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Abstract: The anomalously-high transmission of light through sub-
wavelength apertures is a phenomenon which has been observed in nu-
merous experiments, but whose theoretical explanation is incomplete.
In this article we present a numerical analysis of the power flow (char-
acterized by the Poynting vector) of the electromagnetic field near a
sub-wavelength sized slit in a thin metal plate, and demonstrate that
the enhanced transmission is accompanied by the annihilation of phase
singularities in the power flow near the slit.
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1. Introduction

It has been known now for some time that the phase of a wavefield can exhibit unusual
behavior in the neighborhood of points where the amplitude of the field is zero. This
unusual behavior is connected to the fact that the phase of the field is undefined when
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the amplitude vanishes. The systematic study of such singular points, initiated by Nye
and Berry [1], has developed into a vibrant field of optics, now usually called singular
optics [2, 3]. The phase of the field in the neighborhood of such singular points can
exhibit a rich variety of behaviors, such as vortices and dislocations. Furthermore, it
is well-known that these singular points possess certain conserved quantities, such as
topological charge, and may only be created and annihilated in ways which satisfy
certain conservation laws.

A seemingly unrelated field of research that has been investigated in recent years
is the study of anomalous light transmission through sub-wavelength sized apertures
in thin plates. Ebbesen et al. demonstrated experimentally [4] that certain arrays of
cylindrical cavities in metal plates allow much more light transmission than predicted
by the standard theory of aperture diffraction. These authors suggested that this en-
hanced transmission was generated by the coupling of the light to surface plasmons in
the metal. More recently, it was demonstrated [5] that enhanced transmission can be
achieved even with the use of a single aperture. A good understanding of the causes and
requirements for such enhanced transmission could lead to, among other things, novel
near-field optical measurement devices as well as optical storage devices with a density
not restricted by the diffraction limit.

In this article we describe two-dimensional numerical simulations we have undertaken
of the electromagnetic field in the neighborhood of a sub-wavelength sized slit in a
thin metal plate. In particular, the behavior of the time-averaged Poynting vector is
analyzed using a rigorous integral equation method. It is found that the field of power
flow in the vicinity of the slit typically possesses numerous phase singularities. More
importantly, it is found that the annihilation of phase singularities coincides with the
onset of extraordinary light transmission through the slit. Furthermore, the incident
field is taken to be TE polarized, which does not allow for the excitation of surface
plasmons; this demonstrates that enhanced transmission can occur even in their absence.
Our analysis suggests that a good understanding of enhanced transmission requires that
the behavior of the phase singularities of the field be taken into account.

2. Singular optics of electromagnetic fields

In our analysis, we are interested in the singular optics of a real-valued vector field,
namely the two-dimensional time-averaged Poynting vector field,

S(x, z) =
1
2
Re

{
Ê(x, z)× Ĥ∗(x, z)

}
, (1)

where Ê and Ĥ are the amplitudes of a complex monochromatic electromagnetic field
(of time dependence exp[−iωt]).

The phase φS of the Poynting vector is given by the pair of relations

sinφS(x, z) ≡ Sz(x, z)
|S| ,

cosφS(x, z) ≡ Sx(x, z)
|S| , (2)

where |S| is the modulus of S. It follows from these equations that φS(x, z) is singular
whenever S = 0. Electromagnetic systems which exhibit singularities of power flow have
been known of for some time [6, 7], and the creation and annihilation of singularities in
such systems has been studied [8].

For a field which is TE polarized, i.e. the only component of the electric field is Êy,
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it can be readily shown using Eq. (1) and Maxwell’s equations that

S(x, z) = − 1
2ωµ0

Im
{
Êy∇Ê∗

y

}
. (3)

We may express Êy as an amplitude and phase,

Êy(x, z) = |Êy(x, z)|eiφE(x,z). (4)

On substituting from Eq. (4) into Eq. (3), one immediately finds that the Poynting
vector may be expressed in the form

S(x, z) =
1

2ωµ0
|Êy(x, z)|2∇φE(x, z). (5)

This equation suggests that the singular points of S may generally be divided into
two categories: those which are related to the singular points of the phase of Êy (when
|Êy(x, z)| = 0) and those which are related to the stationary points of the phase of Êy

(for which ∇φE(x, z) = 0). Because these topological features of Êy are directly related
to the singular points of S, we will briefly review some properties of the singular and
stationary points of Êy and their relation to the singular points of S.

