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Abstract

It is shown that the scattering amplitude for any direction of incidence and any direction of scattering and, consequently, also
the extinction cross-section, of a scattering object may be determined from measurements of the scattered field over a plane at
an arbitrary distance from it.
 2002 Elsevier Science B.V. All rights reserved.

PACS: 42.25.Fx; 03.65.Nk

A basic quantity in the theory of scattering from a
localized object or from a finite-range potential is the
scattering amplitude. It is defined in terms of the far-
zone behavior of the scattered field. Specifically, let

(1)Ψ (i)(r, t)=ψ(i)(r)e−iωt ,

with

(2)ψ(i)(r)= eiks0·r,

(k = ω/c, c being the vacuum speed of light) be a
plane monochromatic wave of unit amplitude, incident
on the object in free space, in a direction specified
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by a unit vectors0. The space-dependent part of the
far field, in the direction specified by a unit vectors,
has the form (see, for example, Section 13.1, Eqs. (19)
and (20) of Ref. [1])

ψ(rs, s0)∼ eikrs·s0 + f (s, s0)
eikr

r

(3)(kr → ∞, s fixed),

wheref (s, s0) is the scattering amplitude. In terms
of the scattering amplitude one may determine the
extinction cross-section,Q say, by the optical cross-
section theorem viz. (Ref. [1], Section 13.3, Eq. (18))

(4)Q= 4π

k
Imf (s0, s0),

where Im denotes the imaginary part.
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In this Letter we show how the scattering ampli-
tude for any direction of incidence and any direction of
scattering and, consequently, also the extinction cross-
section, may be determined from the knowledge of the
scattered field on a plane at an arbitrary distance from
the scatterer. The possibility of determining the scat-
tering amplitude from measurements at arbitrary dis-
tances from the scatterer is perhaps not surprising in
view of its analytic properties [2]. What is, however,
not so obvious, is that an algorithm may be developed
which does not include contributions from evanes-
cent waves, i.e., waves whose amplitudes decay expo-
nentially with increasing distance from the scatterer.
Such waves are well-known to introduce instabilities
in the solution of inverse reconstruction problems [4].
Because our algorithm does not involve evanescent
waves, it is stable. Our result might be expected to be
useful, for example, in connection with inverse scatter-
ing problems with acoustical waves, because in such
cases the far zone may be far outside the laboratory.
Our results may also be of interest in the rapidly ex-
panding field of near-field optics [5], as well as in the
new technique of power-extinction diffraction tomog-
raphy [6].

Suppose that the scatterer is located in the strip
0 � z � Z (see Fig. 1). Let us represent the scattered
field in the half-spacesz < 0 andz > Z, denoted by
R− andR+, respectively, by angular spectra of plane
waves viz. (Ref. [7], Section 3.2)

ψ(s)(r; s0)=
∫ ∞∫
−∞

a(±)(s′x, s′y; s0x, s0y)

(5)× eik[s ′xx+s ′yy±s ′zz] ds′x ds′y,

Fig. 1. Illustrating the notation.

wherer ≡ (x, y, z), s0 ≡ (s0x, s0y, s0z), s′ ≡ (s′x, s′y, s′z),
ands′z =

√
1− s′2x − s′2y whens′2x + s′2y � 1 ands′z =

i
√
s′2x + s′2y − 1 whens′2x + s′2y > 1. The plane waves

in the integrand of Eq. (5) for whichs′z is real are ordi-
nary (homogeneous) waves; those for whichs′z is pure
imaginary are evanescent waves, whose amplitude de-
cays exponentially with increasing|z|. The upper or
lower signs are taken in Eq. (5) according as the point
r is in the half-spaceR+ or R−, respectively.

The far zone behavior of the angular spectrum
representation (5) askr → ∞ in a fixed direction
specified by a unit vectors is known to be (Ref. [7],
Eq. (3.2-22))

(6)ψ(s)(rs; s0)∼ −2π i

k
sza

(±)(sx, sy; s0x, s0y)e
ikr

r
,

and hence, according to Eqs. (3) and (6), the scattering
amplitudef (s, s0) is related to the angular spectrum
amplitude by the formula

(7)f (s, s0)= −2π i

k
sza

(±)(sx, sy; s0x, s0y),
the upper or lower sign being taken on the right
according assz > 0 or sz < 0.

With the direction of incidences0 being fixed,
the spectral amplitudea(±)(sx, sy; s0x, s0y) may be
determined, for any direction of scattering, from the
knowledge of the scattered field in any arbitrary plane
z = ζ outside the scatterer (i.e.,ζ < 0 or ζ > Z) by
making use of the two-dimensional Fourier inverse of
Eq. (5), viz.

a(±)(sx, sy; s0x, s0y)= k2ψ̃(s)(ksx, ksy; s0; ζ )e∓ikszζ ,

(8)

where

ψ̃(s)(u, v; s0; ζ )

(9)= 1

(2π)2

∫ ∞∫
−∞

ψ(s)(x, y; s0; ζ )e−i(ux+vy)dx dy

is the two-dimensional spatial Fourier transform of the
scattered field in the planez= ζ .

