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Singular behavior of the spectrum in the
neighborhood of focus
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In a recent paper [Phys. Rev. Lett. 88, 013901 (2002)] it was shown that when a convergent spatially coherent
polychromatic wave is diffracted at an aperture, remarkable spectral changes take place on axis in the neigh-
borhood of certain points near the geometrical focus. In particular, it was shown that the spectrum is red-
shifted at some points, blueshifted at others, and split into two lines elsewhere. In the present paper we ex-
tend the analysis and show that similar changes take place in the focal plane, in the neighborhood of the dark
rings of the Airy pattern. © 2002 Optical Society of America
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1. INTRODUCTION
At points of wave fields where the intensity has zero
value, the phase becomes undetermined and the structure
of the field in the neighborhood of such points has a
rather complicated structure. It may exhibit, for ex-
ample, optical vortices or wave-front dislocations. The
study of such structures has developed into a new disci-
pline, sometimes called singular optics.1,2 Investigations
on this topic have been almost exclusively confined to
monochromatic wave fields. (Notable exceptions are
Refs. 3 and 4, which deal with the colors of caustics).

In a recent paper5 we showed that in some polychro-
matic wave fields another unusual phenomenon takes
place near phase singularities. Specifically, we showed
that remarkable spectral changes take place in the neigh-
borhood of axial zeros of the intensity near the geometri-
cal focus of a converging, spatially fully coherent, poly-
chromatic spherical wave diffracted at a circular
aperture. In particular, we found that the spectrum is
redshifted at some points, blueshifted at others, and split
into two lines elsewhere.

In the present paper we explore such spectral changes
in more detail. In particular, we investigate the strength
of the effect. We also show that such spectral changes
take place in the neighborhood of phase singularities in
the geometrical focal plane (the neighborhood of zeros of
the Airy pattern). These predictions have recently been
confirmed experimentally by Popescu and Dogariu.6 It is
0740-3232/2002/081694-07$15.00 ©
clear that these recent investigations appreciably broaden
the scope of the rapidly developing field of singular optics.

In Section 2 we review those aspects of focusing that
are relevant for the understanding of our analysis, de-
scribe the changes of the spectrum in the focal region, and
discuss the singular behavior of the spectrum on axis. In
Section 3 we show that similar anomalous behavior takes
place in the neighborhood of the zeros in the geometric fo-
cal plane. In Section 4 we describe quantitatively the in-
tegrated spectrum (the averaged total intensity) of the
field in the focal region and discuss its dependence on the
focusing geometry.

2. SPECTRUM IN THE FOCAL REGION
Let us first consider a monochromatic spherical wave of
frequency v, emerging from an aperture of radius a and
converging toward an axial focal point O. The focusing
configuration is depicted in Fig. 1. We assume that

f @ a @ l, (1)

where f is the radius of the spherical wave in the aperture
and l 5 2pc/v is the wavelength of the emergent wave.
According to the Huygens–Fresnel principle (Ref. 7, Sec.
8.2), the field at a point P(r) in the region of focus is given
by the formula
2002 Optical Society of America
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d2r8,

(2)

where

U ~0 !~r, v! 5
A~v!

f
exp~2ikf ! (3)

is the field at a point Q(r8) on the wave front W that mo-
mentarily fills the aperture. Here A(v)/f is the ampli-
tude, at frequency v, of the incident field on the wave
front W. We assume that the Fresnel number

N 5
a2

lf
(4)

of the focusing geometry is much greater than unity. The
integral (2) may then be expressed in a form due to Debye
(Ref. 7, Sec. 8.8). One then readily finds that

U~r, v! 5 22piN0S v

v0
D A~v!

f
exp~ if 2vu0 /a2v0!

3 E
0

1

J0~vv0j/v0!exp~2ivu0j2/2v0!jdj,

(5)

where, for convenience, we have introduced an (as yet)
undefined frequency v0 to be used as a scaling parameter,
and where

N0 5
a2

l0f
(6)

is the Fresnel number at frequency v0 , l0 5 2pc/v0 , J0
is the Bessel function of the first kind and order zero, and
the dimensionless spatial variables u0 and v0 (sometimes
called the Lommel variables) are defined by the expres-
sions

u0 5 2pN0

z

f
, (7)

v0 5 2pN0

r

a
. (8)

It is to be noted that u0 , v0 are scaled differently and that
U(r, v) is independent of the arbitrarily chosen fre-
quency v0 . Expression (5), together with Eqs. (6), (7),
and (8), can be used to determine the field at any point in
the three-dimensional region around the geometric focus.