The phase around a singular point of a complex scalar field is well-known to possess a
vortex-like structure (as described for instance in [3]). The phase increases or decreases
as one moves about the singular point in a counterclockwise direction; the vortex is
then referred to as positive or negative, respectively (see Fig. 1(a)). The phase vortices
of Êy correspond to vortices (also referred to as centers) of the power flow S, around
which the power flow circulates (see Fig. 1(b)). A center is referred to as right-handed
(left-handed) if it is counterclockwise with respect to the positive (negative) y-axis. It
is to be noted that in all the figures in this article the y-axis points into the page; a
left-handed or right-handed center therefore corresponds to a positive or negative phase
vortex, respectively.

At stationary points of a complex scalar field, the phase is well-defined but its gra-
dient vanishes. Stationary points includes both minima and maxima as well as saddles,
to be referred to as phase saddles (Fig. 1(c)). Phase saddles of Êy correspond to saddle
points of the power flow, as illustrated in Fig. 1(d). A phase maximum (Fig. 1(e)) of Êy

corresponds to a sink of power flow (Fig. 1(f)), and a phase minimum corresponds to a
source of power flow; it is to be noted that sinks and sources do not occur in free space.

Both phase singularities and stationary points are topological features of the com-
plex field Êy, and several conserved quantities can be associated with each topological
feature. The first of these is the so-called topological charge sE of the field, defined as
the integral of ∇φE around a closed loop enclosing the feature such that

sE ≡ 1
2π

∮
C

∇φE · dr, (6)

where C is a closed counterclockwise path of winding number 1. It can be shown that
the topological charge of a given phase singularity takes on a unique positive or negative
integer value, independent of the choice of the enclosing path C. Likewise, the topological
charge of a phase saddle, maximum or minimum is always zero.

Another quantity of interest is the topological index tE , which is defined as the
topological charge of the phase singularities of the vector field ∇φE . It can be shown
that for a positive or negative vortex tE = +1, while for a phase saddle tE = −1. The
topological index of a phase maximum or minimum is tE = +1.
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(a) positive phase vortex (b) left-handed power flow center

(e) phase maximum (f) power flow sink

(c) phase saddle (d) power flow saddle

Fig. 1. Illustrating the relation between phase singularities (a), stationary points of
the phase (c,e), and the corresponding singularities of the power flow (b,d,f). The
arrows in the left-hand column indicate the direction of increasing phase φE .
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A topological charge sS and index tS can also be associated with the phase φS of the
power flow. It follows directly from Eq. (5) that the topological charge of S for a given
feature is equal to the topological index of Êy. The topological charge of a vortex of
power flow is therefore sS = +1 regardless of whether it is a positive or negative vortex
of Êy . Similarly, the topological charge of a saddle point of power flow is sS = −1,
and the topological charge of a source or sink is sS = +1. A topological index may be
defined for the singularities of power flow, but is not necessary for our interests and will
not be considered here.

Both topological charge and index are quantities which are conserved under smooth
variations of the configuration parameters, and as such can only appear or disappear
via creation and annihilation of multiple stationary and/or singular points. The most
common process, which we will be primarily concerned with, involves the creation (an-
nihilation) of a positive vortex (sE = +1, tE = +1), a negative vortex (sE = −1,
tE = +1), and two phase saddles (sE = 0, tE = −1 for each). This event may also be
described in terms of the field of power flow as the creation (annihiliation) of two centers
of opposite direction (sS = +1 for each) with two saddle points (sS = −1). Other, more
complex, events are possible, but are not typical.

3. Integral equation solution for the electromagnetic field near a slit

The configuration under consideration is illustrated in Fig. 2. An monochromatic elec-
tromagnetic wave is normally incident upon a metal plate of thickness d and permit-
tivity εplate from the negative z-direction. A single slit of width w, infinitely long in
the y-direction, is present in the plate. Because the system is invariant with respect to
y-translations, we may treat the problem as two-dimensional, with relevant coordinates
x and z.

d

w

incident wave

slit plate

transmitted wave

x

z

Fig. 2. Illustrating the notation relating to transmission through a slit.

The total electric field Ê may be written as the sum of two parts, namely the incident
field, Êinc, and the scattered field, Êscatt. The incident field is here taken to be the field
that would occur in the absence of the slit in the plate; it can readily be calculated
analytically by use of the electromagnetic boundary conditions.

It can then be shown [9] that the ith component of the total field, denoted by Êi(x, z),
satisfies an integral equation of the form

Êi(x, z) = Êinc
i (x, z) − iω∆ε

∫
D

ĜE
ij(x, z;x′, z′)Êj(x′, z′)dx′dz′, (7)
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where ∆ε = ε0 − εplate is the difference between the vacuum permittivity and the per-
mittivity of the metal plate, ĜE

ij is the electric Green’s tensor pertaining to the plate
without the slit, and the integration is over the domain of the slit D. For points which
lie within the slit, Eq. (7) is a Fredholm equation of the second kind for Ê, which can be
solved numerically by the collocation method with piecewise-constant basis functions.
The electric field outside the domain of the slit may then be calculated by substituting
this solution back into Eq. (7). With the electric field determined everywhere, the mag-
netic field everywhere follows directly from Maxwell’s equations. The Poynting vector
may then be calculated using Eq. (1).

