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It is demonstrated that the usual theorem of diffraction tomography may, in many cases,
be replaced by a method which uses measurements of the intensity of the scattered field
on a pair of planes in place of the usual phase measurements of the field. Numerical
examples of reconstructions with this new method are given.

Introduction

Tomographic methods such as computed tomography ([1], Sec. 4.11) and diffraction to-
mography ([1], Sec. 13.2) are important techniques for probing the structure of three-
dimensional weakly scattering objects. Computed tomography employs a geometric model
for the propagation of wavefields, assuming they are absorbed but not diffracted, while
diffraction tomography incorporates both absorption and scattering effects. However, al-
though diffraction tomography is a more general method, it is limited by the requirement
that both the phase and the intensity of the scattered field must be measured. At optical
wavelengths or higher, phase measurements can present formidable difficulties.

Recently we have introduced [2, 3] a new method of performing diffraction tomography
which does not require phase information. Phase measurements are replaced by intensity
measurements on a pair of planes along the direction of propagation of the probing field.
In this paper we describe this method and present numerical examples of reconstructions
using it.

Intensity-only diffraction tomography

The crux of the new tomographic method is that the propagation of a wavefield is deter-
mined by both its intensity and its phase. It seems possible, then, that at least in some
circumstances the phase of a wavefield could be determined by measuring how the inten-
sity of the field changes as it propagates.

We consider a system as depicted in figure 1. A scalar plane wave Ui(r) = eiks0·r is incident
upon an object occupying a volume V with a (generally) complex index of refraction n(r),
producing a total field U (r) in the region of the object. U (r) may represent an acoustic
wave or a polarization component of an optical field; the intensity of the field is given
by I (r) = |U (r)|2. The propagation of the total field is determined by the scalar wave
equation

[∇ 2 + k2]U(r) = −4πF(r)U(r), (1)

where

F(r) =
k2

4π
[n2(r)−1] (2)

is the scattering potential of the object.
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Figure 1: Illustrating the notation relating to the new tomographic method.

We define an intensity data function by the relation

DI(x,y;z) ≡ log[I(x,y;z)], (3)

and the two-dimensional Fourier transform of this data function in the xy-plane,

DI(u,v;z) =
1

(2π)2

∫ ∫
DI(x,y;z)e−i(ux+vy)dxdy. (4)

The intensity-only tomography method requires the construction of another data function

D̂∆(u,v;d) ≡ D̂I(u,v;d)− D̂I(u,v;d +∆)ei(w−k)∆

∆
, (5)

where w =
√

k2 −u2 − v2, and it is assumed that u2 + v2 ≤ k2. This data function uses
a combination of intensity data from two measurement planes, one plane at z = d and
one at z = d + ∆. If the scattering is sufficiently weak so that the scattered field may be
approximated by the first Rytov approximation ([1], Sec. 13.5), it can be shown [2, 3] that
the data function takes on the simple form

D̂∆(u,v;d) =
(2π)2i

w∆
F̃ [us1 + vs2 +(w− k)s0]exp[i(w− k)d]{1− exp[2i(w− k)∆]}, (6)

where

F̃(K) =
1

(2π)3

∫
V

F(r′)e−iK·r′d3r′ (7)

is the three-dimensional spatial Fourier transform of the scattering potential. Equation (6)
demonstrates that the data function D̂∆ is directly related to Fourier components of the
scattering potential, and is the basis of the new tomographic method. By combining data
from a variety of u,v values and a variety of directions of incidence s0, it is possible to
obtain all Fourier components of F̃(K) such that |K| ≤ √

2k. In fact, Eq. (6) differs from
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Figure 2: The reconstruction of a homogeneous sphere by the new tomographic method.
The dashed curve indicates the actual scattering potential.

the traditional theorem of diffraction tomography only in the presence of the term in the
curly brackets. This additional term vanishes when the equation

2[k−
√

k2 −u2 − v2]∆ = 2nπ (8)

is satisfied. It can be deduced from this expression that the low frequency components
of F̃(K) must be extrapolated from neighboring values, and that the measurement planes
must be placed sufficiently close to each other to avoid other zeros in the data function.

This method is similar to a method suggested by Teague [4] for the determination of
the phase of a paraxial field from intensity measurements, and suffers from some of the
same limitations, such as nonuniqueness when the field possesses optical vortices [5].
However, our tomographic method is not in principle limited to paraxial fields, and does
not require the solution of an additional differential equation to determine the phase, as
does Teague’s.

Examples

To illustrate the new method, we first consider scattering from a sphere of scaled radius
ka = 40 and complex index of refraction n = 1.003 + .001i. The scattered field was
determined using a partial wave expansion, and the measurement planes were taken to
be at distances kd = 60 and k∆ = 2, measured from the center of the sphere. Spatial
frequencies of F̃ away from the origin were determined using the data function D̂∆; low
spatial frequency components were determined by fitting this data to a quadratic function
centered on the origin.

The assumed scattering potential and the reconstruction are shown in figure 2. It can be
seen that there is good agreement, and that the reconstruction has properly reconstructed
both the real and imaginary parts of the scattering potential. The differences between
the assumed potential and the reconstruction can be attributed to a Gibbs phenomenon
from neglecting higher spatial frequency components of F̃ , and from multiple scattering
effects.

We next consider scattering from a two-layered spherical object of inner radius ka = 20
and outer radius kb = 40, with the refractive index of the inner sphere taken to be na =
1.001 + 0.001i and that of the outer shell taken to be nb = 1.0005 + 0.001i. The mea-
surement planes were again taken to be at distances kd = 60 and k∆ = 2. The assumed
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Figure 3: The reconstruction of a multilayered sphere by the new tomographic method.
The dashed curve indicates the actual scattering potential.

potential and the reconstruction are shown in figure 3. Again, it is seen that there is good
agreement between the actual and reconstructed potentials; furthermore, the reconstruc-
tion has properly determined the structural differences between the two layers.
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