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The relationship between computed tomography (CAT) and diffraction tomography (DT) is investigated. A
simple condition with a clear physical meaning is derived for the applicability of CAT. Corrections due to
scattering are incorporated into CAT, and it is shown that the effect of scattering may be characterized by a
two-dimensional fractional Fourier transform. The implications of these results for the three-dimensional im-
aging of weakly scattering objects are also discussed. © 2001 Optical Society of America
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1. INTRODUCTION
During the past 30 years or so, tomographic methods
have developed into techniques of great importance in the
three-dimensional reconstruction (loosely referred to as
three-dimensional imaging) of absorbing and scattering
objects. Foremost among them is computed tomography,
also known as computed axial tomography, abbreviated as
CAT (see, for example, Sec. 4.11 of Ref. 1, or Refs. 2 and
3). It is a basic diagnostic technique in medicine, for
which it was originally developed, but it has found nu-
merous applications in other fields. Computed tomogra-
phy is based on a geometrical model of the propagation of
radiation. Such a model is appropriate for the interpre-
tation of results of measurements with x rays that are
passed through certain organs of the human body such as
the brain or the kidney. It is, however, not appropriate
when the organ is composed of soft tissues, such as wom-
en’s breasts. To detect objects such as cancerous tumors
in these regions it is more appropriate to use ultrasonic
waves rather than x rays. Because the wavelengths of
ultrasound used in such applications are of the same or-
der of magnitude as the features to be detected, one can
no longer use a geometrical model for propagation of the
waves; i.e., one has to take into account diffraction and
scattering. Instead of CAT one can then use so-called dif-
fraction tomography (DT) to reconstruct the features of
the object of interest (see Ref. 4 or Sec. 13.2 of Ref. 1).
Just like CAT, diffraction tomography has found uses in
many different fields, but unlike CAT, DT requires mea-
surement not only of the intensity (squared amplitude) of
the diffracted wave but also of its phase. However, phase
measurements of optical waves present formidable prac-
tical difficulties.5

Since geometrical optics represents a short-wavelength
limit of wave optics, and since the theory of CAT is based
on a geometrical model of propagation (usually of x rays),
one might suspect that DT reduces to CAT in the short-
wavelength limit.6 It would therefore seem that a
clearer understanding of the range of validity of CAT
might be obtained, as well as an indication of how to
broaden its range of applicability, by studying its relation-
0740-3232/2001/092132-06$15.00 ©
ship to DT. It is the purpose of this paper to elucidate
this question.

2. COMPUTED TOMOGRAPHY AND
DIFFRACTION TOMOGRAPHY
Consider a monochromatic scalar plane wave Ui(r, t)
5 Ui(r)exp(2ivt) of frequency v and wave number
k 5 v/c (c being the speed of light in vacuum), with spa-
tial dependence Ui(r) 5 exp(iks0 • r) (s0 being the unit
vector in the direction of propagation), incident upon a
scattering object characterized by a potential F(r), occu-
pying a volume V (see Fig. 1). The time-independent total
field U(r) (incident plus scattered) satisfies the equation
(Ref. 1, Sec. 13.1),

@¹2 1 k2#U~r! 5 24pF~r!U~r!. (1)

If the scattering potential is sufficiently weak, the total
field may be represented in the form

U~r! ' Ui~r!exp@c~r!#, (2)

where

c~r! 5 E
V

F~r8!
exp~ikur 2 r8u!

ur 2 r8u

3 exp@2iks0 • ~r 2 r8!#d3r8. (3)

This approximation to the total field is known as the first
Rytov approximation (Ref. 1, Sec. 13.5).

We consider the arrangement shown in Fig. 1, in which
the measurement plane z 5 d is oriented perpendicular
to the direction of incidence s0 . This arrangement is of-
ten referred to as the classical measurement configura-
tion. We may rewrite expression (3) in a form suitable
for evaluation on the measurement plane by making use
of an expansion of a spherical wave due to Weyl (Ref. 7,
Sec. 3.2), which for z . z8 takes the form
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exp~ikur 2 r8u!

ur 2 r8u
5

ik

2p
E E 1

m
exp@ik@ ps1 1 qs2

1 ms0# • ~r 2 r8!#dpdq, (4)

where r 5 xs1 1 ys2 1 zs0 , r8 5 x8s1 1 y8s2 1 z8s0 ,
(s1 , s2 , s0) is a triad of mutually orthogonal unit vectors,

m 5 HA1 2 p2 2 q2 when p2 1 q2 < 1

iAp2 1 q2 2 1 when p2 1 q2 . 1,
, (5)

and the integration in Eq. (4) is taken over the complete
p, q plane. By substituting expansion (4) into Eq. (3),
one finds that the complex phase c(r) on the plane
s0 • r 5 d may be expressed in the form

c~x, y; d ! 5
ik

2p
E

V
d3r8E E 1

m
F~r8!

