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Abstract

The concept of the Rayleigh range, well known in the theory of coherent beams, is extended to partially coherent
beams. A simple formula is derived, which expresses it in terms of the rms widths of the source intensity and of the
intensity of the field far from the source. In the special cases when the beam is completely coherent or is of the Gaussian
Schell-model type, our formula reduces to known expressions. It is also shown that a partially coherent beam will
always have a Rayleigh range that is shorter than that of a fully coherent beam with the same intensity distribution in
the beam waist. © 2001 Published by Elsevier Science B.V.
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The Rayleigh range is used in antenna theory [1] and in the theory of lasers [2] to characterize the
distance a beam propagates without spreading appreciably. When the source plane is the waist plane of a
beam or an aperture illuminated by a plane wave, the Rayleigh range is a measure of the distance over
which a beam may be considered effectively non-spreading. Although an important characteristic of any
beam, this quantity has not been closely studied for partially coherent beams, except in two recent in-
vestigations concerning the so-called Gaussian Schell-model beams [3,4]. In this paper we investigate the
Rayleigh range for partially coherent beams only.

We obtain a simple relation that expresses the Rayleigh range in terms of the second moments of the
intensity in the source plane and of the far field. We show that, for the case of a coherent Gaussian beam,
our formula reduces to the usual one. We investigate Schell-model beams in some detail.

We consider a field propagating into the half-space z > 0 (see Fig. 1). The plane z = 0 may represent the
waist of an incident beam or an opaque screen with an aperture. The cross-spectral density Wy (r;, 1y, »)
[5, Section 4.3.2] of the field at frequency w at any pair of points r;, r, in the half-space z > 0 may be
expressed in terms of the cross-spectral density of the field W (p], py, ) in the plane z =0 as
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Fig. 1. Illustrating the notation relating to radiation from a partially coherent planar secondary source.

This formula readily follows from the representation of the cross-spectral density of the field as the en-
semble average of a monochromatic field, Wy (ry,ry, w) = (V*(r;, )V (ry, w)) [5, Section 4.7.2], and from the
Rayleigh—-Sommerfeld formula of the first kind [6, Section 8.11.2]. We may make use of the Weyl repre-
sentation for the free-space Green’s function [5, Section 3.2],

U)K [ L expibls =) 4,030+ = 2 ) s, @

r—r|

\/1—s2—s2, when [s; +5)[ <1,
8z = (3)
iy/s24+s2—1, when [s; +57| > 1,
w

where

and

c being the speed of light in vacuum. The integration in Eq. (2) is taken over the entire s, s, plane, with d’s
representing the element ds, ds,. On substituting from Eq. (2) into Eq. (1), the latter equation takes on the
form

k4 / / : / ! *
Hlre) = o / / / / Wo(, p5) exp(—iklsne(x1 — ) + 51,01 — ¥]) + 51.21])
X exp(ik[sa(x2 — x) + 52, (12 = 1) + 52:72]) A, A%y sy AP, (5)

where d%s; = dsi, ds; (i=1,2). From now on we do not display the frequency dependence of the cross-
spectral density. We may integrate with respect to the primed variables and find that

WV(l'l,l'z) = k4 / / VT/Z)(—]CSIL, kSzL) exp(—ik[slxxl + S1y)1 + STzzl]) exp(ik[szxxz + 82312 + 52222]) d2S1 d2S2,
(6)

where

17 1 o : / / / /
T Ke) = o [ hloh oy (K g+ K ) 0 0 )
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is the four-dimensional spatial Fourier transform of the cross-spectral density of the field in the plane z = 0,
and s;; = s,X+ 5,9 (i =1,2), x, y being unit vectors which, together with the z-direction, form a right-
handed orthogonal coordinate system.

