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Spreading of partially coherent beams
in random media
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Some published computational work has suggested that partially coherent beams may be less susceptible to
distortions caused by propagation through random media than fully coherent beams. In this paper this sug-
gestion is studied quantitatively by examining the mean squared width of partially coherent beams in such
media as a function of the propagation distance. The analysis indicates under what conditions, and to what
extent, partially coherent beams are less affected by the medium. © 2002 Optical Society of America
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1. INTRODUCTION
The propagation of waves through random media is a
topic that has been of considerable theoretical and practi-
cal interest for a long time, as is evident from the number
of books and papers written on the subject (see, for in-
stance, Refs. 1–3). In particular, it is of interest in con-
nection with work in optical communications, imaging
systems, and targeting systems to further the under-
standing of the effects of turbulence on the propagation of
beams, and it would be useful in such applications to uti-
lize beams that are distorted as little as possible by the
presence of a turbulent medium.

In this context, the behavior of partially coherent
beams in random media has received little attention
(some relevant work is described in Ref. 4). Some pub-
lished computational work5,6 has suggested that beams
that are partially coherent are less sensitive to the effects
of turbulence than fully coherent ones. However, the cri-
terion ‘‘insensitivity to turbulence’’ is somewhat vague in
these papers, and it is not clear under what circum-
stances a partially coherent beam will be less affected by
turbulence than a coherent one. Furthermore, it is not
entirely clear what the reasons for it may be.

In this paper we consider these questions, and we de-
rive a simple formula for the spreading of partially coher-
ent beams in turbulent media. The formula may be con-
sidered a generalization of those previously derived for
the spreading of coherent beams in a turbulent medium7

and the spreading of partially coherent beams in free
space.8,9 Our results clarify under what circumstances a
partially coherent beam will be less affected by turbu-
lence than a fully coherent one.

2. PROPAGATION THROUGH TURBULENCE
We consider a quasi-monochromatic field of mean fre-
quency v propagating from the plane z 5 0 into the half-
space z . 0 (see Fig. 1). It is assumed that the index of
refraction n(r) in this half-space is a random function of
position and that the turbulence is weak, so that
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n~r! 5 1 1 n1~r!, (1)

where n1 ! 1. The quantities n(r) and n1(r) are taken
to be real. For sufficiently weak turbulence, the state of
polarization of an electromagnetic field will not be signifi-
cantly changed on propagation, and we may then consider
only a single component of the incident field, which we de-
note U(r). The field may then be described by the scalar
wave equation [Ref. 2, Eq. (2.19)],

$¹2 1 k2@1 1 2n1~r!#%U~r! 5 0, (2)

where k 5 v/c is the wave number of the incident radia-
tion and c is the vacuum speed of light. Provided that
the incident field U0(r) propagates close to the z axis, the
solution of Eq. (2) may be expressed in the form [Ref. 2,
Eq. (2.46)]

U~r! 5
2ik

z
E U0~r8!exp@ c ~r8, r!#G0~r8, r!d2r8,

(3)

where G0 is the paraxial free-space propagator,

G0~r8, r! 5 expF ikz 1 ik
~x 2 x8!2 1 ~ y 2 y8!2

2z G ,

(4)

and c (r8, r) is a (generally complex) phase function that
depends on the properties of the medium. Formula (3) is
often referred to as the extended Huygens–Fresnel prin-
ciple.

The intensity I(r, z) of the field at any point
r [ (r, z) is given by the squared modulus of the field at
that point, i.e.,

I~r, z ! [ uU~r, z !u2

5
4k2

z2 EE U0* ~r18 !U0~r28 !exp@ c* ~r18 , r, z !

1 c ~r28 , r, z !#G0* ~r18 , r, z !

3 G0~r28 , r, z !d2r18d2r28 . (5)
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We assume that the medium into which the beam propa-
gates is spatially random; furthermore, we are interested
in beams that are partially coherent. In taking into ac-
count the randomness of both the field and the medium,
we must take the two corresponding ensemble averages,
which, for weak scattering, may be considered to be inde-
pendent. Hence

^I~r, z !& 5
4k2

z2 EE W0~r18 , r28 !Cc~r18 , r28 ; r, r, z !

3 G0* ~r18 , r!G0~r28 , r!d2r18d2r28 , (6)

where

W0~r1 , r2! 5 ^U0* ~r1!U0~r2!& (7)

is the cross-spectral density [Ref. 10, Sec. 4.3.2] of the
field at points r1 and r2 in the plane z 5 0 and

Cc~r18 , r28 ; r1 , r2 , z ! 5 ^exp@ c* ~r18 , r1 , z !

