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Abstract

The quasi-homogeneous approximation, often used but never rigorously justi®ed, is carefully derived for primary,

three-dimensional, scalar radiation sources. The derivation indicates that nonradiating quasi-homogeneous sources do

not exist. The relevance of this result and its derivation for the inverse source problem is discussed. Ó 2001 Elsevier

Science B.V. All rights reserved.
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1. Introduction

Consider the following question: Can an ob-
server, given measurements of the wave ®eld
(acoustic, electromagnetic, or otherwise) generated
by a three-dimensional primary radiation source
(deterministic or random), determine worthwhile
information about the structure of that source?
Such an inverse problem is of potential importance
in acoustics, optics, astronomy, and the earth sci-
ences.

The near unanimous answer given to the above
question by a wide variety of authors over the past
30 years is ``no'' [1]. The hypothetical existence of
the ironically-named nonradiating sources [2], i.e.
sources which produce no radiation outside their
domain of support, implies that the inverse source
problem is nonunique.

Nonradiating sources have been described for
both scalar [2] and electromagnetic [3] radiation
problems, and are a general feature of many sys-
tems with wavelike behavior. 1 They have been
shown to exist in deterministic systems, in ran-
domly ¯uctuating systems [5], and even in one-
dimensional wave systems [6,7]. This widespread
and very robust nonuniqueness in the inverse
source problem has left it more a curiosity than a
®eld of research.

However, it is known that for incoherent
sources, whose spatial correlation properties may
be represented by a delta function, the inverse
problem is unique [8]. For such sources, a band
limited version of the source intensity can be recon-
structed from measurements of the cross-spectral
density of the ®eld. This uniqueness is not sur-
prising in light of the fact that nonradiating
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sources arise from a complicated interference phe-
nomenon [9].

Furthermore, several papers have suggested
that the inverse source problem for quasi-homo-
geneous sources is unique, allowing reconstruction
of the source intensity or spectral degree of co-
herence from ®eld cross-spectral density measure-
ments, if one has su�cient prior knowledge of the
source [10,11]. A quasi-homogeneous source is one
whose cross-spectral density is well approximated
by the form

WQ�r1; r2;x� � IQ
r1 � r2

2
;x

� �
lQ�r2 ÿ r1;x�; �1�

where IQ, the source intensity, is a slowly varying
function of position compared to the width of the
spectral degree of coherence lQ (see Fig. 1). Such
sources, which have an extremely small coherence
volume, are said to be globally incoherent. Sources
with delta correlations, as mentioned above, are a
subclass of the set of quasi-homogeneous sources.

The quasi-homogeneous approximation has
been used quite often since its introduction, both
in modeling scatterers [12±14] as well as modeling
sources [15]. It has also been used to elucidate the
foundations of radiometry [16±18].

As prevalent as it has been in statistical optics,
however, the quasi-homogeneous approximation
has not as yet been put on ®rm mathematical
ground. It seems that only one other paper to date
has examined its foundations, and only for the

class of Gaussian Schell-model sources [19].
Probably because of this, the question of unique-
ness in the quasi-homogeneous inverse source
problem is still open, 2 and few attempts have been
made to investigate possible methods of inversion.

In this paper we will present an analysis of
the quasi-homogeneous approximation for three-
dimensional statistically stationary radiation
sources in the space-frequency domain. From this
analysis we ®nd that nonradiating quasi-homoge-
neous sources do not exist. This result suggests
that the inverse source problem is unique for the
class of quasi-homogeneous sources. Furthermore,
our analysis of the quasi-homogeneous approxi-
mation leads to simpler methods, requiring less
prior knowledge, of solving the inverse quasi-
homogeneous source problem than those presented
in earlier work. These results therefore broaden the
class of sources for which the inverse source
problem is known to be uniquely solvable to in-
clude the class of quasi-homogeneous sources.

