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Abstract. The concept of the Rayleigh range, well known in the theory of
coherent beams, is generalized to a class of partially coherent beams. Curves are
presented which show the dependence of the Rayleigh range on the spot size of
the beam and on the spectral degree of coherence of the light in the plane of the
waist.

1. Introduction
An important parameter used in the theory of laser beams is the so-called

Rayleigh distance or Rayleigh range. The concept originated in the work of Lord
Rayleigh towards the end of the 19th century, concerning images formed without
re¯ection and refraction [1] and the theory of the pinhole camera [2]. Speci®cally,
Rayleigh showed that images of a distant object can be formed without a lens at a
distance d from the pinhole such that

d ˆ 2r2

¶
; …1†

where r is the radius of the pinhole and ¶ is the wavelength of the light.
This concept was later introduced in antenna theory to characterize the
distance that a collimated beam will traverse before it begins to signi®cantly
diverge [3]. More recently the Rayleigh range has come to be used in connection
with laser beams (see [4] or [5]). Speci®cally for a laser beam with a spot size w0

at the beam waist, the Rayleigh range is de®ned as the distance zR at which
the diameter of the spot size increases by a factor 21=2, i.e. at which the
cross-sectional area is doubled from pw2

0 to 2pw2
0 (see ®gure 1). It is given by

the formula

zR ˆ
pw2

0

¶
: …2†

In recent years considerable attention has been paid to partially coherent
beams. Such beams are ®nding useful applications, in part because they do not
give rise to speckle e� ects as pronounced as with highly coherent beams (see [6],
particularly section 4.4) and also because they are less a� ected by atmospheric
turbulence [7]. They have also found use in lithography [8] and in laser fusion
research [9, 10]. It is, therefore, of interest to try to extend the concept of the
Rayleigh range to beams with an arbitrary state of coherence. In this note we do so
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for a class of partially coherent beams, which have been extensively studied and
used in recent years, the so-called Gaussian Schell-model beams.

2. The Rayleigh range of a Gaussian Schell-model beam{
Consider the ®eld generated by a planar, secondary Gaussian Schell-model

source, located in the plane z ˆ 0 and radiating into the half-space z > 0. The
intensity distribution I…0†…q; ¸† across such a source and the spectral degree of
coherence, ·…0†…q1; q2; ¸† ² g…0†…q2 q1; ¸†, (see [12], section 4.3.2), of the light at a
pair of source points, at frequency ¸, are Gaussian functions,

I…0†…q; ¸† ˆ A2 exp … q2=2¼2
I†; …3†

and

g…0†…q0; ¸† ˆ exp … q02=2¼2
g†; …4†

where A, ¼I and ¼g are positive constants which, in general, depend on the
frequency ¸. With suitable choices of ¼I and ¼g, such a source will generate a
beam, called a Gaussian Schell-model beam.

The spot size in any transverse plane is de®ned as the transverse radial distance
at which the intensity falls to 1=e2 of its axial value. In particular, the spot size w0

in the plane of the waist of the beam, located in the plane z ˆ 0, is evidently

w0 ˆ 2¼I: …5†

According to equation (5.6-98) of [12], with a trivial change of notation, the
intensity generated by the source at a point speci®ed by a two-dimensional position
vector q, in a plane z ˆ constant > 0, is given by the expression
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Figure 1. Depiction of the Rayleigh range for a Gaussian Schell-model beam with spot
size w0. For z values signi®cantly less than the Rayleigh range, the beam has no
appreciable spreading.

{ Since this paper was submitted for publication we discovered that related analysis was
described in [11].



I…q; z† ˆ
A2

‰¢…z†Š2
exp

»2

2¼2
I ‰¢…z†Š2

" #

; …6†

where

¢…z† ˆ 1 ‡ …z=k¼I¯†2
h i1=2

…7†

is known as the expansion coe� cient of the beam,

1

¯2
ˆ

1

…2¼I†2
‡

1

¼2
g

…8†

and

k ˆ 2p¸

c
…9†

is the free-space wave number, c being the speed of light in vacuum. In the above
formula and elsewhere in this note the dependence of the various quantities on the
frequency ¸ is suppressed.