1 c ~r28 , r2 , z !#&. (8)

The angle brackets in Eq. (7) denote averaging over the
field ensemble, while those in Eq. (8) denote averaging
over the ensemble of the random medium.

If the scattering medium is statistically homogeneous
and isotropic, as we will assume, it can be shown that
[Ref. 3, Sec. 12.2.1]

Cc~r18 , r28 , r1 , r2 , z ! 5 exp@2E1~z !

1 E2~r28 2 r18 , r2 2 r1 , z !#,

(9)

where

E1~z ! 5 22p2k2zE
0

`

kFn~k!dk, (10)

E2~r28 2 r18 , r2 2 r1 , z !

5 4p2k2zE
0

1E
0

`

kFn~k!

3 J0@ku~1 2 j!~r2 2 r1! 1 j~r28 2 r18 !u#dkdj. (11)

In these formulas, Fn(k) is the spatial power spectrum of
the refractive-index fluctuations of the random medium,
and J0 is the Bessel function of the first kind and zero or-
der. Formula (9) is an approximation that is valid if the
turbulence is sufficiently weak; it is exact only if the
quantity c* 1 c is a Gaussian random variable [Ref. 3,
Chap. 6].

Fig. 1. Illustration of the notation relating to the propagation of
a beam.
It is to be noted that Cc depends only on the difference
between r1 and r2 , so we may write

Cc~r18 , r28 , r1 , r2 , z ! [ Cc~r28 2 r18 , r2 2 r1 , z !.
(12)

Let us now suppose that the partially coherent field at the
plane z 5 0 is of the Schell-model type [Ref. 10, Sec.
5.3.2], i.e., that its cross-spectral density has the form

W0~r18 , r28 ! 5 AI0~r18 !AI0~r28 !m0~r28 2 r18 !, (13)

where I0(r) is the averaged intensity and m0(r28 2 r18) the
spectral degree of coherence of the light in the plane
z 5 0. It follows from Eqs. (6), (12), and (13) that the in-
tensity of the field in the half-space z . 0 may then be ex-
pressed as

^I~r, z !& 5
4k2

z2 EE AI0~r18 !AI0~r28 !m0~r28 2 r18 !

3 Cc~r28 2 r18 , 0, z !G0* ~r18 , r, z !

3 G0~r28 , r, z !d2r18d2r28 . (14)

Surprisingly, this expression for the expectation value of
the intensity of a partially coherent field propagating in a
random medium is of the same form as the formula for
the intensity of a field with initial cross-spectral density
W1(r18 , r28) 5 I1(r18)I1(r28)m1(r28 2 r18) propagating in
free space, for which

I1~r! 5 I0~r!, (15)

m1~r8! 5 m0~r8!Cc~r8, 0, z !. (16)

This result may be stated more concisely as follows:

The expectation value of the intensity at a given plane
z 5 const. . 0 of the field generated by a partially coher-
ent Schell-model source propagating through a homoge-
neous isotropic random medium is the same as that of the
field generated on propagation in free space by the
equivalent partially coherent source characterized by
Eqs. (15) and (16).

Note, however, that the ‘‘equivalent source’’ itself de-
pends on z, so that the z dependence of the intensity dif-
fers from that of a field propagating in free space. How-
ever, for a given z plane, we may calculate any quantities
that depend on the intensity as if the ‘‘equivalent source’’
had produced them. We will use this property next.

3. SPREADING OF A PARTIALLY
COHERENT BEAM IN TURBULENCE
Equation (14) already gives some indication of conditions
under which a beam will be essentially unaffected by tur-
bulence. If m0(r8) is a much narrower function than
Cc(r8, 0, z) (see Fig. 2), then the latter function may be
approximated by its value at r8 5 0, and one then has



1594 J. Opt. Soc. Am. A/Vol. 19, No. 8 /August 2002 G. Gbur and E. Wolf
^I~r, z !& ' Cc~0, 0, z !
4k2

z2

3 EE AI0~r18 !AI0~r28 !m0~r28 2 r18 !

3 G0* ~r18 , r, z !G0~r28 , r, z !d2r18d2r28 .

(17)

Because Cc(0, 0, z) 5 1, approximation (17) implies that
under these circumstances the beam will propagate as if
it were in free space. However, it can be seen from Eqs.
(9), (10), and (11) that the function Cc(r8, 0, z) becomes
narrower with respect to r8 as z increases, so at some dis-
tance sufficiently far from the plane z 5 0, approximation
(17) becomes invalid and the turbulence then starts to sig-
nificantly affect the beam.

