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Diffraction tomography without phase information
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A modified form of diffraction tomography is presented in which measurements of the phase of the scattered
field are replaced with measurements of the intensity on two planes beyond the scatterer. The new method
is illustrated by an example. © 2002 Optical Society of America
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Two methods are commonly used for determining the
three-dimensional structure of objects from scattering
experiments, computed tomography (CT), and diffrac-
tion tomography (DT). CT (see, for example, Ref. 1,
Sec. 4.11, or Ref. 2), which is typically performed us-
ing x rays, utilizes measurements of the attenuation
of the incident field to determine the object structure.
When diffraction and scattering effects become appre-
ciable, CT generally gives unsatisfactory results, and
the use of DT (Ref. 1, Sec. 13.2) is then more appro-
priate. DT, however, unlike CT, requires knowledge
of both the phase and the intensity of the field, and
phase measurements at optical (or higher) frequencies
present formidable challenges.

In this Letter we introduce a modif ied form of DT
that does not require phase measurements. This
method is an extension of our recent work on the rela-
tion between CT and DT3 and is related to a method
suggested by Teague4 for reconstructing the phase
of a paraxial field. Our new method is appreciably
simpler than Teague’s and in general is not limited to
the paraxial domain.

We consider a system with the geometry illustrated
in Fig. 1. A monochromatic plane wave Ui�r� �
exp�iks0?r� [time dependence exp�2ivt� is suppressed]
is incident on an object occupying a volume V with a
(generally) complex index of refraction n�r�. Our new
tomography method requires knowledge of the f ield
beyond the scatterer on two planes, denoted as 1 and
2, parallel to the wave front of the incident field.

If the scattering is suff iciently weak (as is usually
assumed in DT experiments), the field beyond the scat-
terer may be expressed in the form of the f irst Rytov
approximation (Ref. 1, Sec. 13.5),

U �r� � Ui�r�exp�c�r�� , (1)

where
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By use of the angular spectrum representation of the
free-space Green’s function (Ref. 5, Sec. 3.2), c may be
rewritten in the form
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The intensity I �r� of the field is defined by the
expression

I �x, y, z� � jU �x, y, z�j2

� exp�c�x, y, z� 1 c��x, y, z�� . (7)

Fig. 1. Illustrating the notation for tomographic recon-
struction of a scattering object.
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Let us define an intensity data function as the loga-
rithm of the field intensity, i.e.,

DI �x, y, z� � log�I �x, y, z�� � c�x, y, z� 1 c��x, y, z� .

(8)

Next we define the two-dimensional Fourier transform
of the data function on a plane z � constant outside the
scatterer as

D̂I �u, v; z� �
1

�2p�2
ZZ

DI �x, y, z�

3 exp�2i�ux 1 vy��dxdy . (9)

It can then be shown, after some straightforward cal-
culation, that

D̂I �u, v; z� � i
�2p�2
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���w�F̃ �us1 1 vs2 1 �w 2 k�s0�
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We will consider only u, v values such that u2 1 v2 # k2;
this amounts to neglecting contributions from evanes-
cent waves. The parameter w is then real. From
Eq. (10) it can be seen that a Fourier component
(labelled by u, v) of the intensity consists of a super-
position of two plane waves traveling in directions
�u, v, w 2 k� and �2u, 2v, w 2 k�. If the intensity of
the field is measured on a plane beyond the scatterer
and then its Fourier transform is taken, it is generally
not possible to determine F̃ �K�, and subsequently
F �r�. This diff iculty is the reason why DT tradition-
ally requires the measurement of both the phase and
the intensity. It is to be noted, however, that a phase
difference is generated between the two plane waves
�u, v, w� and �2u, 2v, w� as they propagate. If the
Fourier transform of the intensity is measured on a
pair of planes behind the scatterer, the resulting pair
of equations may be solved for F̃ and F̃ �. To see this,
we consider a new data function D̂D, defined as

D̂D�u, v; d�

�
D̂I �u, v; d� 2 D̂I �u, v; d 1 D� exp�i�w 2 k�D�

D
, (11)

which makes use of measurements of the intensity on
two planes, z � d and z � d 1 D. On substituting
from Eq. (10) into Eq. (11), it can readily be shown that
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Equation (12), which shows that D̂D is proportional to
F̃ �K�, is the main result of this Letter; it indicates that
it is possible to determine the Fourier components of
the scattering potential from measurements of the data
function D̂D, i.e., from measurements of the intensity
on two planes.