2. Derivation of the quasi-homogeneous approxima-

tion

Consider a three-dimensional, primary, ran-
dom, scalar radiation source q�r; t�, con®ned to a
domain D (see Fig. 2). We assume that its ¯uctu-
ations are stationary, at least in the wide sense [21,
Section 2.2]. The mutual coherence function of the
source distribution is de®ned by the formula

CQ�r1; r2; s� � hq��r1; t�q�r2; t � s�i; �2�
where the angular brackets denote ensemble av-
eraging. This function describes the correlation of
the source ¯uctuations at pairs of points within the
source. More useful for our purposes, however, is
the cross-spectral density, de®ned as the Fourier
transform of the mutual coherence function viz.,

WQ�r1; r2;x� � 1

2p

Z
CQ�r1; r2; s�eixs ds: �3�

The cross-spectral density may be expressed in
the form

Fig. 1. Illustrating the conventional requirement for the validity

of the quasi-homogeneous approximation. At a given frequency

x, the spectral density IQ�r;x� must be a `slowly varying'

function of position relative to the spectral degree of coherence

lQ�r;x�.
2 Though one earlier paper [20] hinted that a certain class of

quasi-homogeneous sources must radiate.
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WQ�r1; r2;x� �
�����������������
IQ�r1;x�

q �����������������
IQ�r2;x�

q
lQ�r1; r2;x�

� hQ�r1;x�hQ�r2;x�lQ�r1; r2;x�; �4�
where hQ�r;x� �

����������������
IQ�r;x�

p
. Because of the as-

sumed stationarity, di�erent frequency compo-
nents of the cross-spectral density are uncorrelated;
we will therefore con®ne our analysis to a single
frequency component and will not display the
dependence of the various quantities on x. In
Eq. (4), IQ�r� is the source intensity and lQ�r1; r2�
is the spectral degree of coherence, which is de®ned
as

lQ�r1; r2� � WQ�r1; r2���������������������
WQ�r1; r1�

p ��������������������
WQ�r2; r2�

p : �5�

It is to be noted that lQ�r1; r2� is unde®ned for
r1; r2 62 D. The absolute value of the spectral degree
of coherence can be shown to be restricted to the
range

06 lQ�r1; r2�
�� ��6 1: �6�

The extreme value zero represents spatial inco-
herence and the value unity represents complete
spatial coherence at frequency x.

For a scalar source of this kind, the cross-
spectral density of the radiated ®eld far from the
source can be shown to be given by the formula
[21, Section 5.2]

WU R1s1;R2s2� � � �2p�6
R1R2

exp ik�R2� ÿ R1��

� eWQ�ÿks1; ks2�; �7�
where

eWQ�ÿks1; ks2� � 1

�2p�6
Z Z

WQ�r1; r2�

� exp � ÿ ik�s2 � r2 ÿ s1 � r1��
� d3r1 d3r2 �8�

is the six-dimensional spatial Fourier transform of
the source distribution, and k � x=c is the wave
number of the radiation.

It should be clear from Eq. (7) that all informa-
tion about the source structure that is obtainable
from the cross-spectral density of the ®eld is con-
tained within the function eWQ, and we will therefore
focus our investigation upon that function.

Substituting from Eq. (4) into Eq. (8), we may
express Eq. (8) in the form

eWQ�ÿks1; ks2� � 1

�2p�6
Z Z

hQ�r1�hQ�r2�lQ�r1; r2�

� exp � ÿ ik�s2 � r2 ÿ s1 � r1��
� d3r1 d3r2: �9�

Let us assume that the source correlations are
homogeneous, i.e. that

lQ�r1; r2� � lQ�r2 ÿ r1� �10�
for all points within the source domain. A source
for which Eq. (10) is satis®ed is known as a Schell-
model source. Changing the variables of integra-
tion to

r � r2 ÿ r1; R � r1 � r2

2
; �11�

we may express Eq. (9) in the form

eWQ�ÿks1; ks2� � 1

�2p�6
Z

MQ k�s2� ÿ s1�; r�lQ�r�

� exp
h
ÿ ik

s1 � s2

2

� �
� r
i

d3r;

�12�
where

MQ�K; r� �
Z

hQ R
�
� r

2

�
hQ R
�
ÿ r

2

�
eÿiK�R d3R:

�13�
It is to be noted that MQ is of ®nite extent with
respect to the r variable, because the function hQ is
of ®nite extent. Also, because the function hQ is

Fig. 2. Illustrating the notation used in describing radiation

from a primary source q�r; t�.
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nonnegative (hQ describing, as before, the square
root of the source intensity), MQ satis®es the in-
equality

MQ�K; r�
�� ��6MQ�0; r� for all r: �14�
From these two properties it is clear that if we
de®ne a function B�r� by the formula

B�r� � 0 fr : MQ�0; r� � 0g
� 1 fr : MQ�0; r� 6� 0g; �15�

we may incorporate this function into the inte-
grand of Eq. (12) without changing the value of
that integral. This is allowable because the domain
of support of MQ�K; r� is always smaller than and
contained within the domain of support of B�r�.