We can make these observations more quantitative by
considering the normalized mean-squared width of the
beam as a function of the propagation distance, i.e., by
considering

r2~z ! [

E r2I~r, z !d2r

E I~r, z !d2r

. (18)

We can express this quantity in a more explicit form by
use of the formulas for free-space propagation [Ref. 9, Eq.
(33)], using the effective source defined by Eqs. (15) and
(16). We assume that the phase front of the wave is (on
average) constant. It then follows that

r2~z ! 5 a2 1 c2~z !z2, (19)

where

a2 5

E I1~r!r2d2r

E I1~r!d2r

, (20)

c2~z ! 5

E W̃1~2ks' , ks'!s'
2 d2s

E W̃1~2ks' , ks'!d2s

, (21)

and

Fig. 2. Illustration of the condition for the validity of approxi-
mation (17).
W̃1~K1 , K2! 5
1

~2p!4 E W1~r1 , r2!

3 exp@2i~K1 • r1 1 K2 • r2!#d2r1d2r2

(22)

is the two-dimensional spatial Fourier transform of the
effective cross-spectral density of the source. We note
that c2 depends on z through the z dependence of m1 .

The quantities defined by Eqs. (20) and (21) may be
shown to be given by the expressions

a2 5 sI
2, (23)

where

sI
2 5

E I0~r!r2d2r

E I0~r!d2r

, (24)

and

c2~z ! 5 FsJ
2 2

1

k2 ¹r
2Cc~r, 0, z !ur50G , (25)

with

sJ
2 5

E J~s!s'
2 d2s

E J~s!d2s

, (26)

and

J~s! 5 ~2pk !2W̃0~2ks' , ks'! (27)

is the radiant intensity of the field in free space. J(s) is
defined as the power radiated by the source per unit solid
angle around the s direction [Ref. 10, Sec. 5.2.1]. The
quantity sI is the normalized RMS width of the intensity
in the plane z 5 0, and sJ evidently represents the nor-
malized RMS width of J, i.e. it is a measure of the angular
spread of the beam in free space.

By use of Eqs. (9) and (11), and the properties of Bessel
functions, one may evaluate the second expression in the
square brackets of Eq. (25), and one finds that

2
1

k2 ¹r
2Cc~r, 0, z !ur50 5 zF2 , (28)

where

F2 5
2p2

3
E

0

`

k3Fn~k!dk. (29)

On substitution from Eqs. (28) and (25) into Eq. (19),
we may express the mean squared width of the beam
propagating through turbulence in a physically more
transparent form as

r2~z ! 5 sI
2S 1 1

sJ
2

sI
2 z2 1

F2

sI
2 z3D . (30)

This formula, which is the main result of this paper, is a
generalization of known formulas for the spreading of co-
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herent beams in turbulence7 and the spreading of par-
tially coherent beams in free space.8,9

It was shown in Ref. 9 that the first two terms on the
right-hand side of Eq. (30) represent the diffractive
spreading of a partially coherent beam in free space.
Hence the effect of the turbulent medium is contained en-
tirely within the third (cubic) term. With increasing z,
the cubic term will eventually dominate the expression
for beam spreading. Every beam, be it fully or partially
coherent, succumbs at some distance to the deteriorating
effects of the turbulence.

It is also to be noted that the initial state of coherence
of the beam is represented in Eq. (30) entirely by the
quantity sJ

2, as can be seen from expression (27). Any
improvement of beam propagation characteristics due to
partial coherence will therefore be related to the magni-
tude of sJ

2.
Finally, we note that there are potentially three dis-

tinct regions along the direction of propagation of such a
beam:

1. A region in which the beam propagates essentially
parallel, without spreading.

2. A region in which the beam spreads as a result of
free-space diffraction.

3. A region in which the beam spreads rapidly owing
to turbulence deterioration.

The sizes of these regions is determined by the relative
sizes of the three terms in formula (30).

4. RANGE OF TURBULENCE-INDEPENDENT
PROPAGATION
The basic formula [Eq. (30)] may be written in a slightly
different form by recalling that the ratio

zR 5 sI /sJ (31)

represents the so-called Rayleigh range, defined as the
distance at which the cross-sectional area of a beam
propagating in free space doubles.9 By use of Eq. (31),
Eq. (30) may be expressed as

r2~z ! 5 sI
2S 1 1

z2

zR
2 1

F2

sI
2 z3D . (32)

We may introduce a quantity somewhat similar to the
Rayleigh range to quantify the effect of the turbulent me-
dium on a partially coherent beam. Let us define a tur-
bulence distance zT as the distance at which the third
term of Eq. (32) accounts for 10% of the magnitude of
r2(z), i.e., such that

r2~zT!turb 2 r2~zT!free

r2~zT!turb

5 0.1. (33)