3 exp@ik~m 2 1 !~d 2 z8!#

3 exp$ik@ p~x 2 x8! 1 q~y 2 y8!#%dpdq.

(6)

By carrying out the r8 integration, one may express Eq.
(6) in the simple form

c~x, y; d !

5 ~2p!2ikE E 1

m
F̃(k@ ps1 1 qs2 1 ~m 2 1 !s0#)

3 exp@ik~m 2 1 !d#exp@ik~ px 1 qy !#dpdq, (7)

where

F̃@K# 5
1

~2p!3 E
V

F~r!exp~2iK • r!d3r (8)

is the three-dimensional Fourier transform of the scatter-
ing potential. Equation (7), which relates the complex
phase of the scattered field on the plane s0 • r 5 d to the
three-dimensional Fourier transform of the scattering po-
tential, forms the basis of diffraction tomography in the
first Rytov approximation.

We are interested in the short-wavelength limit of this
formulation, for which intensity data alone may be used
to determine the structure of the object. Let us define an
intensity data function D(x, y; d) by the formula

Fig. 1. Depiction of the arrangement and notation.
D~x, y; d ! [ lnH uU~r!u2

uUi~r!u2J
z5d

5 2 Re$c~x, y; d !% (9)

(Re denoting the real part), where expression (2) was
used. Suppose that the scattering potential F(r) varies
slowly over distances comparable to or less than some dis-
tance that which we will denote by s. Under these cir-
cumstances it is reasonable to assume that the Fourier
transform of the scattering potential is negligible for all
uKu * 2p/s, i.e., that

F̃@K# ' 0, uKu * 2p/s. (10)

When the wavelength is sufficiently short, the wave
number k 5 2p/l will be large and consequently

ks [ 2pS s

l
D @ 1. (11)

When inequality (11) is valid, the scattering potential
changes slowly over distances on the order of the wave-
length.

Let us consider the approximate form of data function
(9) when Eqs. (10) and (11) are satisfied. Using inequali-
ties (10), one can show by straightforward calculation
that the integrand of Eq. (7) and hence also the integrand
of Eq. (6) is likely to be appreciable only for values of p
and q such that

p2 1 q2 ! 1. (12)

In this small p, q limit, the term (1/m) exp@ik(m 2 1)
3 (d 2 z8)# in the integrand of Eq. (6) may be expanded in
a Taylor series about p 5 q 5 0, and one then has

1

m
exp@ik~m 2 1 !~d 2 z8!#

' 1 1 @1 2 ik~d 2 z8!#S p2 1 q2

2 D 1 O@~ p2 1 q2!2#,

(13)

where O represents the ‘‘order’’ symbol common in
asymptotic analysis. On substitution from Eq. (13) into
Eq. (6), the data function may be expressed in a series
form

D~x, y; d ! 5 D0~x,y;d ! 1 D1~x, y; d ! 1 D2~x, y; d !

1 .... (14)

The first term, D0 , which is expected to be the dominant
term when inequality (11) is satisfied, is given by the ex-
pression

D0~x, y; d ! ' 2 ReH ik

2p
E

V
d3r8E E F~r8!

3 exp$ik@p~x 2 x8! 1 q~y 2 y8!#%dpdqJ.
(15)

The p, q integrations may be evaluated by using the Fou-
rier representation of the Dirac delta function, viz.,
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d~x 2 x8! 5
1

2p
E exp@iu~x 2 x8!#du. (16)

Using Eq. (16), and recalling that x8 5 s1 • r8, y8
5 s2 • r8, one may then express the dominant term in
the data function D(x, y; d) in the simple form

D0~x, y; d ! ' 2
4p

k
E Im$F~r8!%d~x 2 s1 • r8!