It is well known [5, Section 5.6] that a partially coherent field is beam-like only if the Fourier transform
of the cross-spectral density of the field satisfies the approximate relation

Wo(Ki,Ky) ~ 0 when |K;|* > o? or [Ko|* > o, (8)
for some o« < k. When relation (8) holds,
s R 1 =55, +57,)- )

Eq. (6) for the cross-spectral density of the field may then be expressed as
WV(l‘l,l‘Z) = k4 exp[ik(zz — 21)} / / VV()(—kSll, kSzl) exp(—ik[slxxl + Slyyl]) exp(ik[SQsz =+ S2yy2D

ik ik
X €xp <1§ [s7, + sﬁy}zl) exp < - % [s3, + S%y]zz) d’s; d’s,. (10)
The intensity of the field at a point (p,z > 0) is given by the expression
1(p,z) = Wy(p,z: p, 2). (11)
On substituting from Eq. (10) into this expression, it follows that

I(p,z) = K / / Wo(—ksy 1, kss1 ) exp(—iklste — sacJx) exp(—ikst, — sa,])

ik
X exp (13 [s7, + 51, — 3, — sgy]z> d’s; d’s;. (12)

The Rayleigh range of a beam is defined as the distance from the plane z = 0 at which the width of the
beam increases by a factor of v/2. The width of the beam may be specified by the its normalized spatial
variance,

PE) =1 (13)
where

Ry = /I(p,z) d’p, (14)
and

R, = /le(p,Z)dzp (15)

are the zeroth and second moments of the intensity in the plane z = const. We have assumed for simplicity
that the the beam is centered at p = 0 for all z > 0. The evaluation of Ry is straightforward. On substituting
from Eq. (12) into Eq. (14), it follows that

Ry = k* / // VT’O(—ksu, ksay ) exp(—ik[s1y — sa:)x) exp(—ik[s1, — s2,]y)

k
X exp (13 [s7, + 53, — 53, — sgy]z> dxdyd?s; ds,. (16)



298 G. Gbur, E. Wolf | Optics Communications 199 (2001) 295-304

By using the Fourier representation of the Dirac delta function, i.e.

5 — un) = % /exp[i(ul ~ )] d, (17)

expression (16) for Ry, becomes

~ ik
Ry = (2n)2k4 / / %(—kSIL,kSQL)é(kSIX — kSzx)é(kSIy — kSzy) exp <13 [S%x + S%y — S%x — Si,}z) dZSl dsz.
(18)
Upon integrating over one of the s-variables, it follows that'
Ry = (27)°K2 / o(—ks, ks, ) . (19)

It is to be noted that this expression is independent of z; the z-dependence of p?(z) is entirely determined by
R,. Furthermore, it follows from Egs. (14) and (19) that

/ I(p,0)d*p = (2n)’k> / Wo(—ks,, ks, )d%s. (20)
The calculation for R, is more involved. Noting that p?> = x> + )2, R, may be expressed in the form
Ry— & / / / Wo(—ksy 1, kss1 ) exp(—ik[ste — sacJx) exp(—iklst, — sa,])

ik
X exp (15 [s7, + 87, — 83, — S%y]z) (x* + y*) dxdyd’s; d’s». (21)
Furthermore, we may make use of the identity
1 . .
~3 (V2 + V2) exp(—iklsi, — s2.)x) exp(—ik[s1, — s5,]y)
= (x? +7) exp(—ik[si, — sax) exp(—ik[si, — s2,]v) (22)
in the integrand of Eq. (21). Here V,; (i = 1,2), is the gradient with respect to s;. On substituting from
Eq. (22) into Eq. (21), and applying twice Green’s first identity, we find that

R, = —%2 ///eXp(—ik[slx — saJx) exp(—ik[si, — s2,]y)

~ k
x (V3 + V5) [WO( — ks, ks>, ) exp (15 [s7, + 51, — 83, — si]z)] dxdyd’s; d’s,. (23)

We may now use Eq. (17) again, and find that

272
R, = ,@ //5(k51x — kszx)é(ksly — kSzy)

~ 1k
x (V4 +V3) [WO( — ks, ks> ) exp (3 [s]. + s%y — 55, — sgy]z)} d?s, d%s,. (24)

