otherwise limiting the
range of integration when calculating the moments [3, 4]. Some authors [3, 5, 6] have
proposed additional standards involving higher-order moments. However, these higher-
order moments diverge in certain cases just as theM2

P factor does. Apart from convergence
some authors have considered the problem of optimization of beam moments, subject to
certain constraints [10, 11].

We address the question of convergence criteria for the beam propagation factor
and for higher-order moments and discuss the problem of moment optimization. We
will demonstrate that the convergence criteria play a crucial role in the solution of the
optimization problem.

For simplicity, we will restrict our discussion to a beam with one transverse degree
of freedom, which we denote byx; similar results hold for two transverse degrees of
freedom. The field in the aperture plane will be specified by a functionf (x) which vanishes
identically outside the rangea < x < b. We assume thatf (x) is square integrable and has
N derivatives on this open interval.
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2. Convergence of the second-order moment

Apart from multiplicative factors, the fieldF(s) in the far zone is related to the fieldf (x)
in the aperture by the expression

F(s) =
∫ ∞
−∞

f (x) e−2π isx dx. (2.1)

The variance of the intensity in the far field is given by the formula

σ 2
s =

〈
s2
〉− 〈s〉2 (2.2)

where 〈
s2
〉 = N

∫ ∞
−∞

s2|F(s)|2 ds (2.3)

andN is the normalization factor defined by the formula

N
−1 =

∫ ∞
−∞
|F(s)|2 ds =

∫ ∞
−∞
|f (x)|2 dx. (2.4)

We choose our coordinate system such that

〈s〉 = 0. (2.5)

The second-order moment is then given by equation (2.3); it is this quantity for which
we wish to determine convergence criteria. Sincef (x) is a bounded function ofx which
vanishes outside the intervala < x < b and the endpoints of the interval form a set of
measure zero, the integral (2.1) is equivalent to

F(s) = lim
ε→0

∫ b−ε

a+ε
f (x) e−2π isx dx. (2.6)

Integrating this expression repeatedly by parts we obtain an asymptotic series valid for large
values of|s| [8, 9]:

F(s) ∼ lim
ε→0

N−1∑
n=0

−(2π is)−n−1
[
e−2π is(b−ε) f (n)(b − ε)− e−2π is(a+ε) f (n)(a + ε)]+ o

(
s−N

)
(2.7)

wheref (n)(x) = dnf (x ′)/dx ′ n|x ′=x is the nth derivative off . SinceF(s) is the Fourier
transform of a function of finite support, it is bounded on any finite interval and thus the
convergence of the second moment of|F(s)|2 is determined solely by the behaviour for
large |s| of the integrand in equation (2.3). From equation (2.7), it then follows that

|F(s)|2 ∼ lim
ε→0

N−1∑
m=0

N−1∑
n=0

(2π is)−n−m−2(−1)m+1

×[e−2π is(b−ε) f (n)(b − ε)− e−2π is(a+ε) f (n)(a + ε)]
×[e2π is(b−ε) f (m) ∗(b − ε)− e2π is(a+ε) f (m) ∗(a + ε)]+ o

(
s−N

)
. (2.8)

The lowest-order term in negative powers ofs in the integrands2|F(s)|2 is given by the
termm = n = 0:[
s2|F(s)|2]

m=n=0 = lim
ε→0

(2π)−2
∣∣e−2π is(b−ε) f (b − ε)− e−2π is(a+ε) f (a + ε)∣∣2. (2.9)
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This term is oscillatory and non-negative for large|s|. Its contribution to the integral (2.3)
will therefore only converge if

lim
ε→0

[f (b − ε)] = 0 (2.10)

and

lim
ε→0

[f (a + ε)] = 0 (2.11)

i.e. in order for the second-order moment of the far-zone intensity to be finite the field must
approach zero continuously at the edges of the aperture. If equations (2.10) and (2.11) are
satisfied, the next non-zero term in the expansion (2.8) is then = 1, m = 1 term. This
term and all higher-order terms in the integrand of equation (2.3) fall off ass−2 or faster
for large |s| and therefore converge. Equations (2.10) and (2.11) constitute necessary and
sufficient conditions for the variance of the far-zone intensity, and therefore theM2

P factor,
to exist.

3. Convergence of higher even-order moments

The preceding treatment may be extended to all moments of the form†〈
s2k
〉 = N

∫ ∞
−∞

s2k|F(s)|2 ds (3.1)

wherek is a positive integer. We may again make use of equation (2.8) and consider the
n = m = k − 1 term of the integrand of equation (3.1):[
s2k|F(s)|2]

n=m=k−1 = lim
ε→0

(2π)−2k
∣∣e−2π is(b−ε) f (k−1)(b − ε)− e−2π is(a+ε) f (k−1)(a + ε)∣∣2.