It is clear that this modified tomographic method
makes it possible to reconstruct the scattering po-
tential without making any phase measurements;
the phase is implicitly determined from D̂D. For
comparison, we recall the usual formula of diffraction
tomography,

ĉ�u, v; d� �
�2p�2i

w
F̃ �us1 1 vs2 1 �w 2 k�s0�

3 exp�i�w 2 k�d� , (13)

where ĉ is the two-dimensional Fourier transform of
c on the plane z � d (c can be determined by taking
the logarithm of the field in the plane).

The right-hand sides of Eqs. (12) and (13) differ in
that Eq. (12) possesses an additional factor, contained
in the braces. This factor vanishes for values of u, v
such that

2�k 2
p
k2 2 u2 2 v2 �D � 2np , (14)

where n is the integer. For such values of u and v
the function F̃ cannot be determined; this includes the
value of the function at the origin u � v � 0, but that
value can be estimated by extrapolation from neigh-
boring values of the function F̃ . One is therefore re-
stricted to reconstructing only those components of u,
v such that the left-hand side of Eq. (14) does not ex-
ceed 2p, i.e., values such that

u2 1 v2 # 2pk	D . (15)

In inequality (15) we assume that u2 1 v2 ,, k2. This
inequality constrains how closely spaced the two mea-
surement planes must be to determine a given Fourier
component of F̃ .

To illustrate the new method, let us consider
scattering from a two-layer spherical object of inner
radius ka � 20 and outer radius kb � 40, with the
refractive index of the inner sphere taken to be
na � 1.001 1 0.001i and that of the outer shell taken
to be nb � 1.0005 1 0.001i. The scattered f ield was
determined with a partial wave expansion, and the
measurement planes were taken to be at distances
kd � 60 and k�d 1 D� � 62, measured from the center
of the sphere. In performing the inversion, we made
use of the spherical symmetry of the object. The
field intensity was calculated in the measurement
planes, its Fourier transform taken as in Eq. (9),
and combined to form the data function D̂D. Equa-
tion (12) was then used to determine F̃ from D̂D; low
spatial frequencies were determined by fitting the
higher frequency data to a polynomial. Finally, F̃
was inverted to determine the scattering potential.

The assumed scattering potential and the recon-
structed version are shown in Fig. 2. It can be seen
that there is good agreement and that the recon-
struction has matched both the general shape of the
potential and its absolute magnitude. It is to be noted
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Fig. 2. Reconstruction of a complex scattering potential
by use of the new tomographic method. The dashed curve
indicates the actual scattering potential. It can be seen
that there is good agreement between the actual and the
reconstructed potentials.

that both the real and the imaginary parts of the
scattering potential were successfully reconstructed.
The differences between the assumed potential and
the reconstructed one can be attributed to our use
of only the homogeneous parts of the scattered f ield
(resulting in a Gibbs phenomenon) and the presence
of noise from multiple scattering.

In conclusion, we have introduced a new method
of determining a scattering potential by diffraction
tomography without the knowledge of the phase of
the scattered f ield. Measurements of the intensity
on two planes beyond the scatterer replace the usual
amplitude and phase measurements of DT. It is to
be noted that this method, unlike Teague’s phase
reconstruction technique,4 is not limited to paraxial
fields. However, it can be seen from inequality
(15) that determining the Fourier components of
plane waves propagating in a direction that dif-
fers appreciably from s0 �u2 1 v2 � k2� requires
the measurement planes to be spaced at distances
smaller than a wavelength. At optical wavelengths
�l 
 1026 m� this is impractical, and it should there-
fore be expected that the method can be used to
determine only the low-frequency components of the
scattering potential. This new tomographic method
will be described in more detail in a forthcoming
publication.6
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