"It can be shown from Eq. (19) that the quantity Ry represents, within the accuracy of the paraxial approximation, the power
radiated across a large hemisphere in the half-space z > 0, centered on the origin. See, for instance, the discussion preceding Eq. (40)
below.
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Upon integrating over s;, this expression may be further simplified to
2n)? ~ ik
( 2) / {(Vfl +V3) {WO( — ks, ksy1 ) exp (5 [s7, +sfy -5 - S%y]z)] } d%s. (25)
S]1=S)=S§

The derivatives with respect to s; and s, can be readily evaluated by the use of Eq. (7). One then finds that

Ry=—

Ry =4+ Boz + 7, (26)
where

4y = / Wo(p,p)p” dp, (27)

_ 272 7 2 32

G =(2n)k / Wo(—ksy, ks, )s| ds, (28)

and
k? .

Br= iy [ [ [ Vil st o sl ] )8 & (29)
The quantity B, may be simplified further. We first note that

py - Viexp(—ik[p, — pi] -s) = i(kp, - s) exp (—ik[p, — pi] - 5), (30)

where V; is the gradient taken with respect to p,, with a similar expression for p,. We may then express
B, as

1
(2n)’ik

B, =

© / // Wo(py, p2)[=p1 - Vi + po - Valexp(—ik[p, — p)] - s)d’p, d*p, d’s. (31)
The right-hand side may be evaluated by use of the divergence theorem, and one finds that
1
By == /{[ —p1-Vi+py - Vallo(pr, p2)} -y - (32)

On substituting from Eq. (26) into Eq. (13), we may express the beam width at distance z as
o = 2Bt GF
0
where R, is given by Eq. (19), and 4,, B,, and C, are given by Egs. (27), (32), and (28), respectively. The
functional form of Eq. (33) is perhaps not surprising; it has been known for some time that fully coherent
beams satisfy such a relation [7]. Eq. (33) was derived for partially coherent beams in a slightly different

form in Ref. [8]. It is to be noted that 4>, B, and C, are all real. This fact is obvious for 4, and C, from their
definitions; for B, it follows from the Hermiticity of the cross-spectral density,

VVO(phpz) = VV()*(p27pl)7 (34)

that Eq. (32) may be expressed in the form

(33)

2 / / /
B, = -7 /Im{p -V'W(p 7P)}p/:pdzpv )

where Im denotes the imaginary part and V' is the gradient with respect to p'. It is to be noted that B, = 0 if
W is real, which is the case if the field in the plane z = 0 contains the waist of the beam or is an aperture
illuminated by a normally incident plane wave.



300 G. Gbur, E. Wolf | Optics Communications 199 (2001) 295-304

Recalling the fact that the Rayleigh range is the distance zg at which the width of the beam increases to
V2 the width of the beam in the plane z = 0, we have

re) _y (36)
p*(0)
On substituting from Eq. (33) into Eq. (36), it follows that
C222R + BzZR - A2 = 07 (37)
so that
B} + /B3 + 44,C;
ZR = 2C2 . (38)
In the case when B, = 0, the Rayleigh range takes on the simple form
4, 1 Wy 2¢?
e L [ Wele.p)p P (39)
CZ 2nk f %(*ksi,kSL)Sid N

The denominator on the right of Eq. (39) has a simple meaning. To see this we recall that the radiant
intensity J(s) generated by the source in the direction specified by the unit vector s, i.e. the average power at
frequency o radiated by the source into the unit solid angle around the s-direction is given by the expression
[5, (Eq. 5.3-8)]

J(s) = (2mk)* Wy(—ks., ks, ) cos> 6, (40)

where s, is the projection (considered as a two-dimensional vector) of the unit vector s onto the plane
z=0, and 0 is the angle which the unit vector s makes with the z-axis. For a beam which propagates
close to the z-axis, cos 0 =~ 1, and it follows from Egs. (39) and (40) that the Rayleigh range is given by
the simple formula

i

ZR = O_—J, (41)
where
2 — fpzlo(p) dzp (42)
"7 Th(p) &
and
2 2
62:fSLJ(S)dS (43)

T [U(s)ds

are the normalized second moments of the source intensity /y(p) = I(p,0) and of the radiant intensity J(s),
respectively.
The simple formula (41) is the main result of this paper. We note two special cases of it.