(3.2)

This term, like that given by equation (2.9), is oscillatory and is non-negative for large
values of|s|: it will add a diverging contribution to equation (3.1) unless

lim
ε→0

[
f (k−1)(b − ε)] = 0 (3.3)

and

lim
ε→0

[
f (k−1)(a + ε)] = 0. (3.4)

Consequently, for the 2kth-order moment to exist, the(k − 1)st derivative off (x) must
decrease continuously to zero at the edges of the aperture. Clearly, all lower order terms in
s must also vanish for the 2kth-order moment to converge. This is only possible if

lim
ε→0

[
f (j)(b − ε)] = 0 (3.5)

and

lim
ε→0

[
f (j)(a + ε)] = 0 (3.6)

for all j < k. As in the case of the second moment, these conditions are also sufficient.
Hencea necessary and sufficient condition for the2kth-order moment,

〈
s2k
〉
, to exist is that

the aperture field and its firstk − 1 derivatives go continuously to zero at the endpoints
x = a and x = b.

† The zeroth-order moment is defined without normalization so that it is proportional to the energy of the beam,
〈s0〉 ≡

∫ |F(s)|2 ds = ∫ |f (x)|2 dx.
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4. Convergence of the odd-order moments

The odd-order moments are somewhat more difficult to deal with because a symmetric
function |F(s)|2 will always have vanishing odd-order moments, at least in the sense of the
principal value [7]. Let us define a new functionA(s) by the expression

A(s) = |F(s)|2− |F(−s)|2. (4.1)

Then 〈
s2k+1

〉 = N

∫ ∞
0
A(s) s2k+1 ds. (4.2)

It can be shown by arguments similar to those presented above thatA(s) has an asymptotic
expansion

A(s) ∼
N−1∑
j=0

∑
k6j

Ajk(s)

(2π is)j+k+2
(4.3)

valid for large values of|s|. The functionsAjk(s) are given by the expressions

Akk(s) = (−1)k4=[f (k) ∗(a + ε) f (k)(b − ε)] sin 2πs(b − a − 2ε) (4.4)

Ajk(s) = (−1)k+14=[f (k)(a + ε) f (j) ∗(b − ε)+ f (j)(a + ε) f (k) ∗(b − ε)]
× sin 2πs(b − a − 2ε) for j 6= k, even values of j + k (4.5)

= (−1)k+1
{
4i=[f (k)(b − ε) f (j) ∗(b − ε)+ f (j)(a + ε) f (k) ∗(a + ε)]

+4i=[f (k) ∗(a + ε) f (j)(b − ε)+ f (j)(a + ε) f (k) ∗(b − ε)]
× cos 2πs(b − a − 2ε)

}
for odd values of j + k (4.6)

and= denotes the imaginary part.
In order that a moment of order 2m + 1 exists, the terms in the above expansion for

which j + k 6 2m must vanish order by order. This is a much less restrictive requirement
than the conditions for the even moments. For instance, the condition

lim
ε→0

f (j)(a + ε) = lim
ε→0

f (j)(b − ε) = 0 for j 6 m (4.7)

is sufficient for the moments of order 2m + 1 to exist, but it is not a necessary condition.
Furthermore, iff (x) is real or complex symmetric, all the odd moments will vanish
identically.

Some remarks about convergence criteria seem appropriate here. It is not difficult to
show, using the methods of the preceding sections, that discontinuities of the field or its
derivatives anywhere within the aperture lead to divergent even-order moments. Specifically,
a discontinuity in a derivative of orderM of the aperture function leads to a divergence of the
(2M+2)th-order moment of the far-zone intensity. Evidently, care should be taken in using
moments to characterize beams where convergence is not guaranteeda priori. For instance,
in situations where only the field and its first derivative need be continuous, one would
expect that only the second- and fourth-order moments will be useful in characterization.

5. From convergence to optimization

The problem of minimizing a ratio of moments, in our notation
〈
s2n
〉/〈
s2m

〉
, was discussed

by McCutchen [10]. Using an approach based on higher-dimensional generalizations of
the diffraction problem, McCutchen was able to obtain optimal solutions for cases where
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n = m + 1. Asakura and Ueno [11] solved the problem of minimizing the second-order
moment while holding the total energy (the zeroth-order moment) constant.