On substituting B�r� into Eq. (12), we have

eWQ�ÿks1; ks2� � 1

�2p�6
Z

MQ k�s2� ÿ s1�; r�lB
Q�r�

� exp
h
ÿ ik

s1 � s2

2

� �
� r
i

d3r;

�16�
where we have de®ned

lB
Q�r� � B�r�lQ�r�: �17�

From the usual description of the quasi-homoge-
neous approximation, we expect that Eq. (16) will
reduce to a quasi-homogeneous form if hQ is a
``slowly varying'' function of position with respect
to the ``width'' of lB

Q. This is a global requirement,
however, in that it must hold for all locations
within the source domain. It would seem more
appropriate, then, to convert Eq. (16) into an in-
tegral involving the Fourier transforms of hQ and
lB

Q. We introduced the function B�r� for this pur-
pose; the function lQ is by itself unde®ned for
values of r1, r2 not contained within the domain of
support of B�r� (see Eq. (5)).

As both MQ and lB
Q are functions of ®nite sup-

port, they each have a Fourier representation, i.e.

MQ�K0; r� �
Z eMQ�K0;K�eiK�r d3K; �18�

and

lB
Q�r� �

Z
~lB

Q�K�eiK�r d3K: �19�

From Eq. (16), we see that eWQ is the Fourier
transform of a product of two functions. By the
convolution theorem, eWQ may therefore be written
as the three-dimensional convolution of the Fou-
rier transforms of these functions, so that

eWQ�ÿks1; ks2� � 1

�2p�3
Z eMQ k�s2� ÿ s1�;K�

� ~lB
Q k

s1 � s2

2

� �h
ÿ K

i
d3K:

�20�

Substituting from Eq. (13) into Eq. (18), one can
show that eMQ may be expressed in the form

eMQ�K0;K1� � �2p�3~h�Q
�ÿ K1 ÿ 1

2
K0

�
~hQ

�ÿ K1 � 1
2
K0

�
:

�21�
Substituting from this expression into Eq. (20),
and changing the variable of integration from K to
ÿK, we arrive at the result that

eWQ�ÿks1; ks2� �
Z

~h�Q K

�
ÿ 1

2
k�s2 ÿ s1�

�
� ~hQ K

�
� 1

2
k�s2 ÿ s1�

�
� ~lB

Q K
h
� k

s1 � s2

2

� �i
d3K:

�22�

Eq. (22) is an exact expression for eWQ, equivalent
to our de®ning formula, Eq. (9). We have as yet
made no approximations. Because each of the
functions ~hQ�K� and ~lB

Q�K� is the Fourier trans-
form of a function of ®nite support, each is the
boundary value of an entire analytic function in
three complex variables [22, p. 353]. A conse-
quence of this analyticity is that if hQ�r� and lB

Q�r�
are both nonnull functions (which is true if
WQ�r1; r2� 6� 0), then both ~hQ�K� and ~lB

Q�K� are
functions of in®nite support; neither may vanish
on a domain in K-space larger than a two-dimen-
sional manifold. We will use this property shortly.

Although ~hQ�K� is of in®nite support, it must be
negligible for large values of jKj, because its Fou-
rier transform exists (which suggests that it decays
su�ciently rapidly for large K). Let us assume that
~hQ�K� is narrow enough that the integrand in
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Eq. (22) is negligible for values of jKj larger than
some parameter a, i.e. that

~hQ�K� � 0 for all Kj jP a: �23�
This requirement, which states that hQ�r� contains
few high-frequency spatial Fourier components,
suggests that it is slowly varying over spatial dis-
tances on the order of 1=a. It is not then di�cult to
show that the integrand in Eq. (22) will be ap-
preciable only for K values such that Kj j6 a. We
have already noted that ~lB

Q k �s1 � s2�=2� � � K� � is
the boundary value of an entire analytic function
of three complex variables; it follows that it is
di�erentiable to all orders and can be expanded in
a Taylor series around the point K � 0, i.e. that