3 d~y 2 s2 • r8!d3r8. (17)

Expression (17) has the form of the data function used in
the theory of CAT studies,8 if one makes the identification

a~r! 5
4p

k
Im$F~r!%, (18)

where a(r) is the absorption coefficient of the object.
One can obtain corrections to the CAT limit that are due
to scattering by including higher-order terms in the Tay-
lor series of expression (13). Using methods similar to
those employed in deriving expression (17) and noting
that

p2 exp@ikp~x 2 x8!# 5
21

k2

]2

]x82 exp@ikp~x 2 x8!#,

(19)

with a similar expression involving q2, one can express
the first correction due to scattering beyond the CAT limit
in the form

D1~x, y; d ! 5
2p

k3 E @Im$¹T
2 F~r8!%2k Re$¹T

2 F~r8!%

3 ~d 2 s0 • r8!#d~x 2 s1 • r8!

3 d~ y 2 s2 • r8!d3r8, (20)

where ¹T
2 is the Laplacian with respect to the coordinates

transverse to s0 . It is interesting to note that Eq. (20) is
comparable to a formula derived elsewhere9 by a geo-
metrical optics method for the intensity variations of a
ray bundle propagating in a medium with real refractive
index. In our calculation, if the refractive index is real
valued, we expect that Eq. (20) will be the dominant term
of the series in Eq. (14) in the short-wavelength limit.

Returning to Eq. (6), we may derive another, poten-
tially more useful, expression for the data function valid
in the short-wavelength limit. Instead of expanding the
exponential in Eq. (6), let us expand the exponent in Eq.
(7) in a Taylor series. As we have seen, when inequality
(11) is satisfied, inequality (12) is also satisfied and, to a
good approximation, we may write that

~m 2 1 ! ' @2
1
2 ~p2 1 q2!#. (21)

Using Eqs. (7), (9), and (21), we may express the data
function in the form
D~x, y; d ! '
~2p!3k

p
ReHE E i

m
F̃(k@ ps1 1 qs2

1 ~m 2 1 !s0#)exp$ik@ px 1 qy

2 d~ p2 1 q2!/2#%dpdqJ. (22)

Let us compare expression (22) with the definition of a
two-dimensional fractional Fourier transform (FracFT)
F u

(2) (Refs. 10–14) of a function f(u, v), viz.,

F u
(2)f~u, v ! 5

i exp~2iu!

2p sin u
expF2

i

2
cot u~u2 1 v2!G

3 E E expF i

sin u
~uu8 1 vv8!G

3 expF2
i

2
cot u~u82 1 v82!G

3 f~u8, v8!du8dv8, (23)

where u, v and u8, v8 are dimensionless variables and u
is the order of the transform. It can be shown that

F 0
(2)f~u, v ! 5 f~u, v ! ~ identity!, (24)

F u1

(2)F u2

(2)f~u, v ! 5 F u11u2

(2) f~u, v ! ~ linearity!, (25)

F p/2
(2) f~u, v ! 5 f̂~u, v !, (26)

where f̂ is the two-dimensional Fourier transform of f, de-
fined by the formula

f̂~u, v ! [
1

2p
E E f~u8, v8!exp@i~uu8 1 vv8!#du8dv8.

(27)

To make the comparison, let us set

cot u 5 kd, (28)

b 5 k sin u, (29)

and

G~ p, q ! 5
1

m
F̃(k@ ps1 1 qs2 1 ~m 2 1 !s0#). (30)

By use of Eqs. (28), (29), (30), and (23), data function (22)
may be expressed in the form

D~x, y; d ! 5 2~2p!3b ReH exp~iu!expX i

2
cot u@~bx !2

1 ~by !2# CF u
(2)G~bx, by !J . (31)

It is to be noted that the parameter u depends only on
quantities that are known, namely, the wavelength l
5 2p/k and the position of the measurement plane,
specified by d.

Equation (31) is the main result of this paper. It dem-
onstrates that, under the conditions indicated by in-
equalities (10) and (11), the data function D(x, y; d) is re-
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lated to the three-dimensional Fourier transform of the
scattering potential by a two-dimensional fractional Fou-
rier transformation.

We may use Eq. (31) to investigate the relation between
the CAT and DT methods. Let us first consider the form of
the data function in the limit as l → 0, with s and d
fixed. From Eq. (28) it is clear that in this limit
u → p/2. Furthermore, as l → 0, inequality (11) is sat-
isfied and consequently inequality (12) is also satisfied,
and hence m ' 1 for all values of p, q for which G Þ 0.
In this limit.

G~ p, q ! ' F̃@k~ps1 1 qs2!# [ G0~ p, q !. (32)

It therefore follows from Eq. (31), since b → k as u
→ p/2, that

lim
l→0

D~x, y; d ! 5 2~2p!3k Re$iF p/2
(2) G0~kx, ky !%. (33)

By use of Eqs. (26) and (27), Eq. (33) is seen to imply that

lim
l→0

D~x, y; d ! 5 2
4p

k
E Im$F@r8#%d~x 2 x8!

