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Abstract

It is shown that for some many-particle systems with a high degree of symmetry, i.e. systems with homogeneous andror
isotropic density correlations, the density correlation function may be determined by measurements of the changes in the
spectrum of polychromatic light scattered by the particles. The use of spectral measurements for such inverse problems may
appreciably reduce the number of measurements required to uniquely determine the system structure. q 1999 Elsevier
Science B.V. All rights reserved.

The inverse scattering problem is concerned with
the reconstruction of the scattering potential from
field measurements outside the scatterer. This is
usually done by measuring the scattered field gener-
ated by scattering an incident monochromatic field
for many directions of incidence and scattering. Re-
cent work, however, has demonstrated that some
information about source structure may be deter-
mined from measurements of changes in the spec-

w xtrum of the scattered radiation 1–3 . More recently,
w xit has been shown 4 that the spectrum of light

scattered off of systems of particles depends upon
the generalized structure function of the system. In
this paper, we demonstrate that for certain particle
systems, the density correlation function may be
determined by illuminating the scatterer by polychro-
matic light and measuring the complete spectrum of

) Corresponding author.

the scattered light in a finite number of directions of
scattering, provided that some information about the
system is known.

Consider a polychromatic plane wave with spec-
Ži.Ž .trum S v , v being the frequency, incident on a

random distribution of identical particles in a direc-
tion specified by a unit vector u , and let us examine0

the scattered field at a distance r in the far zone of
the scatterer, in direction specified by a unit vector u
Ž .see Fig. 1 . It follows from the analysis given in a

w x Ž`.Ž .recent paper 4 that the spectrum S ru,v of the
field in the far zone is given by the expression

1
2Ž`. ˜< <S ru ,v s U k uyu ,vŽ . Ž .02r

= Ž i.SS k uyu S v , 1Ž . Ž . Ž .0

where ksvrc, c is the speed of light in vacuum,
and

˜ X yi KPrX 3 XU K ,v s U r ,v e d r 2Ž . Ž . Ž .H
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Ž .Fig. 1. Illustration of the notation relating to Eq. 1 .

is the spatial Fourier transform of the scattering
potential of each particle. Furthermore,

2

yi KPr jSS K ' eŽ . Ý¦ ;
j

s e i KPŽ r jyr j X . 3Ž .Ý Ý¦ ;
Xj j

is the generalized structure function of the particle
system, and the angular brackets denote the average,
taken over the ensemble of positions r of the parti-j

Ž .cles. Eq. 1 applies to systems for which the scatter-
ing is sufficiently weak, i.e. systems for which the
first Born approximation applies.

One is frequently interested in determining the
average positions of the particles relative to one
another. If the system consists of N ‘point particles’,
we may define a density function by the relation

N
Ž3.n r s d ryr , 4Ž . Ž . Ž .Ý j

js1

Ž . 3where n r d r represents the number of particles in
a volume element d3r, centered on the point r, and
d Ž3. is the three-dimensional Dirac delta function.
The two-point density correlation function is then
defined by the equation

² :C r ,r s n r n rŽ . Ž . Ž .n 1 2 1 2

Ž .3 Ž3.
Xs d r yr d r yr ,Ž . Ž .Ý Ý 1 j 2 j¦ ;

Xj j

5Ž .
² :where PPP again represents the ensemble average.

If

˜ yi q1Pr1 yi q2Pr 2 3 3C q ,q ' C r ,r e e d r d rŽ . Ž .HHn 1 2 n 1 2 1 2

6Ž .

denotes the spatial Fourier transform of the correla-
Ž .tion function, we find on substituting Eq. 5 into Eq.

Ž .6 that

˜ yi q1Pr j yi q2Pr j XC q ,q s e e . 7Ž . Ž .Ý Ýn 1 2 ¦ ;
Xj j

Ž . Ž .Comparison of Eqs. 7 and 3 shows that the
w xstructure function may be written as 5

˜SS q sC yq ,q , 8Ž . Ž . Ž .n

i.e. it is equal to the ‘antidiagonal’ element of the
Fourier transform of the density correlation function.