(1) Fully coherent beams: When the field is spatially fully coherent, the cross-spectral density of the field
factorizes in the form [5, Section 4.5.3]

Wo(p1s p2) = Uy (p1) Us(p2)- (44)

On substituting from Eq. (44) into Eq. (39), the Rayleigh range for a fully coherent beam may be written in
terms of U as
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1 [1(p)p*dp

R T2k \ | Dolks,) P8 & (45)
where
Us(K) = % / Uo(p) exp(—iK - p) d*p (46)
(2m)

is the two-dimensional Fourier transform of the field in the plane z = 0.
As an example, consider a fully coherent beam with a Gaussian profile and no phase front curvature in
the plane z = 0. Then

Un(p) = exp(—p*/wp)- (47)

On substitution from Eq. (47) into Eq. (45) one finds that the Rayleigh range for such a beam is given by the
expression
>
w
=

where /. = 2n/k is the wavelength of the field. Eq. (48) is the well-known expression for the Rayleigh range
of a coherent Gaussian beam [2, p. 668].

(48)

(2) Schell-model beams.: 1f B, is zero, as we now assume, the Rayleigh range is given by formula (39). Let
us also assume that the field in the plane z = 0 is of the Schell-model type [5, Section 5.3.2], i.e. that W, has
the form

Wo(p1s p2) = V1o (p)V1o(p2) 1o (P2 — p1), (49)

where Iy(p) is the intensity of the field in the plane z = 0, and y,(p’) is the spectral degree of coherence of the
field at two points in that plane, assumed to depend only upon the difference between the position vectors p,
and p, of the two points. It is to be noted that the numerator of Eq. (39) depends only upon the intensity of
the field in the plane z = 0. For a given source intensity profile, the influence of the state of coherence of the
beam upon the Rayleigh range is determined entirely by the denominator of Eq. (39). We therefore consider
the quantity?

2= (21:)4/ Wo(—ksy, ks, )s> d%s, (50)

where the factor (211)4 has been introduced for convenience. By use of Eq. (7), this formula may be re-
written as

57 = // / Wo(p1, p) expl—iks - (p, — p))]sT d*sd’p, dp,. (51)
On substituting from Eq. (49) into Eq. (51), and introducing the variables

p:¥7 p=p—p (52)
Eq. (51) may be expressed in the form

2= / / / hop + 0/ 2)ho(p — o /2)itop') exp(—iks - p')s s &p ), (53)

2 This quantity has been evaluated for Schell-model beams with one-dimensional cross-sections in investigations of the M2 factor [9].
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where
ho(p) = \/1o(p). (54)
By introducing the source integrated intensity,
Colp) = [ lo+ /2l /2 . (55)

we may express s> as
§2 = //Co(p’),uo(p’)exp(—iks~p’)s2L d*sd’p’. (56)

Noting that

. 1 .
s> exp(—iks - p') = —ﬁVﬁ, exp(—iks - p'), (57)
where V, is the gradient with respect to p’, we may express Eq. (56) in the form
1 / / : /
i [ [ @)V exp(iks ) s (58)

Let us assume that the intensity /, and the spectral degree of coherence y, are continuous functions of
position. This assumption excludes the case of fields truncated by hard-edged apertures, for which it is known
that the far-zone second moments of the fields do not exist [10]. Furthermore, let us assume that the (two-
dimensional) gradient of the spectral degree of coherence is a continuous function of position. Under these
circumstances, we may use Green’s theorem with respect to the integration over p', and rewrite Eq. (58) as

— 1 . , / . /
52 = —p//exp(—lks-p)Vf,,[Co( Nio(p')] dsdp’ — // [Co(p ) o (p')V  exp(—iks - p)