Using a calculus of variations approach, we will consider here the general problem of
minimizing

〈
s2n
〉
, while holdingN other even-order moments constant. TheseN moments

may be of lesser or higher order than the quantity to be minimized.
We note that the 2kth moment may be expressed in the form†〈

s2k
〉 = ( 1

2π

)2k

N

∫ ∣∣f (k)(x)∣∣2 dx (5.1)

whereN is defined in equation (2.4). Using this representation for the moments, we begin
with a functional of the form

J =
∫ {

N
∣∣f (n)(x)∣∣2+ N∑

k=1

λkN
∣∣f (mk)(x)∣∣2} dx (5.2)

with isoperimetric constraint equations [12]

N

(
1

2π

)2mk ∫ ∣∣f (mk)(x)∣∣2 dx = µk. (5.3)

Here 2mk andµk are the order and the value respectively of thekth constrained moment.
We may rewrite the functional (5.2) as

J =
∫ { N+1∑

k=1

λk

[ ∫
|f (x ′)|2 dx ′

]−1∣∣f (mk)(x)∣∣2}dx (5.4)

with

λN+1 ≡ 1 mN+1 ≡ n. (5.5)

We will assumef to be real; the final differential equations which we obtain are
also valid whenf is complex. Taking the first variation of the functionalJ defined in
equation (5.4) we find that

δJ = 2
∫ { N+1∑

k=1

λkN
[−〈s2mk

〉
f (x)(δf )+ f (mk)(x)(δf )(mk)]}dx. (5.6)

One might try to integrate expression (5.6) by parts, setδJ equal to zero and thus obtain
a differential equation forf . Because of the explicit appearance of

〈
s(2mk)

〉
in equation (5.6),

this is only possibleif the convergence criteria are satisfied for all even-order moments up
to the highest-order even moment involved. More explicitly, if we set

M = max{mk} (5.7)

then the aperture field and firstM − 1 derivatives of the field must go continuously to zero
at the edges of the aperture. Our optimization problem therefore requires that an additional
2M constraints be satisfied, in the form of 2M boundary conditions on the aperture field
and its derivatives. If these conditions are satisfied, we obtain the Euler–Lagrange equation:

N+1∑
k=0

(−1)mkλk f
(2mk)(x) = 0 (5.8)

where, for convenience, we have defined

λ0 ≡
N+1∑
k=1

λk
〈
s2mk

〉
m0 ≡ 0. (5.9)

† See the first footnote.
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Equation (5.8) has solutions which depend upon 2M+N+2 parameters, 2M constants of
integration andN+2 undetermined multipliers,λk. Equations (5.3) and (5.5) provideN+1
constraints, while equation (5.9) provides another constraint. This is generally not enough to
specify all the free parameters. It is now necessary to invoke the 2M boundary conditions
given by equations (3.5) and (3.6), which must be imposed to satisfy the convergence
criteria. These conditions form a set of 2M linear, homogeneous equations.

It is clear from the preceding discussion that the convergence criteria are important for
solving the optimization problem. It should be noted, though, that because our constraints
are isoperimetric, the 2M + N + 2 equations for the 2M + N + 2 unknowns do not form
a linear system and thus the equations may not have a solution in the space ofN + 1
Lagrange multipliers. In the case that no moment is specified,N = 0, and a solution
always exists. However, one cannot solve a problem where moments are constrained to
values less than some minimum possible value. For instance, consider the problem of
minimizing the fourth-order moment

〈
s4
〉
. If one specifies the energy

〈
s0
〉
, then one cannot

also require that the second-order moment
〈
s2
〉

be less than the minimum value obtained by
solving the variational problem to minimize the second moment with the energy fixed.

One possible solution is to weaken the constraints. We could seek to minimize the
expression

〈
s4
〉/〈
s2
〉
, or perhaps

〈
s4
〉〈
s2
〉

without further constraints. Such minimization
problems, involving minimization of products of the form

J ′ =
N ′∏
k=1

〈
s2mk

〉νk (5.10)

(of which the McCutchen problem [10] is a special case), can be solved using methods
equivalent to those specified in the above discussion. The Euler–Lagrange equation for such
a functional results, after a long calculation, in a differential equation which is identical to
the differential equation (5.8) found for the functionalJ , but withN ′ = N + 1, and with
the Lagrange multipliers given in terms of the as yet undetermined moments:

λk = (2π)−2mkνk
〈
s2mk

〉−1
(5.11)

and

λ0 = −
N ′∑
k=1

νk. (5.12)

The same boundary conditions must be applied and if this still leaves undetermined constants
then we can seek the extrema ofJ ′ in the space of the undetermined multipliers{λ} by
means of the normal calculus of several variables,

∇λJ ′ = 0. (5.13)

The possible optimization problems of this type are numerous and the appropriate choice
of the functionalJ ′ depends upon the intended application.