Ž . Ž .On substituting from Eq. 8 into Eq. 1 it follows
that

C̃ yk uyu ,k uyuŽ . Ž .n 0 0

Ž .2 `r S ru ,vŽ .
s . 9Ž .Ž .2 i˜< < S vŽ .U k uyu ,vŽ .0

Ž .Eq. 9 shows that the far zone field spectrum con-
tains information about the ‘antidiagonal’ elements

˜of C . However, such information is, in general, notn

sufficient to reconstruct the density correlation func-
tion. For certain systems of high symmetry, though,
the antidiagonal elements do provide useful informa-
tion, as we will now show.

Let us restrict our attention to systems in a fluid
state, for which the density correlation function is
homogeneous and isotropic. Then the density corre-
lation function has the form

< <C r ,r sC r yr when r g V , r g VŽ . Ž .n 1 2 n 1 2 1 2

s0 otherwise, 10Ž .
V denoting the volume containing the system. We
will consider, for simplicity, a system confined to a
spherical domain of radius R. It can then be shown
that the structure function for the system is given by

Ž .the equation see Appendix

4 p2 R 3 2 3SS q s pR ypR rq rŽ . H H
3 12Ž .4 p 0

=C r e i qPrd3r . 11Ž . Ž .n

We see that the structure function is related to the
Fourier transform of the product of the density corre-
lation function and a factor that depends upon the
size of the entire system. This equation may be



( )G. Gbur, E. WolfrOptics Communications 168 1999 39–45 41

w xsimplified by using the so-called Ursell function 5 ,
defined by the expression

< < < < ² :2H r yr 'C r yr y n , 12Ž .Ž . Ž .n 1 2 n 1 2

² :n being the average density of the particles.
Ž .Rewriting Eq. 11 in terms of the Ursell function,

we have

4 p2 R 3 2 3SS q s pR ypR rq rŽ . H H
3 12Ž .4 p 0

=H r e i qPrd3rŽ .n

42 R2 3 2² :q n pR ypR rH H
3Ž .4 p 0

p
3 i qPr 3q r e d r . 13Ž .

12

If correlations between particle positions are suffi-
ciently short-ranged, as in liquids and gases at tem-
peratures far from critical transitions, the Ursell func-
tion will have an essentially zero value for values of
r larger than a few particle diameters, a distance
much smaller than the size of the system R. The first

Ž .term of Eq. 13 may then be simplified and one
finds that

4 p2 R 3 2 3 i qPr 3
pR ypR rq r H r e d rŽ .H H n3 12Ž .4 p 0

4 2 R3 i qPr 3f pR H r e d r . 14Ž . Ž .H H n3 Ž .4 p 0

Ž .On examining the second term of Eq. 13 , it be-
< <comes clear that for large values of q R this term

will be negligible. To see this, we may evaluate the
Ž . Ž .second part of Eq. 13 , denoted SS q , and arrive at2

the result
2 2² :4p nŽ . 2w xSS q s yqR cos qRqsin qR .Ž .22 6q

15Ž .

In the limit qR41, this function will have the
limiting form

R2
22 2 2r3² :SS q f n 4p cos qR;V . 16Ž . Ž . Ž .22 4q

Ž .It is clear from Eq. 14 that the first part of the
structure function depends linearly upon V. In the

limit qR41, then, the structure factor will be domi-
Ž .nated by the first term in Eq. 13 . In the opposite

limit qR<1, we may use the approximate relations
Ž .2sinqR f qR and cosqR f 1 y qR r2 to write

Ž .SS q as2

R6
2 2SS q f 4p ;V , 17Ž . Ž . Ž .22 4

and this term will dominate the structure factor for
sufficiently small qR. Neglecting this forward scat-
tering contribution in particle scattering calculations
is standard practice in X-ray diffraction. See, for

w xinstance, Ref. 6 . As long as the scattered field is
measured in directions not too close to the forward
direction, we may neglect the second term in Eq.
Ž .13 . Under these conditions, the structure function
may be expressed in a simple form as

˜SS q sVH q , 18Ž . Ž . Ž .n

Ž .where the Fourier transform of H r ,n

˜ X i qPrX 3 XH q s H r e d r , 19Ž . Ž . Ž .Hn n

< <is a spherically symmetric function of qs q .
It is now straightforward to obtain an approximate

Ž .solution to the inverse problem. Substituting Eq. 18
Ž .into Eq. 9 , we find that the Ursell function is

related to the measured spectra by the expression

r 2 1
˜ < <H k uyu sn 0 2˜V < <U k uyu ,vŽ .0

=

Ž .`S ru ,vŽ .
. 20Ž .Ž .iS vŽ .