—exp(—iks - p)V, (Co(p')tto(p))] - nd’sdL. (59)

In the second term on the right of Eq. (59), the integral with respect to p’ is over the perimeter L of the
aperture, n is the outward normal to the perimeter, and d/ is an infinitesimal line element along the pe-
rimeter. Because of our assumptions about the continuity of the intensity and of the spectral degree of
coherence in the plane z = 0, this integral over the perimeter of the aperture vanishes and we are left with

s2 = —% //exp(—iks~p')V/2), [Co(p ) o(p')] dsdp. (60)

This expression may be further simplified by use of the Fourier representation of the two-dimensional Dirac
delta function, i.e.

k? .
50 (p) = / explikp - s) . (61)
(2m)
On substituting from Eq. (61) into Eq. (60), and integrating over p’, we find that
2 (27-[)2 / /
52 =— ! V;z)’ [Co(p )Mo(l’ )]0’20' (62)
The right-hand side of this expression may be expanded in the form
Ao ovia 2 )V, Colp! Co(0)V2 110 (p! 63
st = =7 OV, Co(p)l y—o + 2V o(p') - Vi Co(P)] y— + CoO) V3,0 (P)] o) (63)



G. Gbur, E. Wolf | Optics Communications 199 (2001) 295-304 303

Because y, takes on the maximum value of unity at p’ = 0, and is stationary at that point, we may discard
the second term in the above equation, and simplify the first term, resulting in the formula

7 (2,;) (V5 Colp)l y—o + Co(0) V10 ()] y—o)- o

54 = —
The first term on the right is independent of the coherence properties of the source. It may be shown by
Fourier decomposition of Cy(p’) that

V2,Co(p),_y = —(2m)K* / s2 (ks ) ho (ks ) ds. (65)

Noting that the radiant intensity of a fully coherent field with amplitude 4((p) and constant phase in the
plane z = 0 is (assuming again that cosf ~ 1)

7 (8)]con = (21k) I (ks L Yo (ks.), (66)
Eq. (65) may be expressed as

V2 Colp )y =K [US)ns? s (67
Furthermore, it is clear from the definition (55) that

Ci(0) = [ ilo) . (68)

We then find, on substituting from Egs. (67) and (68) into Eq. (64), and from Eq. (64) into Eq. (39), that

e [ 1o(p)p*&p . (69)
[ SV () ean 3% = V2 ko(p)] 0 [ Tolp) 0 /K]

This formula may be simplified by the use of Egs. (42) and (43). One then obtains for the Rayleigh range the
expression

]
ZR = .
\/[O_ﬂcoh - kiz v,zj MO(P)|,;:0

Evidently the effect of the state of coherence on the Rayleigh range is entirely contained within the
second term in the denominator of Eq. (70). Because 1,(p’) has a maximum at p’ = 0, the Laplacian at that
point will always be negative. A partially coherent beam will therefore always have a Rayleigh range shorter
than a fully coherent one for beams with the same intensity across the waist or within the aperture.

As an example let us consider Gaussian Schell-model sources. Then

Io(p) = A* exp(=2p> /wp) (71)

(70)

and
to(p') = exp(—p”/207), (72)

where wy and o, are positive constants. On substituting from these formulas into Eq. (70), it is readily found
that

fwo 1
TENI M 1 (73)

which is in agreement with results derived previously [3].
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In closing, it is worthwhile to compare the Rayleigh range to the M? factor which has been accepted as a
standard measure of laser beam quality [7]. In our notation, M? may be written as >

]ll2 :kG]GJ, (74)

where o; and ¢, are defined in Egs. (42) and (43), respectively. It can be seen from Egs. (41) and (74) that
knowledge of M? and zg is equivalent to knowledge of ¢, and ko, because one pair of the parameters may
be derived from the other. Though similar methods were used in obtaining zz as have been used to calculate
M? previously, the two quantities should not be considered to be equivalent. In fact, it was shown in an
earlier paper that both zz and M? should be specified to give a satisfactory description of a beam [11].
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