The quantity zT thus represents the distance at which the
spreading due to the turbulent medium accounts for 10%
of the cross-sectional area of the beam. In Eq. (33),
r2(z)turb is the mean squared width of the beam propagat-
ing in turbulence, given by Eq. (32). The quantity
r2(zT)free is the mean squared width of a beam with the
same coherence function and the same intensity profile at
z 5 0 propagating in free space, given by the expression

r2~z !free 5 sI
2 1 sJ

2z2. (34)

It can be seen by substitution from Eq. (32) into Eq. (33)
that the determination of zT involves the solution of a cu-
bic equation in zT . Although this can be done, the solu-
tion is complicated and difficult to interpret. Under cer-
tain circumstances, however, the expression for zT may be
simplified.

Let us first suppose that the turbulence is so weak that
it does not influence the beam until the beam has spread
appreciably as a result of diffraction; then the first term
on the right-hand sides of Eqs. (32) and (34) may be ne-
glected, and one then has

r2~z !free ' sJ
2z2, (35)

r2~z !turb ' sJ
2z2 1 F2z3. (36)

On substitution of Eqs. (35) and (36) into Eq. (33), one
finds that

zT '
1

9

sJ
2

F2
. (37)

For a beam produced by a Schell-model source [whose
cross-spectral density is of the form of Eq. (13)] as we are
considering in this paper, it can be shown that9

sJ
2 5 @ sJ

2 #coh 2
1

k2 ¹r
2m0~r!ur50 , (38)

where @ sJ
2 #coh is the angular spread in free space of a fully

coherent beam with initial intensity I0(r). The quantity
@ sJ

2 #coh may be expressed in the form

@ sJ
2 #coh 5

E W̃coh~2ks' , ks'!s'
2 d2s

E W̃coh~2ks' , ks'!d2s

, (39)

with

Wcoh~r1 , r2! 5 AI0~r1!AI0~r2!, (40)

and W̃coh denotes the fourfold Fourier transform of Wcoh ,
defined with the same convention as in Eq. (22). For a
beam that is partially coherent, the second term on the
right-hand side of Eq. (38) is positive, indicating that sJ

2

is always larger for a partially coherent beam than for a
fully coherent beam with the same intensity distribution
in the plane z 5 0. As can be seen from approximation
(37), this in turn suggests that a partially coherent beam
propagates without distortion further in a turbulent me-
dium than does the fully coherent one.

The approximation involved in Eqs. (35) and (36) may
be used when the parameter zT is much greater than the
Rayleigh range, i.e., when zT /zR @ 1, or, more explicitly,
when

sJ
3

sIF2
@ 1. (41)
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We may also consider the case when the turbulence dis-
torts the beam well before free-space diffraction is appre-
ciable. In this case, we may write

r2~z !free ' sI
2, (42)

r2~zT!turb ' sI
2 1 F2z3. (43)

On substituting from Eqs. (42) and (43) into Eq. (33), it
follows that

zT ' A3 1

9

sI
2

F2
. (44)

This expression will be valid when zT is much smaller
than the Rayleigh range, i.e., when

A3 sJ
3

sIF2
! 1. (45)

We note that the parameters in inequalities (41) and (45)
are the same. It is convenient to introduce a turbulence
parameter RT as

RT [
sJ

3

sIF2
. (46)

As we have noted, this parameter characterizes the
spreading behavior of the beam in a turbulent medium.
To see this more clearly, consider the mean squared width
of the beam at the Rayleigh range, z 5 zR . The second
term on the right-hand side of Eq. (32) will then be equal
to unity. The third term, which represents the influence
of turbulence on the spreading of the beam, can be deter-
mined by substitution from Eq. (31). It follows that

F2zR
3

sI
2 5

F2sI

sJ
3 5

1

RT
. (47)

If RT @ 1, the turbulence will not affect the spreading of
the beam until z @ zR ; if RT ! 1, then the turbulence
will dominate the spreading of the beam well before the
Rayleigh distance is reached.

When neither of the conditions expressed by inequali-
ties (41) and (45) is satisfied, the full cubic equation [de-
fined by Eq. (33)] must be solved for zT ; in many cases,
though, either inequality (37) or inequality (44) may be
used to characterize the distance over which a partially
coherent beam propagates in a random medium without
appreciable distortion due to turbulence.