The spectrum of the incident and the scattered field
can be determined by experiment. If we assume that
the potential U of the particles is known, one can

˜ w < <xthen determine H k uyu .n 0
˜Note that H depends only upon the magnitude ofn

< Ž . <the momentum transfer vector, qs k uyu . In0

the conventional inversion techniques one varies u
˜and u to determine all the components of H0 n

< < Žwithin a sphere of radius q F2vrc the Ewald
Ž . .limiting sphere; see Fig. 2 a . However, because the

unknown function H does not depend upon fre-n

quency, we may fix the directions u and u and0
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Ž . Ž .Fig. 2. The region of Fourier space available for reconstructions using: a the Ewald sphere method; and b the method outlined in this
paper. The radii Kq, Ky in Fourier space are defined by the formula:

1 Dv
" < <K s v " uyu .0 0c 2

˜vary v to determine all of the values of H in an

spherical shell defined by the q values such that

< < < <Dv uyu Dv uyu0 0
< <v y F q F v q .0 02 c 2 c

21Ž .

Here v is the center frequency of the spectrum of0
Žthe incident field and Dv is the spectral width see

Ž . .Fig. 2 b .
If incident light with a sufficiently broadband

Ž .spectrum e.g. Dv;2v is used to illuminate the0
Ž .scatterer, it can be seen from Eq. 21 that a mea-

surement of the spectrum of the backscattered light
Ž < < .uyu s2 will provide nearly all the Fourier0

˜components of H within a sphere of radiusn

4v0
< <q F , 22Ž .

c

i.e. within a sphere whose radius is twice the radius
of the Ewald limiting sphere associated with the
frequency v . One may then obtain a band-limited0

Ž .reconstruction of the Ursell function H r by mea-n

suring the scattered spectrum for a single direction
of incidence and a single direction of scattering.

If the incident light has a narrower spectral width,
a single scattering measurement will not provide
information about the Fourier components of signifi-

Ž .cantly low frequencies, as seen from Eq. 21 . But
by varying u, u over a finite number of directions,0

we may fill almost all of a spherical domain in q
space of radius

2v qDv0
< <q F . 23Ž .

c

Ž .see Fig. 3. Data obtained in this way would still
likely exclude a small region around the origin,
because of the difficulty encountered with the for-

wward scattering direction, noted earlier associated
Ž .xwith the second term in Eq. 13 .

It should be noted that if the incident field con-
tains frequencies resonant with the individual parti-

Ž .cle potentials U r,v , those frequencies will be
Ž .strongly scattered, making the use of Eq. 1 for the

analysis invalid. But this difficulty may be avoided
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Fig. 3. Illustration of the method by which the Fourier components represented by points within the Ewald limiting sphere may be obtained
Ž .using the measured spectrum for only a finite number of directions of scattering andror of incidence. The spectrum a of the incident field

has a width of Dv and a center frequency of v . With two different measurement positions, one can obtain values on shells of two0
Ž .different thicknesses and diameters b . For a larger, but still finite, number of measurement positions, one can, in principle, fill almost the

whole sphere of radius 2v qDv.0

by using a narrower-band off-resonance spectrum for
the measurements and making measurements for
several directions of incidence and scattering.

So far we have concerned ourselves with systems
which possess a high degree of symmetry. We have
seen that when the Ursell function is homogeneous
and isotropic one may reconstruct it by the use of
spectral information from one direction of incidence
and one direction of scattering. Spectral methods
may still, however, appreciably reduce the amount of
measurements required for reconstructing systems
which are not isotropic.