The definition of the transmission coefficient of the slit consists of two parts: the first
is the integral of the normal component of the actual time-averaged Poynting vector S
over the slit, and the second is the difference of the normal components of the actual
time-averaged Poynting vector and that of the Poynting vector in the absence of the
slit, Sinc, integrated over the dark side of the plate (not the region of the slit). The
result is normalized by the normal component of S(0), the Poynting vector of the field
emitted by the source and impinging on the slit, i.e.

T ≡
∫
slit Sz d2x +

∫
plate

(
Sz − Sinc

z

)
d2x∫

slit S
(0)
z d2x

. (8)

The subtraction in the second integral in the numerator corrects for the small part of
the incident field which may flow through the plate itself.

With calculations of the power flow in the neighborhood of the slit and of the trans-
mission coefficient, we are now able to demonstrate the relation between phase singu-
larities and enhanced transmission (see also Ref. [10]).

4. Phase singularities near sub-wavelength slits

An example of the field of power flow (i.e., the time-averaged Poynting vector) near a
narrow slit in a thin plate of evaporated silver is shown in Fig. 3. In this example the
incident field is taken to be TE polarized (i.e., with the Ê field parallel to the slit).
It follows from the structure of ĜE

ij that the scattered field is then also TE polarized
implying that the analysis of Section 2 applies. It can be seen from Fig. 3 that the
field exhibits several phase singualarities, namely vortices and saddles. In addition, the
aperture is seen to have a funnel-like effect on the field, corresponding to a transmission
coefficient T = 1.11. When the slit width is increased in a continuous manner, the four
singularities below the slit (in the region indicated by the box) move together and finally
annihilate each other. After the annihilation takes place, a smoother field of power flow
results, corresponding to a greater transmission coefficient. This process is shown in Fig.
4. It can be seen that the transmission takes on a maximum value of T = 1.33 when
the slit width is w = 0.5λ.

Figure 5 shows the location of different kinds of phase singularities for the same
configuration on a larger scale. In Fig. 6 the creation, movement, and subsequent an-
nihilation of the phase singularities of the field of power flow are shown when the slit
width is gradually increased. The slit width w and the corresponding power transmis-
sion coefficient T are also shown. Three groups of singularities obstruct the power flow
directly in front of the slit; these groups each annihilate at w = 0.42λ, w = 0.43λ, and
w = 0.46λ. Only when they have disappeared does the transmission show anomalously
high behavior.

The two movies presented here clearly show that anomalous light transmission
through a sub-wavelength slit is accompanied by annihilation of singularities of the
field of power flow in the immediate neighborhood of the slit. It is to be noted that, for
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the choice of polarization that was analyzed, no surface plasmons are generated in the
metal plate. Our study demonstrates that anomalous light transmission can even occur
in their absence.

a b

c d

f

e

0 1

Fig. 3. Illustration of the power flow in the neighborhood of a 200 nm wide slit
in a 100 nm thick plate of evaporated silver, with wavelength λ = 500 nm and
n = 0.05+i2.87 (the value of the refractive index was taken from [11]). Features (a)
and (d) are left-handed centers, (b) and (c) are right-handed centers, and (e) and
(f) are saddles. For this example the transmission coefficient T = 1.11. The color
coding indicates the modulus of the (normalized) Poynting vector. The dashed box
indicates the region illustrated in Movie 1.
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w =

T =

0.40 λ
1.11

Fig. 4. (186 KB) The field of power flow as a function of the slit width w in the
region indicated in Fig. 3. The four phase singularities move together as the slit
width is increased, and finally annihilate, leaving a smoother field of power flow
corresponding to a higher transmission coefficient T .
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Fig. 5. Array of singularities in the field of power flow in the neighborhood of the
slit. All parameters are as given in Fig. 3. Left-handed vortices (centers) and right-
handed vortices (centers) are denoted by LV and RV, respectively, and saddles are
denoted by S.
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w = λ
T =

0.01
0.01

Fig. 6. (212 KB) Schematic of the position and type of singularities of power flow
near a sub-wavelength slit. It is to be observed that multiple creation and anni-
hilation events occur as the slit width is gradually increased. Left-handed vortices
(centers) and right-handed vortices (centers) are denoted by LV and RV, respec-
tively, and saddles are denoted by S. U denotes a vortex (center) very close to a
saddle point which cannot be spatially resolved by the particular grid used for these
calculations; it can be seen that eventually the singularities separate sufficiently to
be distinguishable.
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