3 d~y 2 y8!d3r8, (34)

which, as evident from Eq. (17), is the expression appro-
priate to CAT.

The wavelength l of the incident light is, of course,
never strictly zero. We would like to investigate under
what conditions the data function is well approximated by
inequality (17). For this purpose we note that in both DT
and CAT the Fourier components of the scattering poten-
tial are recovered by taking a two-dimensional Fourier
transform of the data function. If we set

D @kx, ky; d# [ D@x, y; d# (35)

for notational convenience, we may express the two-
dimensional Fourier transform of D with respect to the di-
mensionless variables kx, ky as

D̂ @u, v; d# 5
1

2p
E E exp@2ik~ux 1 vy !#

3 D@kx, ky; d#d~kx !d~ky !. (36)

On substituting from Eq. (31) into Eq. (36) and using defi-
nition (23) of the two-dimensional FracFT, we find that
the Fourier transform of the data function may be ex-
pressed in the form

D̂ @u, v; d# 5 ~2p!3ikH expF2
i

2
cot u~u2 1 v2!GG~u,v !

2 expF i

2
cot u~u2 1 v2!G @G~2u, 2v !#* J ,

(37)

the asterisk denoting the complex conjugate. If the CAT
approximation is to be valid, this expression must be
nearly equal to that of the Fourier transform of the CAT
data function, which, on substituting from expression (17)
into Eq. (36) and using Eq. (32), is found to be
D̂0@u, v; d# 5 ~2p!3ik$F̃~kus1 1 kvs2!

2 @F̃~2kus1 2 kvs2!#* %. (38)

We have already seen that, provided that inequality (11)
is satisfied, we may approximate (m 2 1) as in expres-
sion (21). By use of expression (21), along with Eqs. (30)
and (8), we may express the Fourier transform (37) of the
data function in the form

D̂ @u, v; d# 5
ik

m H E
V

F~r8!exp@2ik~ux8 1 vy8!#

3 expF i

2
k~u2 1 v2!~d 2 z8!Gd3r8

2 E
V

F* ~r8!exp@2ik~ux8 1 vy8!#

3 expF 2
i

2
k~u2 1 v2!~d 2 z8!Gd3r8J .

(39)

Equation (39) differs from Eq. (38) because of the
presence of the complex z8 exponentials in the integrands
in Eq. (39). The CAT approximation will therefore
be valid only if the exponents are sufficiently small
(much less than p/2, at which value the exponentials be-
come pure imaginary) for all values of u, v such that
F̃(kus1 1 kvs2) Þ 0, as well as for all z8 P V, or that

1

2
k~d 2 z8!@u2 1 v2# !

p

2

for all u2 1 v2 <
~2p!2

~ks!2 5 S l

s
D 2

,

and for all z8 P V. (40)

If this inequality is satisfied for the maximum value of
u2 1 v2, it will be satisfied for all values of u2 1 v2; simi-
larly, if it is satisfied for the maximum value of d 2 z8, it
will be satisfied for all values of d 2 z8. The maximum
value of u2 1 v2 is given in inequality (40); the maximum
value of d 2 z8 is the distance along the direction s0 from
the measurement plane to the far side of the scatterer, as
shown in Fig. 2. Denoting this distance by L, inequality
(40) may be expressed in the simple form

L !
s2

2l
. (41)

The physical significance of this inequality may readily be
understood if we note that the quantity on the right-hand

Fig. 2. Definition of the distance L relevant to inequality (40).
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side of inequality (41) is of the order of the Rayleigh
range,15 well known in the theory of antenna design and
in the theory of laser beam propagation.17 In physical
terms, inequality (41) implies that the detector plane
must be well within this range. Under these circum-
stances, the Huygens secondary wavelets which proceed
from the scatterer will essentially cancel each other out
by destructive interference, except in the forward direc-
tion, as can be deduced by the use of the principle of sta-
tionary phase (Ref. 7, Sec. 3.3). The cancellation implies
that within the region specified by inequality (41), the
propagation is well described by geometrical optics. Con-
versely, when inequality (41) is not satisfied, the geo-
metrical optics model does not apply and CAT will not
provide reliable reconstruction of the object.

