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Anomalous Behavior of Spectra near Phase Singularities of Focused Waves
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It is shown that remarkable spectral changes take place in the neighborhood of phase singularities
near the focus of a converging, spatially fully coherent polychromatic wave diffracted at an aperture. In
particular, when the spectrum of the wave in the aperture consists of a single line with a narrow Gaussian
profile, the spectrum near a phase singularity (i.e., near points of zero intensity of some particular spectral
component) changes drastically along a closed loop around the singularity. The spectrum is redshifted
at some points, blueshifted at others, and is split into two lines elsewhere.
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During the past few years, a great deal of attention has
been paid to the structure of wave fields in the neighbor-
hood of points where the field amplitude has zero value.
At such points the phase of the wave is singular. Stud-
ies of phenomena associated with phase singularities are
gradually developing into a new branch of physical op-
tics, sometimes called singular optics [1]. It is a rich sub-
ject [2], because many different kinds of behavior may
exist near singular points, such as wave front dislocations
[3] and optical vortices. The analysis of such phenomena
can probably best be understood within the framework of
topology and catastrophe theory [4].

The majority of publications concerned with singular
optics deal with monochromatic waves [5]. In the present
paper, we show that a new kind of anomalous behavior may
take place in the neighborhood of a phase singularity when
the field is polychromatic. More specifically, we show that,
in the focal region of a spatially fully coherent converging
polychromatic spherical wave diffracted at an aperture, the
spectrum changes drastically along a closed loop around a
phase singularity. In particular, when the spectrum of the
incident light consists of a single line of Gaussian profile
centered at a frequency v0, the spectrum of the focused
field along a closed loop around a phase singularity of
the spectral component of frequency v0 is redshifted at
some points, blueshifted at others, and splits into two lines
elsewhere. We illustrate these diffraction-induced spectral
changes by numerical examples.

Consider first a monochromatic, spherical wave emerg-
ing from a circular aperture of radius a and converging to-
wards the geometrical focal point O (see Fig. 1). The field
at a point Q specified by position vector r0 on the wave
front W which momentarily fills the aperture is given by
the expression

V �0��r0, t� � U�0��r0, v�e2ivt, (1)

where

U�0��r0, v� �
A�v�

f
e2ikf , (2)
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f being the distance between the point Q on the wave front
in the aperture and the geometrical focus O, and

k � 2p�l � v�c , (3)

where k is the wave number associated with frequency
v, c is the speed of light in vacuum, and l is the wave-
length. For simplicity, we have assumed that the amplitude
A�v��f of the wave in the aperture is the same at every
point on the wave front W . According to the Huygens-
Fresnel principle in the paraxial domain, the field at any
point P�r� in the region of the geometrical focus is given
by the expression [6]

U�r, v� � 2
i

lf
A�v�e2ikf

ZZ
W

eikR

R
d2r 0, (4)

where

R � jr 2 r0j . (5)

It follows that the spectral intensity S�r, v� � jU�r, v�j2
of the field at P is given by the formula,

S�r, v� �
S�i��v�

l2

Ç ZZ
W

eikR

R
d2r 0

Ç2
, (6)

where

S�i��v� �
jA�v�j2

f2
(7)

is the spectral intensity of the incident field on the wave
front W in the aperture.

FIG. 1. Notation relating to the focusing configuration.
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FIG. 2. The spectrum S�i��v� � S0e2�v2v0�2�2s2
of the

incident field in the aperture, with v0 � 1015 s21 and s �
1013 s21, normalized by S0.

Suppose now that the incident field is not monochro-
matic, but is polychromatic and is spatially fully coherent.
The spectral intensity in the focal region is then given by
the expression

S�r, v� � S�i��v�M�r, v� , (8)

where the factor

M�r, v� �
1
l2

Ç ZZ
W

eikR

R
d2r 0

Ç2
(9)

may be called the spectral modifier. It indicates how
the spectrum S�i��v� of the incident wave is modified by
diffraction. Its dependence on r shows that, in general, the
spectrum of the field in the focal region will differ from
the spectrum of the field incident on the aperture and will
be different at different points.