~lB
Q k

s1 � s2

2

� �h
� K

i
�
X1
n�0

1

n!
�K � rK 0 �n

� ~lB
Q�K0�jK0�k�s1�s2�=2: �24�

If a is su�ciently small, the ®rst term of this series
will dominate the integral in Eq. (22). This con-
tribution, which we denote by eW 0

Q , may be written
as

eW 0
Q �ÿks1; ks2� �

Z
~h�Q K

�
ÿ 1

2
k�s2 ÿ s1�

�
� ~hQ K

�
� 1

2
k�s2 ÿ s1�

�
� ~lB

Q k
s1 � s2

2

� �h i
d3K: �25�

The term involving ~lB
Q is now independent of K,

and may be removed from the integrand. The in-
tegral may then be evaluated using the de®nition
of the Fourier transform of hQ, and eW 0

Q may be
written as

eW 0
Q �ÿks1; ks2� � ~IQ k�s2� ÿ s1��~lB

Q k
s1 � s2

2

� �h i
;

�26�
where

~IQ�K� � 1

�2p�3
Z

IQ�r�eÿiK�r d3r �27�

is the Fourier transform of the source intensity
IQ�r�.

Eq. (26) is equivalent to the Fourier transform
of the cross-spectral density of a quasi-homoge-

neous source, as can be seen by substituting Eq. (1)
into Eq. (8). Note that this result di�ers from the
usual statement of the quasi-homogeneous ap-
proximation by the appearance of the function ~lB

Q,
rather than the ill-de®ned ~lQ. The quasi-homoge-
neous approximation therefore consists of using
only the ®rst term in the Taylor series expansion
of ~lB

Q in the Fourier domain. As can be seen by
considering Eq. (22), this approximation is only
valid when ~lB

Q�K� is constant within a sphere of
radius a centered on K � k�s1 � s2�=2. If the ap-
proximation is to be valid for all directions s1 and
s2, then ~lB

Q�K� must be nearly constant within
every sphere of radius a for all K values such that
jKj6 k. Thus the value of ~lB

Q�K� cannot change
signi®cantly over any distance a, although it may,
for small a, change considerably over a distance k.
This assumption will form the basis of our analysis
of the inverse quasi-homogeneous source problem,
discussed in Section 4.

It is to be noted that these statements are in
agreement with the usual justi®cation of the quasi-
homogeneous approximation, because of the re-
ciprocal nature of a function and its transform. If
~lB

Q�K� is very slowly varying in comparison to
~hQ�K�, then hQ�r� must be very slowly varying in
comparison to lB

Q�r�.
It would be remiss to talk about the quasi-

homogeneous approximation and properties of
quasi-homogeneous functions without some dis-
cussion of conditions under which a given source
cross-spectral density is quasi-homogeneous. We
will discuss this problem in Appendix A.

3. The nonexistence of quasi-homogeneous nonradi-

ating sources

Two conclusions may be immediately drawn
from our careful analysis of the quasi-homoge-
neous approximation. First, it is to be noted that a
given source cross-spectral density will factorize in
the form of Eq. (26) only if ~lB

Q�K� is constant for
all K values. Formally, the inverse Fourier trans-
form of a constant function is proportional to a
delta function, and therefore a cross-spectral
density will only factorize if it is delta correlated.
For any other source with a su�ciently narrow
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correlation function lB
Q�r�, this factorization is

only approximate.
Second, it is to be noted that since the functions

~lB
Q and ~IQ are each the boundary value of an entire

analytic function in three complex variables, nei-
ther function may vanish throughout a region of
K-space with dimensionality greater than that of a
surface, and likewise their product may only van-
ish on surfaces in K-space. It is therefore not
possible for eW 0

Q to vanish for all pairs of directions
s1 and s2, unless W 0

Q vanishes identically. Therefore
nonradiating quasi-homogeneous sources do not
exist.

This result has important consequences for the
inverse source problem. The nonexistence of non-
radiating quasi-homogeneous sources suggests
that, if a source is quasi-homogeneous, some un-
ique information about the source structure can be
determined from measurements of the radiated
®eld outside the source. We will discuss precisely
what structural information can be recovered in
the next section.