5. EXAMPLES
We will illustrate our main results by considering beams
generated by Gaussian Schell-model sources [see Ref. 11
or Ref. 10, Sec. 5.6.4], i.e., sources with

I0~r! 5 A exp@22r2/w0
2#, (48)

m0~r8! 5 exp@2r82/2sm
2 #. (49)

The limiting case sm → ` represents a spatially fully co-
herent source. The other limit sm → 0 represents a spa-
tially incoherent source.
For Gaussian Schell-model sources, it is not difficult to
show that

sI
2 5

w0
2

2
, (50)

sJ
2 5

2

k2 S 1

w0
2 1

1

sm
2 D , (51)

zR 5
kw0

2 S 1

w0
2 1

1

sm
2 D 21/2

. (52)

To model the turbulence, we will use the so-called Ta-
tarskii spectrum [Ref. 3, Sec. 3.3.2],

Fn~k! 5 0.033Cn
2k211/3 exp@2k2/km

2 #, (53)

where Cn
2 is known as the structure parameter of the in-

dex of refraction, and km 5 5.92/l0 , where l0 is the inner
scale of turbulence. On substituting from Eq. (53) into
Eq. (29), one can numerically evaluate the resulting inte-
gral, and one finds that

F2 5 1.095Cn
2l0

21/3 . (54)

Typical values for Cn
2 and l0 are Cn

2 5 10214 m22/3 and
l0 5 0.01 m (see Ref. 2).

We first consider an incident beam of wave number
k 5 107 m21 (l 5 628 nm) and waist radius w0
5 0.01 m. Figure 3 shows the spreading of Gaussian
Schell-model beams in free space and in a turbulent me-
dium for different values of the width sm of the spectral
degree of coherence at the waist plane, calculated from
Eq. (30). It can be seen by direct substitution that in-
equality (41) is satisfied for each value of sm , and there-
fore zT is given by approximation (37). The dashed lines
indicate the value of the propagation distance zT . It is to
be noted that each beam spreads more rapidly in the tur-
bulent medium than in free space. It can also be seen
that zT is larger for smaller values of sm , though it
should be noted that the beams of lower coherence have
larger sJ and hence greater angular divergence.

Next we consider an incident beam of the same wave
number, k 5 107 m21 (l 5 628 nm), but with a greater
waist radius w0 5 0.1 m. Figure 4 shows the spreading
of two such beams in free space and in a turbulent me-
dium, with different values of sm . Inequality (45) is sat-
isfied for these cases, and therefore zT is given by approxi-
mation (44). In this regime, zT is independent of the
coherence properties of the incident beam, and this is re-
flected in the nearly identical spreading properties of the
beams of different states of coherence. However, it
should be noted that zT indirectly depends on the state of
coherence of the incident field, as inequality (45) depends
on sJ , which in turn depends on the spectral degree of
coherence at the beam waist.

6. CONCLUSIONS
In this paper we have studied the spreading of partially
coherent beams in random media, with the aim of deter-
mining what types of beams are least affected by the me-
dium.
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Fig. 3. Spreading of Gaussian Schell-model beams in free space (FS) and in turbulent media (T) for various values of the width of the
spectral degree of coherence in the waist plane, sm . The turbulence distance zT is indicated by a dashed line. Case (a) represents a
beam produced by a spatially fully coherent source, while case (d) represents a beam produced by a spatially incoherent source. In all
cases w0 5 0.01 m and RT @ 1.
We have noted two relevant parameters. The first one,
zT , is the propagation distance at which the area of the
beam is 10% larger in a turbulent medium than it would
be in free space. We showed that zT [defined by Eq. (33)]

Fig. 4. Spreading of Gaussian Schell-model beams in free space
(FS) and in turbulent media (T) for two values of the width of the
spectral degree of coherence, sm . In both cases zT 5 2220 m,
w0 5 0.1 m, and RT ! 1.
is a reasonable measure of the ‘‘resistance’’ of a beam to
turbulence. The second parameter, RT [defined by Eq.
(46)], may be used to classify beams roughly as one of two
varieties: those beams for which the turbulence spread-
ing becomes appreciable before diffractive free-space
spreading occurs, and those for which the turbulence af-
fects the beam only after appreciable diffractive free-
space spreading has occurred.

Our results indicate, in general agreement with the re-
sults of Refs. 5 and 6, that partially coherent beams are
generally more resistant to turbulence; that is, for a par-
tially coherent beam the parameter zT has a value equal
to or greater than that for a fully coherent beam with the
same initial intensity profile. However, a partially coher-
ent beam will also have a larger angular spread in free
space; it might be said that the effects of the turbulence
are masked by the larger free-space spreading. The use-
fulness of partially coherent beams that have greater tur-
bulence resistance than coherent beams will evidently de-
pend on the particular application for which they are to
be used. The optimal beam will necessarily involve a
trade-off between turbulence resistance and free-space
spreading.
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