6. Some examples

We will now illustrate the methods developed above by some examples. In all of the
following cases we will assume thata = −δ andb = δ.
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6.1. The second-order moment

We consider minimization of the second-order moment, while holding the energy
〈
s0
〉 = µ

constant. We must then solve the second-order differential equation which results from
minimizing

J = 〈s2
〉+ λ〈s0

〉
(6.1)

with the appropriate boundary conditions, i.e.

lim
ε→0

f (±δ ∓ ε) = 0 (6.2)

and using the energy constraint.
The methods outlined above result in an optimum solution given by the expression

f (x) =
√
µ/δ cos

(
πx

2δ

)
(6.3)

which agrees with the solution found by Asakura and Ueno [11]. The resulting far field is
given by the expression

F(s) = 4
√
µδ cos 2πδs

π(1− 4δs)(1+ 4δs)
. (6.4)

Using this result we find the minimum value of the second-order moment for a fixed energy
is 〈

s2
〉
min =

1

16δ2
. (6.5)

The value of the propagation factor for this example isM2
P = 1.136†.

6.2. The ratio
〈
s4
〉/〈
s2
〉

The functional to be considered here is

J ′ = 〈s4
〉〈
s2
〉−1
. (6.6)

With the same interval as above and requiring that the solution satisfies the convergence
criteria, one can find that the aperture function which minimizes this quantity is given by
the expression

f (x) = 0 cos2
(
πx

2δ

)
(6.7)

where0 is an undetermined constant. The far field is then given by the expression

F(s) = 0 sin 2πδs

2πs(1− 2δs)(1+ 2δs)
(6.8)

and the functionalJ ′ defined by equation (6.6) takes the value

J ′min =
1

4δ2
(6.9)

and the propagation factor isM2
P = 1.026.

It should be noted that this function satisfies our convergence criteria for the fourth-
order moment, while the solution obtained in the previous section only satisfies the criteria
for the second-order moment and, in fact, diverges for the fourth-order moment.

† For comparison, in the idealized case of a Gaussian beam propagating from an infinite aperture, the propagation
factor takes on its minimum value of unity.
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6.3. The fourth-order moment

The problem of minimizing the fourth-order moment
〈
s4
〉

differs from those encountered in
the previous two examples in that it is not solvable by either the Asakura and Ueno method
[11], or by the method outlined by McCutchen [10]. The functional appropriate to this
situation is given by the expression

J ′[f ] =
∫ |f ′′(x)|2 dx

(2π)4
∫ |f (x)|2 dx

. (6.10)

We find from equation (5.8) that in this case the aperture function must satisfy the differential
equation

f (4)(x) = λ f (x) (6.11)

with the boundary conditions

lim
ε→0

f (±δ ∓ ε) = lim
ε→0

f ′(±δ ∓ ε) = 0. (6.12)

In solving this system of equations we find solutions of two basic forms. Let us denote by
λsn solutions of the transcendental equation

tan(λsnδ) = − tanh(λsnδ). (6.13)

The functions

φn(x) = 0[cos(λsnδ) cosh(λsnx)− cosh(λsnδ) cos(λsnx)] (6.14)

are then solutions of the differential equation and satisfy the boundary conditions (6.12).
Let us denote byλan solutions of the transcendental equation

tan(λanδ) = tanh(λanδ). (6.15)

The functions

ψn = 0[sinh(λanδ) sin(λanx)− sin(λanδ) sinh(λanx)] (6.16)

are then also solutions of the differential equation and satisfy the boundary conditions.

Figure 1. The aperture functions minimizing
〈
s2
〉
,
〈
s4
〉/〈
s2
〉

and
〈
s4
〉

shown as long-broken,
short-broken and full curves, respectively.
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Figure 2. The angular spectra resulting from the aperture functions.

Figure 3. The tails of the angular spectra resulting from the aperture functions.

We find that, in this case,

J ′[φn] =
(
λsn

2π

)4

(6.17)

and that

J ′[ψn] =
(
λan

2π

)4

. (6.18)

It can be seen thatλs1 is the lowest eigenvalue and thus the true global (nontrivial) minimum
corresponds to theφ1 solution which has a propagation factor ofM2

P = 1.037.
The three aperture functions found in this section are shown in figure 1 and the

corresponding far fields are shown in figures 2 and 3. The functions have been normalized
so that in all three cases the energy is

〈
s0
〉 = δ.
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