Fig. 1. Notation relating to the focusing geometry. Here R
5 ur 2 r8u.
Suppose next that the field is not monochromatic
but rather is a polychromatic wave. For such a wave
field one must consider, instead of the incident field
U (0)(r, v), the cross spectral density function of the inci-
dent field,

W ~0 !~r8, r9, v! [ ^U ~0 !* ~r8, v!U ~0 !~r9, v!&, (9)

where the angle brackets denote the average, taken over
a statistical ensemble of monochromatic realizations
$U (0)(r8)exp(2ivt)% (Ref. 8, Sec. 4.7). A similar defini-
tion holds for the cross-spectral density W(r8, r9, v) of
the focused field.

It follows from the definition of the cross-spectral den-
sity and from Eq. (2) that

W~r1 , r2 , v! 5
1

l2 E E
W

W ~0 !~r18 , r28 , v!

3
exp~2ikur1 2 r18u!

ur1 2 r18u

exp~ ikur2 2 r28u!

ur2 2 r28u

3 d2r18d2r28 . (10)

Evidently the spectrum of the field at a point P(r) in the
focal region is given by

S~r, v! [ W~r, r, v!

5
1

l2 E E
W

W ~0 !~r18 , r28 , v!

3
exp~2ikur 2 r18u!

ur 2 r18u

exp~ ikur 2 r28u!

ur 2 r28u
d2r18d2r28 .

(11)

We will take the incident field in the aperture to be a spa-
tially fully coherent, polychromatic spherical wave of con-
stant amplitude. The cross-spectral density at points
Q(r18) and Q(r28) on the wave front W is then given by the
expression

W ~0 !~r18 , r28 , v! 5
uA~v!u2

f 2 . (12)

On substituting from Eq. (12) into Eq. (11), and using for-
mula (5), we readily find that

S~r, v! 5 M~r, v!S ~0 !~v!, (13)

where

Fig. 2. Plot of the spectrum of the incident field for s0 /v0
5 0.01.
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Fig. 3. Color-coded plot of the mean frequency v̄ of the spectrum in the focal region as a function of u0 , v0 , for v0 5 1015 s21, s0
5 1013 s21, and N0 5 100. The color is more red or blue as the spectrum is more redshifted or blueshifted, respectively.
S ~0 !~v! [
uA~v!u2

f 2 (14)

is the spectrum of the incident field in the aperture, and

M~r, v! [ ~2pN0!2S v

v0
D 2U E

0

1

J0~vv0j/v0!

3 exp@2ivu0j2/2v0#jdjU2

. (15)

It can be seen from Eq. (13) that the spectrum of the field
in the focal region is given by the spectrum of the incident
wave multiplied by the function M(r, v), sometimes
called the spectral modifier.

Equations (13), (14), and (15) can be used to determine
the spectrum at any point in the focal region. Because
the spectral modifier depends on both position and fre-
quency, it is clear that the spectrum will, in general, be
different at different points and will differ from the spec-
trum of the incident field. To illustrate such changes, we
assume the spectrum of the incident field to consist of a
single line of Gaussian form (see Fig. 2); i.e.,

S ~0 !~v! 5 s0 exp@2~v 2 v0!2/2s0
2#. (16)

Here s0 is a positive constant, s0 is the bandwidth, and
v0 is the center frequency. We assume that the field is
quasi-monochromatic ( s0 /v0 ! 1). We choose the arbi-
trary frequency v0 introduced in Eq. (5) to be equal to the
center frequency; therefore the normalized coordinates
u0 , v0 are defined with respect to the dominant frequency
in the incident spectrum. It should be noted, though,
that this choice is a matter of convenience. If the spec-
trum of the incident field has a more complicated shape
(multiple lines, asymmetric lines, etc.), other choices may
be more appropriate.