According to equation (5.6-99) of [12], the beam radius »…z† in a cross-section
z ˆ constant > 0 is given by the expression

»…z† ˆ ¼I¢…z†21=2: …10†

In particular, according to equation (7), ¢…0† ˆ 1 and hence

»…0† ˆ ¼I2
1=2: …11†

From equations (10) and (11) it follows that

»…z†
»…0†

ˆ ¢…z†: …12†

Introducing the Rayleigh range, zR, for the partially coherent beam by analogy
with the de®nition used for coherent beams, namely,

»…zR†
»…0† ˆ 21=2; …13†

it follows from equations (13), (12) and (7) that

1 ‡ zR

k¼I¯
ˆ 2; …14†

i.e. that

zR ˆ k¼I¯: …15†

Recalling expression (8), which de®nes the parameter ¯, and the fact, expressed by
equation (5), that ¼I is half of the spot size w0, expression (15) for the Rayleigh
range becomes

zR ˆ kw0

2

1

w2
0

‡ 1

¼2
g

" # 1=2

: …16†
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We note two limiting cases. For a completely spatially coherent source (¼g ! 1)
generating a Gaussian Schell-model beam (which represents the lowest-order
Hermite±Gaussian mode), formula (16) becomes

…zR†coh ˆ
kw2

0

2
…17†

or, since k ˆ 2p=¶, where ¶ is the wavelength,

…zR†coh ˆ pw2
0

¶
; …18†

in agreement with the usual expression (2). In the other extreme case of a ®eld
generated by a completely incoherent source, ¼g ! 0 and formula (16) gives

…zR†incoh ˆ 0: …19†

For a partially coherent source 0 < ¼g < 1, and equations (16) and (17) imply that

0 µ zR µ …zR†coh; …20†

demonstrating that the fully spatially coherent Gaussian Schell-model beam has
the greatest Rayleigh range, given by the usual expression (18).

In ®gure 2 a three-dimensional plot of the scaled Rayleigh range zR as a
function of the scaled spot size w0 and the scaled rms width ¼g of the spectral
degree of coherence is shown, calculated from equation (16). The corresponding
contours are shown in ®gure 3. By straightforward calculations expression (16) for
the Rayleigh range of a Gaussian Schell-model beam can be rewritten in the form

zR ˆ …zR†coh 1 ‡
w0

¼g

³ ´2
" # 1=2

: …21†
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Figure 2. The three-dimensional plot of the (scaled) Rayleigh range kzR, as a function
of the scaled spot size kw0 and the scaled rms width k¼g of the spectral degree of
coherence.



The ratio zR=…zR†coh is seen to be a function of a single parameter

¬ ˆ w0

¼g
: …22†

For beams with the same spot size w0 but di� erent values of ¼g (di� erent spectral

degrees of coherence) this parameter can take on any values in the range

0 µ ¬ < 1; …23†
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Figure 3. The contours of the (scaled) Rayleigh range kzR as a function of kw0 and k¼g.
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Figure 4. The ratio of the Rayleigh range zR for a partially coherent beam to the
Rayleigh range of a fully coherent beam, …zR†coh, as a function of the parameter
¬ ˆ w0=¼g.



the extreme value zero representing the fully coherent case, the other extreme
value, ¬ ! 1, representing the completely incoherent case. In ®gure 4, the ratio
zR=…zR†coh is displayed as a function of the parameter ¬.

3. Some theorems concerning the Rayleigh range
We will now derive two simple results involving the Rayleigh range of

Gaussian Schell-model beams.

3.1. A reciprocity relation
The angular spread ³ of a Gaussian Schell-model beam is given by the formula

(see [12], equation (5.6-102))

³
2 ˆ

2

k2¯2
: …24†

According to equation (15), the Rayleigh range is expressible in the form

zR ˆ 1

2
kw0¯: …25†

From these two equations we obtain at once the reciprocity relation

zR ˆ w0

21=2³
; …26†

which shows that the Rayleigh range is inversely proportional to the angular
spread of the beam. Formula (26) also shows that the Rayleigh range is directly
proportional to the spot size w0.

3.2. The Rayleigh range associated with sources that generate the same angular
distribution of radiant intensity

It has been demonstrated many years ago that, with suitable choices of the
parameters, di� erent Gaussian Schell-model sources may generate beams which
have the same normalized far-zone intensity distribution (see [13]; see also [12],
section 5.4.2). Such `equivalent’ sources have the same value of the parameter

E ² 1

w2
0

‡ 1

¼2
g

: …27†

According to equations (16) and (27) the Rayleigh range of a Gaussian Schell-
model beam is expressible in the form

zR ˆ pw0

¶E1=2
: …28†

This formula shows that all Gaussian Schell-model beams which have the same
(normalized) angular distribution of radiation in the far zone (and consequently for
which the parameter E has the same value) have Rayleigh ranges which are
proportional to their spot size w0.
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