In tomographic experiments using x rays, which have
photon energies of the order of 50 KeV, the wavelength of
the incident radiation is of the order of 2.5 3 10211 m. It
is reasonable to assume that the variation s of the index
of refraction of objects typically imaged is of the order of 1
mm. For this choice of parameters, the Rayleigh range is
found to be 20 km.

In contrast, in tomographic experiments using ultra-
sound, the ultrasonic waves typically have wavelengths of
the order of 0.5 cm. Again, assuming that the variation s
is of the order of 1 mm, and assuming propagation of
waves through water (for which the speed of propagation
is approximately 1500 m/s), the Rayleigh range is found
to be 0.1 mm.

3. EXAMPLE
We will now illustrate these results by an example. We
consider scattering from an object with a scattering po-
tential of Gaussian shape, i.e.,

F~r! 5 A exp~2r2/2s0
2!, (42)

where A and s0 are real-valued positive constants. The
three-dimensional spatial Fourier transform of this po-
tential is given by the expression

F̃~K! 5
As0

3

~2p!3/2 exp~2K2s0
2/2!, (43)

implying that the scattering potential will be negligible
for all values of K such that uKu * 2p/s0 . In the limit-
ing situation in which CAT is valid, we expect that the

Fig. 3. First Rytov data function, CAT data function, and frac-
tional Fourier data function for ks0 5 40, kd 5 40. In the fig-
ure, the variable r 5 (x2 1 y2)1/2/(A2s0) and the normalization
constant N 5 A(2p)3/2s0 /k. For this particular choice of ks0
and kd, all three plots practically coincide.
data function will have the form of the first nonzero term
in series (14); on inspection of Eqs. (17) and (20) it can
be seen that this term is given by Eq. (20). The effec-
tive width of the scatterer is 2s0 , as can be seen from
Eq. (42); the distance L then satisfies the relation
L 5 s0 1 d.

We have seen that for the CAT approximation to be
valid, inequalities (11) and (41) must be satisfied. In Fig.
3 we display the first Rytov data function,16 [from Eqs. (7)
and (9)], the FracFT approximation to that function [Eq.
(31)], and the data function used in CAT studies [Eq. (20)]
for the case when ks0 5 40, kd 5 40. We see that with
this choice of parameters, the three data functions prac-
tically coincide.

Figure 4 shows the three data functions for ks0 5 40,
kd 5 500. In this case, inequality (11) is satisfied but in-
equality (41) is not. One can therefore expect that the
CAT data function will not provide a good approximation
to the scattered field, and this, indeed, is evident in the
figure. The fractional Fourier data function, which
should be valid if inequality (11) is satisfied, is seen again
to practically coincide with the first Rytov data function.

Figure 5 shows the three data functions when
ks0 5 2, kd 5 8; in this case neither inequality (11) nor
inequality (41) is satisfied. It can be seen that there are
significant differences between the first Rytov data func-
tion, the FracFT function, and CAT. It is to be observed,
however, that even though inequality (11) is not satisfied,
the FracFT data function illustrates fairly well the gen-
eral behavior of the predictions of the first Rytov theory.

4. CONCLUSIONS
We have studied, within the accuracy of the first Rytov
approximation, the relationship between computerized
axial tomography (CAT) and diffraction tomography (DT).
We found that when certain conditions are satisfied, CAT

Fig. 4. First Rytov data function, CAT data function, and frac-
tional Fourier data function for ks0 5 40, kd 5 500.

Fig. 5. First Rytov data function, CAT data function, and the
fractional Fourier data function for ks0 5 2, kd 5 8.
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is a short-wavelength limit of DT. The conditions are the
following: (1) the scattering potential varies slowly over
distances of the order of a wavelength and (2) the mea-
surement plane is at a distance small compared with a
certain characteristic length, which turns out to be the so-
called Rayleigh range, well known in antenna theory and,
in a more restricted form, in the theory of laser beam
propagation.17

Corrections to the CAT limit that account for the finite
wavelength of the incident radiation have also been
briefly discussed.

Our analysis brings into evidence an intimate relation-
ship that exists between the theory of weak scattering [for
which the first Rytov approximation and inequality (11)
are satisfied] and fractional Fourier transforms. The ex-
pression of the data function based on the fractional Fou-
rier transform [Eq. (31)] is distinct from both the CAT
data function and the general DT data function and
serves as an intermediate form between the two. The ex-
istence of a distinct intermediate form of the data func-
tion may eventually lead to the formulation of hybrid
CAT–DT methods of reconstructing the scattering poten-
tial.
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