The spectrum in the focal region can be characterized
by its various moments, such as the mean frequency,
v̄(r), defined as

v̄~r! 5

E v8S~r, v8!dv8

E S~r, v8!dv8

. (17)

The mean frequency is plotted as a function of u0 , v0 in
Fig. 3, for v0 5 1015 s21, s0 5 1013 s21, and N0 5 100.
The color is more red or more blue as the spectrum is
more redshifted or blueshifted, respectively. It can be
seen from the figure that, although there are some
changes of the spectrum throughout the focal region, the
most drastic changes occur at points on the u0 axis where
u0 is a multiple of 4p and on the v0 axis (geometric focal
plane) where v0 is a zero of the Bessel function of the first
kind and order one. These drastic changes arise from ze-
ros in the modifier function M(r, v); we briefly review
the behavior of the spectrum on the u0 axis, which was
discussed in some detail in our earlier paper.5 In Section
3 we discuss the behavior on the v0 axis.

On the u0 axis, the modifier function can readily be
shown to have the simple form (Ref. 7, Sec. 8.8)

M~u0 , 0, v! 5 ~pN0!2S v

v0
D 2F sin~vu0/4v0!

vu0/4v0
G2

. (18)

It can be seen from Eq. (18) that at points where u0
5 4pn and n is a nonzero integer, the modifier function
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is zero at frequency v0 . Modifications in the spectrum
as the point of observation is changed arise from the
change in the position of this zero with respect to fre-
quency. In Fig. 4 the spectrum is shown at u0 5 4p and
at two points immediately to the left and right of it, at dis-
tance d 5 0.15. It can be seen that at u0 5 4p the spec-
trum is split into two peaks: at u0 5 4p 2 d it is red-
shifted, and at u0 5 4p 1 d it is blueshifted.

These points on the u0 axis, where the modifer function
is zero at the center frequency, are truly singular points of
the spectral distribution, as we now show. We consider
the standard deviation of the spectrum from the mean
frequency, viz.,

Dv~r! 5 F E @v8 2 v̄~r!#2S~r, v8!dv8

E S~r, v8!dv8
G 1/2

. (19)

Fig. 4. Depiction of the spectral changes on and about the axial
zero u0 5 4p, for v0 5 1015 s21, s0 5 1013 s21, and N0 5 100,
with d 5 0.15. The peak values of each of the spectra are nor-
malized to unity.
It is to be noted that the modifier function M(r, v) is a
smooth function of frequency for all values of u0 and v0 .
We may therefore expand it in a Taylor series about the
center frequency v0 . For an incident field of sufficiently
narrow bandwidth s0 , the modifier function may be rep-
resented by the lowest-order term of its Taylor series for
all frequencies of the spectrum of the incident field. For
instance, for those positions (u0 , 0) such that the modi-
fier function has no zeros within s0 of the center fre-
quency v0 , we may approximate M(r, v) by a constant,

M~u0 , 0, v! ' M~u0 , 0, v0!. (20)

For such nonsingular positions, the spectrum in the focal
region is therefore proportional to the spectrum of the in-
cident field. On substitution from Eqs. (20) and (16) into
Eq. (19) it can be seen that

Dv~u0 , 0! 5 s0 ~nonsingular position!. (21)

In contrast, at the singular points (u0 5 4pn), the
leading-order term in the Taylor expansion of M(r, v) is
quadratic, namely,

M~4pn, 0, v!

'
~pN0!2

2

]2

]v2 F sin~vnp/v0!

np
G

v5v0

2

~v 2 v0!2

5 S pN0

v0
D 2

~v 2 v0!2. (22)

The local behavior of the modifier function at the singular
points is given by relation (22), whereas for the nonsingu-
lar points it is given by relation (20). The local behavior
of the modifier function is therefore fundamentally differ-
Fig. 5. The standard deviation Dv of the spectrum about the frequency v0 , as a function of position u0 , v0 , with v0 5 1015 s21, s0
5 1013 s21, and N0 5 100.
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ent at the singular points. It can be shown on substitu-
tion from Eq. (22) into Eq. (19) that

Dv~u0 , 0! 5 A3s0 ~singular position!. (23)

The standard deviation is therefore greater at a singular
point than at an ordinary point. We note that Eqs. (21)
and (23) hold for any sufficiently small values of s0 ; at
the singular points, the standard deviation of the spec-
trum will always be greater than the standard deviation
of the spectrum of the incident field.

The standard deviation is displayed in three-
dimensional form in Fig. 5, for v0 5 1015 s21, s0
5 1013 s21, and N0 5 100. As predicted, the standard
deviation exhibits narrow peaks at the points where u0
5 4pn, n being any nonzero integer.