4. The inverse problem for quasi-homogeneous

sources

In Section 2, we derived the quasi-homogeneous
approximation through a careful analysis of radi-
ation from globally incoherent sources. From this
derivation we demonstrated the nonexistence of
nonradiating quasi-homogeneous sources. This
result suggests that the radiation of every quasi-
homogeneous source possesses a unique ``signa-
ture'' that distinguishes it from every other, and
that by measurements of the radiation emitted by
such a source we may determine some of its
structural features. We now consider brie¯y what
sort of structural information may be obtained.

We have seen that when a source is quasi-
homogeneous, the function ~lB

Q�K� K0� must be
e�ectively constant for all jKj6 a, for every jK0j 6
k. Then the cross-spectral density of the ®eld far
from the source is proportional to eW 0

Q �ÿks1; ks2�,
given by Eq. (26).

Let us assume that measurements of the cross-
spectral density of the ®eld of a quasi-homoge-
neous source have been made for all directions s1

and s2. If we consider only ®eld data for directions
of observation such that

k
s1 � s2

2

��� ���26 a2; �28�

the Fourier transform of the spectral degree of
coherence will be e�ectively constant over this
range and may be replaced by its value at the or-
igin, ~lB

Q�0�. The function eW 0
Q �ÿks1; ks2� may then

be written aseW 0
Q �ÿks1; ks2� � ~IQ k�s2� ÿ s1��~lB

Q�0�: �29�
The inequality (28) is equivalent to considering

only directions of observation in the range

4k2 ÿ 4a26 k2js2 ÿ s1j26 4k2; �30�
where the upper limit is determined by the maxi-
mum value of kjs2 ÿ s1j.

Using the values of k�s2 ÿ s1� given by Eq. (30),
we may determine, up to an arbitrary multiplica-
tive constant ~lB

Q�0�, the Fourier components of
~IQ�K� which lie within the spherical shell de®ned
by Eq. (30). From this information we may use
Fourier inversion to reconstruct a ``high pass''
®ltered version of the intensity function, IQ�r�.

This reconstruction procedure has only two
undetermined parameters which are unobtainable
from ®eld measurements: the value of ~lB

Q�0�, as
mentioned above, and a, which determines the
allowed Fourier components, as in Eq. (30). Ear-
lier quasi-homogeneous inversion methods de-
scribed in the literature require knowledge of the
value of ~lQ�K� over a continuous domain, either
throughout the volume jKj6 k [10] or along a ra-
dial line within that volume [11].

It is to be noted, however, that in deriving the
quasi-homogeneous approximation, we have as-
sumed that ~hQ�K� is negligible for all jKj > a; this
suggests that ~IQ�K� is negligible for all jKj > 2a
(this can be shown by using the convolution the-
orem on IQ�r� � jhQ�r�j2). In order, then, that our
reconstruction contains nonnegligible Fourier
components of the source intensity IQ�r�, we re-
quire that 4k2 ÿ 4a26 4a2, i.e. that

a2 P 1
2
k2: �31�

This requirement indicates that the usefulness
of reconstruction methods for quasi-homogeneous
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sources depends upon the relation between the
width of IQ and the wavelength k � 2p=k. Other
reconstruction schemes may be used which take
better advantage of the relative values of these
parameters, as well as the width of lB

Q.
We have so far only considered reconstruction

of the intensity of the source; we now brie¯y ex-
amine the possibility of reconstructing the spectral
degree of coherence. Let us assume that we know
the source intensity IQ. For a quasi-homogeneous
source, the Fourier transform of the source in-
tensity is negligible for all jKj > 2a; therefore the
only ®eld data available for reconstructing the
degree of coherence is that for which

kjs2 ÿ s1j6 min�2a; 2k� � b: �32�
Eq. (32) may be rewritten to show that the only

nonnegligible ®eld data is that for which���������������
k2 ÿ b2

4

s
6 k

s1 � s2

2

��� ���6 k: �33�

This formula de®nes a spherical shell within which
are all the Fourier components which may be used
to reconstruct the spectral degree of coherence.
The radial width of this shell, however, is always
comparable to a. For the quasi-homogeneous ap-
proximation to be valid, however, ~lB

Q must be
constant across any radial distance a. The Fourier
information available for reconstruction of the
spectral degree of coherence, then, contains little
or no information about that function's radial
structure, and will not give an accurate recon-
struction. From this argument it seems evident
that the spectral degree of coherence cannot be
reliably reconstructed for quasi-homogeneous
sources.
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Appendix A. Conditions for quasi-homogeneity

We have seen that the requirement for the va-
lidity of the quasi-homogeneous approximation is
that the function ~lB

Q K� K0� � be e�ectively constant
for every value of K such that Kj j6 a, for any
jK0j6 k. In this appendix we will express this
condition in a form which may be used in a
straightforward manner to determine if a given
correlation function may be considered quasi-
homogeneous.