From Eqs. (7) and (8) it immediately follows that
the scattering amplitude may be expressed in the form

(10)f (s, s0)= −2π ikszψ̃(s)(ksx, ksy; s0; ζ )e∓ikszζ .
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On substituting from Eq. (10) into the formula (4)
we obtain the following expression for the extinction
cross-section

(11)Q= −8π2 Reszψ̃(s)(ks0x, ks0y; s0; ζ )e∓iks0zζ ,

where Re denotes the real part.
The formulas (10) and (11) are the main results

of this note. They show that the scattering amplitude
for any direction s and also the scattering cross-
section can be determined from the knowledge of
a single two-dimensional spatial Fourier component
of the scattered field in any planez = ζ outside of
the scatterer. In these formulas the upper or lower
sign is taken in the exponents on the right-hand sides
according asζ > Z or ζ < 0 respectively.

We stress that Eqs. (10) and (11) are rigorous
consequences of the theory of potential scattering. It
is to be noted that because in Eq. (7)sz is necessarily
real, the formulas (10) and (11) do not contain any
contributions from evanescent waves. Consequently
our method for determining the scattering amplitude
and the extinction cross-section from measurements of
the scattered field in any plane outside the scatterer is
stable.

As an example, we consider scattering from a ho-
mogeneous sphere of radiusa, with ka = 20 and re-
fractive indexn = 1.4. The scattered field was deter-
mined numerically by a partial wave expansion, and
evaluated on planes perpendicular tos0 at distances
kd = ±25, measured from the center of the sphere.
To demonstrate the stability of the method, complex
Gaussian noise was added to the scattered field with
a variance equal to 10% of the average amplitude of
the scattered field. A discrete version of Eq. (9) was
implemented to determine the Fourier transform of
the scattered field, and the scattering amplitude was
determined using Eq. (10). In Fig. 2 the actual and
reconstructed forms of the scattering amplitude are
shown. In this figure the forward measurement plane
was used, ands⊥ = sinθ , whereθ is the angle be-
tween the unit vectorss0 and s. It can be seen that
there is good agreement between the actual and recon-
structed forms of the amplitude. In Fig. 3 the actual
and reconstructed forms of the scattering amplitude
are shown when the rear measurement plane was used
for reconstruction. Heres⊥ = sinθ ′, whereθ ′ is the
angle between−s0 ands. Again, we see that there is
good agreement.

Fig. 2. The real and imaginary parts of the scattering amplitude. The
forward measurement plane (in the half-spaceR+) was used for
the reconstruction. The dots represent the amplitude reconstructed
using Eq. (10), and the dashed line represents the actual scattering
amplitude determined from the partial wave expansion of the
scattered field. Heres⊥ = sinθ , whereθ is the angle betweens0
ands.

We have also determined the extinction cross-
section from Eq. (11) for different sphere sizes. The
results are shown in Fig. 4. We see that there is good
agreement between the true extinction cross-section
and the reconstructed form.

The preceding analysis is rigorous within the frame-
work of the theory of potential scattering. Within the
accuracy of the first-order Born approximation one has
the additional result that (see Ref. [1], p. 713)

a(±)(sx, sy; s0x, s0y)

= ik

2πsz
F̃

[
k(sx − s0x), k(sy − s0y), k(±sz − s0z)

]
,

(12)
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Fig. 3. The real and imaginary parts of the scattering amplitude. The
rear measurement plane (in the half-spaceR−) was used for the
reconstruction. The dots represent the reconstructed amplitude, the
dashed line the actual scattering amplitude. Heres⊥ = sinθ ′, where
θ ′ is the angle between−s0 ands.

Fig. 4. The extinction cross-sectionQ normalized to the geometrical
cross-sectionπa2 of the scattering object for a variety of sphere
sizes. The dots represent the cross-section reconstructed by Eq. (11),
the solid curve the actual cross-section.

whereF̃ (Kx,Ky,Kz) is the three-dimensional Fourier
transform of the scattering potentialF(x, y, z), viz.,

F̃ (Kx,Ky,Kz)=
∫ ∫ ∫

F(x ′, y ′, z′)

× e−i(Kxx
′+Kyy

′+Kzz
′) dKx dKy dKz.

(13)

The pair of relations (8) and (12) form the basis of
diffraction tomography (see [1], Section 13.2.2).
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