It should be noted, though, that the spatial location of
the singular points arises not only from the geometry of
focusing and the center frequency but also from the shape
of the incident spectrum. An incident field with a multi-
line or asymmetric line shape will exhibit behavior differ-
ent from what we have just discussed, even if the center
(mean) frequency of the incident spectrum is the same as
that of a single, symmetric line.

3. SINGULAR BEHAVIOR IN THE FOCAL
PLANE
In the previous section, we saw how drastic changes of the
spectrum on axis in the focal region arise from the zeros
of the modifier function. Figure 3 shows that similar
drastic changes also occur in the geometric focal plane (v0
axis) at nearly regular intervals, and it is reasonable to
expect that they appear for the same reason.

In the geometric focal plane, it can be shown (Ref. 7,
Sec. 8.8) that the spectral modifier function takes on the
simple form

M~0, v0 , v! 5 ~2pN0!2S v

v0
D 2FJ1~vv0 /v0!

~vv0 /v0!
G2

, (24)

where J1 is the Bessel function of the first kind and order
one. It can be seen from Eq. (24) that at points for which
J1(v0) 5 0 (i.e., at zeros of the Airy pattern at frequency
v0), the modifier function is zero at that frequency. The
first three zeros of the Bessel function J1 are v0
5 3.83, 7.01, 10.17. The drastic change of the spectrum
at such points can be attributed (as were those on the u0
axis) to the zeros of the modifier function.

We may consider these changes in more detail by exam-
ining the spectrum at several points on a small circle of
radius d in the u0 , v0 plane centered on the point u0
5 0, v0 5 3.83, i.e.,

u0
2 1 ~v0 2 3.83!2 5 d 2. (25)

The spectrum at various points around the circle is illus-
trated schematically in Fig. 6. It can be seen, as before,
that the spectral changes are due to the suppression of
some of the components of the spectrum of the incident
field.

There is an appreciable topological difference between
the singular points on the u0 axis (v0 5 0) and those in
the geometric focal plane (u0 5 0). The spectral singu-
larities on axis are isolated points. However, owing to
the rotational symmetry of the modifier function about
the u0 axis, the spectral singularities in the focal plane
consist of closed curves. In Fig. 7 the mean frequency of
the spectrum [defined in Eq. (17)] in the focal plane u0

Fig. 6. The spectrum at various points around the first zero in
the geometrical focal plane at u0 5 0, v0 5 3.83. (a) The geom-
etry, (b)–(f) the changes in the spectrum at various positions
around the circle in the u0 , v0 plane of radius d 5 0.04.

Fig. 7. Color-coded plot of the mean frequency v̄ of the spec-
trum in the geometrical focal plane, u0 5 0, for v0 5 1015 s21,
s0 5 1013 s21, and N0 5 100.
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5 0 is plotted as a function of transverse coordinates vx ,
vy . It is seen that the spectrum changes drastically as
one crosses the circles of (vx

2 1 vy
2)1/2 5 3.83, 7.01, 10.17

radii. On these circles, the standard deviation of the
spectrum will be greater than that of the spectrum of the
incident field. This can be shown in a manner identical
to that used in deriving Eq. (23), by using the lowest-

order term of the Taylor expansion of the modifier func-
tion at the singular points. One then finds that the vari-
ance takes on the value given by Eq. (23) at the singular
points, as can be seen in Fig. 5.

It should be mentioned that the phase structure around
circles of zero intensity has recently been discussed for in-
terfering monochromatic Gaussian beams.9

4. INTENSITY IN THE NEIGHBORHOOD OF
SPECTRAL SINGULARITIES
So far we have discussed only the changes of the shape of
the spectrum relative to the shape of the spectrum of the
incident field. We have seen, though, that these changes
arise mainly because certain frequencies of the incident
spectrum are suppressed by diffraction, and the total in-
tensity of the field at the singular points is therefore ex-
pected to be greatly reduced. In this section we give es-
timates of the magnitude of this reduction. We also
discuss the distances over which the spectrum changes
drastically.