Consider a system for which the density correla-
tion function is homogeneous, but depends upon
direction, i.e.

C r ,r sC r yr when r g V , r g VŽ . Ž .n 1 2 n 2 1 1 2

s0 otherwise. 24Ž .

If the correlations between the positions of the parti-
cles are sufficiently short-ranged, and one avoids

measurements of the scattered field close to the
forward direction, one finds that

r 2 1
H̃ k uyu sŽ .n 0 2˜V < <U k uyu ,vŽ .0

=

Ž .`S ru ,vŽ .
. 25Ž .Ž .iS vŽ .

˜Ž .This equation differs from Eq. 20 in that H nown

depends upon both the direction and magnitude of
Ž .the momentum transfer vector qsk uyu . For0

this case, one may fix the magnitude of the differ-
Ž .ence vector uyu and allow the direction of this0

difference vector to vary over all possible directions.
This would be equivalent to fixing the relative orien-
tation of the incident field and detector and rotating
the sample through all possible directions. From this
information, using the complete spectrum, one will

˜ Ž .again obtain all of the Fourier components of H qn

within a spherical shell whose boundaries are given
Ž .by the inequality 21 . This method makes it possible
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to keep the incident field and the detector in fixed
positions relative to one another.

These methods of inversion would seem to have
some advantages over the traditional methods using
the concept of Ewald’s spheres. In neutron scattering
experiments, spectral methods have been used in a
restricted form to investigate the structure of particle
systems. In the von Laue method, for instance, the
spectrum of elastically scattered neutrons is mea-
sured for a single direction of incidence and scatter-
ing to determine the Bragg scattering peaks. This
method applies only to scattering from periodic
structures, while the present analysis applies more

Ž w x.generally cf. Ref. 7 . By using the data provided
by the full continuous spectrum of the scattered field,
one can avoid the need to take a large number of
measurements for different directions of the incident
and the scattered field.
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( )Appendix A. Derivation of Eq. 11

˜ Ž .We wish to determine the value of C yq,qn
Ž .when C r ,r is a homogeneous, isotropic functionn 1 2

Ž .Fig. 4. Illustration of the region of overlap shaded of two
spheres of the same radii whose centers are separated by a

< <distance x .

Fig. 5. Illustration of the notation used to evaluate the overlap
Ž .volume defined by Eq. A4 .

Ž . Ž .of the form of Eq. 10 . We may rewrite Eq. 10 in
the equivalent form

< <C r ,r sB r B r C r yr , A1Ž . Ž . Ž . Ž .Ž .n 1 2 1 2 n 1 2

where

< <1 when r FR
B r s A2Ž . Ž .½ < <0 when r )R

Ž . XDefining new variables x' r qr r2 and x 'r1 2 2

y r , the antidiagonal Fourier components of1
Ž .C r ,r can readily be shown to be given by then 1 2

formula:

˜ X XC yq ,q s B xqx r2 B xyx r2Ž . Ž . Ž .HHn

=C xX eyi qP xX

d3 xd3 xX . A3Ž . Ž .n

The domain of integration of the x variable is the
overlap volume of two spheres separated by a dis-
tance x as shown in Fig. 4, and the value of this
integral is then just the volume of the overlap, which
will depend upon the magnitude of x. The overlap
region consists of two spherical caps, each of which
may be expressed as an integral over a series of thin
disks. As may be seen from Fig. 5, the overlap
volume is given by the expression

R 2 2overlap volume s2= p R yu du. A4Ž . Ž . Ž .H
xr2
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The integration is straightforward, and leads to the
result that

B Xqxr2 B Xyxr2 d3XŽ . Ž .H
4 p°

3 2 3 < <pR ypR xq x x F2 R~s . A5Ž .3 12¢
< <0 x )2 R

Ž . Ž .Substituting Eq. A5 into Eq. A3 , one finds that

4 p2 R 3 2 3C̃ yq ,q s pR ypR xq xŽ . H Hn 3 12Ž .4p 0

=C x eyi qP xd3 x . A6Ž . Ž .n

Ž . Ž .If Eq. 8 is now used, Eq. 11 follows.
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