Instead of using the complete Taylor expansion
for the spectral degree of coherence given by Eq.
(24), let us consider the ®nite Taylor expansion
given by

~lB
Q K0� � K� � ~lB

Q K0� � �
Z 1

0

o
ol

~lB
Q lK� � K0�dl:

�A:1�

This expansion of ~lB
Q can be veri®ed directly by

carrying out the integration on the right-hand side
of Eq. (A.1). The ®rst term of this expansion re-
sults in the quasi-homogeneous approximation,
and the second term is the correction to this ap-
proximation. It is therefore clear that a require-
ment for the validity of the quasi-homogeneous
approximation is thatR 1

0
o
ol ~lB

Q lK� K0� �dl
��� ���

~lB
Q�K0�

��� ��� � 1 for all Kj j6 a; K0j j6 k:

�A:2�

This requirement guarantees that the quasi-
homogeneous term will dominate the integral in
Eq. (22) for all directions of observation s1 and s2.
How small, in fact, the correction term must be to
obtain a good solution to the inverse problem will
evidently depend upon the desired accuracy of the
reconstruction. In this sense the correction term
may be considered ``noise'' in the ®eld data.

We may use the triangle inequality, viz.Z 1

0

o
ol

~lB
Q lK�

���� � K0�dl

����6 Z 1

0

o
ol

~lB
Q lK�

���� � K0�
����dl

�A:3�
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to simplify Eq. (A.2). It follows then that a weaker
condition for the validity of the quasi-homoge-
neous approximation is thatR 1

0
o
ol ~lB

Q lK� K0� �
��� ���dl

~lB
Q�K0�

��� ��� � 1 for all Kj j6 a; K0j j6 k:

�A:4�
Because ~lB

Q�K� is the boundary value of an entire
analytic function, it is everywhere continuous. It
follows from this result that j�o=ol�~lB

Q�lK� K0�j is
a continuous real function of the integration
variable l. Therefore by the fundamental theorem
of calculus, we may writeZ 1

0

o
ol

~lB
Q lK�

���� � K0�
����dl � o

ol
~lB

Q�lK

���� � K0�
����
l�l1�K�

;

where 06 l1�K�6 1: �A:5�
This theorem states that the value of this dimen-
sionless integral is equal to the value of the inte-
grand evaluated at some point within the range of
the integration. Using the chain rule for di�eren-
tiation, we may rewrite this derivative in the form

o
ol

~lB
Q�lK� K0� � K � rK0 ~l

B
Q�K0 � K0�jK0�lK; �A:6�

our condition for the quasi-homogeneous ap-
proximation then becomes

K � rK0 ~lB
Q�K0 � K0�jK0�l1�K�K

��� ���
~lB

Q�K0�
��� ��� � 1

for all Kj j6 a; K0j j6 k: �A:7�
This inequality may be simpli®ed further. We note
that the maximum value of jKj is a, so if

a
K̂ � rK0 ~lB

Q�K0 � K0�jK0�l1�K�K

��� ���
~lB

Q�K0�
��� ��� � 1

for all Kj j6 a; K0j j6 k �A:8�
is satis®ed, then Eq. (A.7) is satis®ed. Here K̂ is a
unit vector in the direction of K. Also, if inequality
(A.8) is satis®ed for every l between 0 and 1, and
not just l1, then the inequality (A.8) will be satis-
®ed. A ®nal condition is therefore

K̂ � rK0 ~lB
Q�K0�jK0�K�K0

��� ���
~lB

Q�K0�
��� ��� � 1

a

for all Kj j6 a; K0j j6 k: �A:9�
This condition suggests that the absolute value of
the gradient of ~lQ must be su�ciently small for all
measurable values of K. This is essentially the
same statement, expressed mathematically, that ~lB

Q
must be smoothly varying over all measurable
values of K; for this reason, we may consider Eq.
(A.9) to be a general requirement for the validity
of the quasi-homogeneous approximation. We may
use this equation to determine whether a given
model correlation function is or is not well de-
scribed by the approximation.
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