We first consider the spectrum of the field at the axial
singularities, u0 5 4pn, v0 5 0. We assume again that
the spectrum of the incident field is a narrow-band Gauss-
ian distribution ( s0 ! v0), and hence we may again ap-
proximate the modifier function by relation (22). The
spectrum at the axial singularities is then given by

S~4pn, 0, v! ' S pN0

v0
D 2

~v 2 v0!2s0

3 exp@2~v 2 v0!2/2s0
2#. (26)

The total intensity10 at a point (u0 , v0) is defined by the
expression

I~u0 , v0! [ E
0

`

S~u0 , v0 , v8!dv8. (27)

At the axial singular points, it is then found to be

I~4pn, 0! 5
1

2
~2s0

2!3/2Aps0S pN0

v0
D 2

. (28)

We note that the intensity at the geometric focus (u0
5 v0 5 0) is given by the expression

I~0, 0 ! 5 A2ps0
2~pN0!2s0 , (29)

and hence the normalized intensity at the axial singular
points is given by

I~4pn, 0!

I~0, 0 !
5 S s0

v0
D 2

. (30)

We see that, with an incident field of sufficiently narrow
bandwidth, the intensity at the axial singular points is re-
duced from that at the geometric focus by the square of
the fractional bandwidth, s0 /v0 . If, for instance, the
fractional bandwidth is 1%, the intensity at the singular
points on axis will be smaller by a factor of 104 than the
intensity at the geometric focus. The behavior of the in-
tensity on axis, calculated from Eqs. (13) and (15), is
shown in Fig. 8. The inset shows an extended view about
the first two singular points on axis. The value of the in-
tensity at these two points is in good agreement with that
given by Eq. (30).

We may also determine the intensity at the singulari-
ties in the focal plane. For narrow-band light, the modi-
fier function has the approximate form

M~0, vn , v! '
~2pN0!2

v0
2 ~J2@vn# !2~v 2 v0!2, (31)

where vn is the nth zero of the Bessel function J1(v). In
a manner identical to that used to derive Eq. (30), we find
that

I~0, vn!

I~0, 0 !
5

4s0
2

v0
2 ~J2@vn# !2. (32)

The behavior of the intensity in the focal plane is shown
in Fig. 9.

Up to this point we have used only the dimensionless
coordinates u0 , v0 . Another question of practical inter-
est concerns the physical size of the region over which the
spectrum changes drastically, and we now address this
problem. It is reasonable to assume that the maximum
red or blue shifts will occur when the modifier function,
and therefore the spectrum in the focal region, has a zero
at frequency v0 1 s0 or v0 2 s0 , respectively. We con-
sider the first singular point on the z axis. The modifier
function will have a zero at the center frequency at u4p

5 4p, and it will have a zero at frequencies v0 6 s0 at
the points u6 5 4pv0 /(v0 6 s0). The distance Du be-
tween the singular point u4p and the points of maximum
shift u6 is

Du [ u4p 2 u6 ' 6
4ps0

v0
. (33)

In deriving Eq. (33) we have used the fact that s0 ! v0 .
For s0 /v0 5 0.01, one has Du 5 0.12. We may use Eq.

Fig. 8. Total intensity I(u0 , 0) on axis in the focal region, with
v0 5 1015 s21, s0 5 1013 s21, and N0 5 100. The inset shows
an expanded view about the first two singular points. The
dashed lines indicate the values predicted by Eq. (30).
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(7) to express u4p , u6 in terms of physical distances z4p ,
z6 . It can readily be shown that

Dz

l0
5

z4p 2 z6

l0
' 62S f

a D 2 s0

v0
. (34)

If, for example, f/a 5 10 and s0 /v0 5 0.01, Dz is of the
order of a wavelength.

We may perform a similar calculation with regard to
the first singularity in the focal plane. At the center fre-
quency v0 , the spectrum has a zero at v1 5 3.83, and it
will have zeros at frequencies v06s0 for v6

5 3.83v0 /(v06s0). The maximum spectral shifts will
therefore occur at v distances such that

Dv [ v1 2 v6 ' 6
3.83s0

v0
. (35)

For s0 /v0 5 0.01, one has Dv 5 0.04. In terms of the
actual distance Dr in the focal plane, it can readily be
shown that

Dr

l0
5 6

3.83

2p
S f

a D S s0

v0
D . (36)

It is to be noted that this distance, with f/a 5 10, is
smaller by an order of magnitude than the distance Dz on

Fig. 9. The total intensity I(0, v0) in the focal plane, with v0
5 1015 s21, s0 5 1013 s21, and N0 5 100. The inset shows an
expanded view about the first two singular points. The dashed
lines indicate the values predicted by Eq. (32).
axis. Detecting the spectral changes in the focal plane
will therefore require greater spatial resolution than de-
tection of those on the u0 axis.
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