Suppose that the spectrum of the incident field on the
wave front W in the aperture consists of a single line of
Gaussian profile, centered at frequency v0 and with rms
width s, i.e.,

S�i��v� � S0e2�v2v0�2�2s2

, (10)

FIG. 3. The normalized spectrum S�u1�v0�, v��S0 at the first
axial zero of the mean frequency component v0. The Fresnel
number N � a2�lf was taken to have the value 100 at v � v0.
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FIG. 4. Schematic illustration of the changes of the spectra
along the loop �u�v0� 2 u1�v0��2 1 y�v0�2 � r2 with r �
0.15, for selected values of the polar angle u defined by Eq. (14).

where S0 is a constant (see Fig. 2). Assuming that the Fres-
nel number N � a2�lf of the focusing geometry is large
compared to unity, the spectral intensity at frequency v at
any point in the focal region may be calculated from clas-
sic expressions due to Lommel [Ref. [6], p. 489, Eqs. (21)
and (22)]. For monochromatic light of frequency v, a
point P in the focal region may be specified by the Lommel
variables,

u�v� �
v

c

µ
a
f

∂2

z, y�v� �
v

c

µ
a
f

∂
d , (11)

where z and d are the projections of the vector OP along
and perpendicular to the z axis, respectively.

FIG. 5. The normalized spectra along the loop defined in the
caption of Fig. 4, at points with polar angle u, defined by
Eq. (14), for u � 0±, 45±, 90±, 135±, and 180±. The Fresnel
number N is again taken to have the value 100 at v � v0.
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It can be shown ([6], p. 491) that when the point P lies
on the z axis the spectral intensity at frequency v has zero
value when

u�v� � un�v� � 4pn n � 61, 62, … . (12)

We have made use of Eqs. (8) and (9) to determine the
following.

1. The spectrum of the light at the first axial zero,
u1�v0�, which is shown in Fig. 3. Because the spectral
intensity at frequency v0 is zero at this point, the spectrum
is split into two lines.

2. The spectra at several points P�u�v0�, y�v0�� around
a closed loop,

�u�v0� 2 u1�v0��2 1 y�v0�2 � r2, (13)

centered at the first axial zero of the center frequency v0,
and with r a positive constant [7].

Figure 4 shows the spectra at various points along the
loop (13). The points are labeled by the appropriate angle
u, where

cosu � u�v0��r, sinu � y�v0��r . (14)

Figure 5 shows in detail the spectra for selected angu-
lar directions. We see that when u � 0± the spectrum
FIG. 6 (color). Color-coded plot of the mean frequency v of the spectrum in the focal region as a function of u�v0�, y�v0�. The
color is more red or blue as the spectrum is more redshifted or blueshifted, respectively.
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is blueshifted with respect to the spectrum of the inci-
dent field in the aperture. When u � 45± the spectrum
is also blueshifted, whereas when u � 90± the spectrum
is split into two lines. When u � 135± and u � 180±, the
spectrum is redshifted with respect to the spectrum in the
aperture.

Using Eq. (9), the spectrum may be evaluated through-
out the focal region, not just on the z axis. Figure 6 shows
the mean frequency of the spectrum plotted as a func-
tion of u�v0�, y�v0�. The rather spectacular structure of
the spectrum will be discussed in more detail in a future
publication.

It is of interest to note that substantial spectral changes
of the form which we have demonstrated take place even
when the incident light has a very narrow bandwidth (e.g.,
s�v0 � 0.01). That such drastic changes can occur even
for narrow band light is clearly due to the presence of zeros
in the spectral modifier function, M�r, v�.

Let us summarize our results. As is well known, the
phase of a converging, monochromatic spherical wave
emerging from an aperture undergoes a rapid change by
half-a-period in the region of the geometrical focus ([6],
Sec. 8.8.4). This phenomenon is often called the phase
anomaly near focus, and, more recently, the Gouy phase,
013901-3
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after Gouy who first observed this effect more than 100
years ago. Along the axis of symmetry, at points where
the intensity is zero, the phase is discontinuous.

In the present paper, we have shown that, when the con-
verging wave incident on the aperture is a spatially fully
coherent polychromatic wave rather than a monochromatic
wave, the spectrum in the focal region also exhibits an
anomalous behavior. In particular, we have shown that, if
the spectrum of the field in the aperture consists of a nar-
row spectral line centered at frequency v0, the spectrum
of the focused field along a small closed loop enclosing a
phase singularity of the spectral component of frequency
v0 undergoes rapid changes as the point of observation
moves along the loop. The spectrum along the loop is
redshifted at some points, blueshifted at other points, and
is split into two lines elsewhere. These spectral modifi-
cations are due to diffraction and must be distinguished
from so-called correlation-induced spectral changes which
may be exhibited by partially coherent light on propaga-
tion in free space, even in the absence of a limiting aper-
ture [8].
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