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Coherence properties of sunlight
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The coherence properties of sunlight were first studied by Verdet around 1869 and were later examined by
other scientists. However, all the previous calculations assumed that the Earth is in the far zone of the Sun,
an assumption that is incorrect. An investigation of why Verdet’s result is nevertheless correct reveals a
surprising property of radiation from incoherent sources. © 2004 Optical Society of America
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One of the basic problems related to the theory of op-
tical coherence is the determination of the coherence
properties of sunlight that is incident upon the surface
of the Earth. The earliest determination was made
by Verdet1 and is considered the first calculation of the
coherence properties of light. Here is a key passage
from his publication on the subject2:

The points to which all the elements of the source
transmit practically identical movements are contained
in. . .a circle whose center is the point P and is of radius

R
r

hl

It is only in the interior of this circle that the vibrations
can be considered as coherent on the sphere S.

...

In applying these results to the case where the lu-
minescent source is the Sun, one is surprised by the
smallness of the region in which the movements can
be considered coherent.

In the above formula, r is the radius of the source,
R is the distance from the source to the observation
point, l is the wavelength, and h is a numerical factor
“certainly less than 1�4.” Because the diameter of the
circle of coherent movements is linear with respect to
distance from the source, Verdet’s calculation suggests,
within its scope of validity, that the angular diameter
of the region of coherence is constant with respect to
this distance.

Since Verdet’s time, this calculation of the coherence
of sunlight has been performed more quantitatively
(for instance, Ref. 3, Sect. 10.4.2, and Ref. 4, Sect. 4.2.2
and 4.4.4). However, such calculations assume that
the Earth is in the far zone of the Sun, an assumption
that does not hold, even approximately. For instance,
the far zone of a source may be defined as the region at
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a distance r from the source at which the Fresnel num-
ber that the source subtends at the observation point
is much smaller than unity, i.e.,

pa2
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,, 1 , (1)

where a is the radius of the source and l is the wave-
length of the radiation. With filtered sunlight at the
Earth’s surface, l � 500 nm, a � 6.96 3 105 km, and
consequently the far zone of the Sun is at distance
r ..3 3 1023 km, a condition not even remotely sat-
isfied by the distance between the Earth and the Sun,
r � 1.5 3 108 km. It is therefore of interest to exam-
ine whether Verdet’s estimate, and other estimates, of
the coherence area of sunlight on the Earth’s surface
are correct.

We consider the properties of a scalar wave field ra-
diated by the surface of a spherical source of radius a
centered at the origin (see Fig. 1). The second-order
statistical properties of the field at frequency v outside
the source may be characterized by the cross-spectral
density function, defined as (Ref. 4, Sect. 4.7.2)

W �r1, r2,v� � �U��r1,v�U �r2,v�� , (2)

where U �r, v� is a monochromatic realization of the
(statistical) f ield at frequency v and the angle brack-
ets denote ensemble averaging over these realizations.
The field U �r, v�, which is a solution of the scalar
Helmholtz equation, may be represented everywhere
outside the source domain in a series of the form5

U �r,v� �
X

lm

clmh
�1�
l �kr�Ylm�u,f� , (3)

where h�1�
l is the spherical Hankel function of the f irst

kind and order l, Ylm is the spherical harmonic of order
l, m, and clm are random coefficients that depend upon
the statistical properties of the field on the surface of
the source. On substituting from Eq. (3) into Eq. (2),
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Fig. 1. Notation relating to the radiation from an incoherent spherical source.
it follows that the cross-spectral density of the f ield
outside the sphere is given by the formula

W �r1,r2,v� �
X

lm

X

l0m0

�c�
lmcl0m0�h�1��

l �kr1�h�1�
l0

3 �kr2�Y�
lm�u1,f1�Yl0m0�u2,f2� . (4)

This is the most general expression for a partially co-
herent field outside a spherical domain. We may sim-
plify this formula significantly by applying particular
boundary conditions at the surface.

Let us assume that the f ield at points r1 � as1,
r2 � as2�s21 � s22 � 1� on the surface of the sphere
is incoherent, i.e., its cross-spectral density is delta
correlated,

W �as1,as2,v� � I0�v�d�2��s2 2 s1� , (5)

where I0�v� is the effective intensity of the field on the
surface of the sphere and d�2� is the two-dimensional
Dirac delta function with respect to the spherical po-
lar coordinates �u1, f1� and �u2, f2� of unit vectors s1
and s2, respectively. This delta function may be ex-
panded by use of the spherical harmonic closure rela-
tion (Ref. 6, p. 791),

d�2��s2 2 s1� �
X

lm

Y�
lm�u1,f1�Ylm�u2,f2� . (6)

On matching Eq. (4) to the boundary condition (5), it is
readily found that

�c�
lmcl0m0� � dll0dmm0

I0�v�

jh�1�
l �ka�j2

, (7)

where dll0 is the Kronecker delta. Hence the
cross-spectral density of the f ield is given by

W �r1, r2,v� �
X
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I0�v�

jh�1�
l �ka�j2
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l �kr1�h�1�

l �kr2�

3 Y�
lm�u1,f1�Ylm�u2,f2� (8)
This expression may be further simplified by using
the spherical harmonic addition theorem (Ref. 6,
Sect. 12.8), and the cross-spectral density then takes
the form

W �r1,r2,v�

�
X

l

2l 1 1
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I0�v�

jh�1�
l �ka�j2

h�1��
l �kr1�h�1�

l �kr2�Pl�cos Q� , (9)

where Q is the angle between r1 and r2 and Pl is the
Legendre polynomial of order l.

Equation (9) is suitable for performing numerical
computation. Before doing so, however, it is worth-
while to examine the asymptotic form of this series.
The spherical Hankel functions h�1�

l �x� are well known
to take on their asymptotic forms when x .. l�l 1 1��2;
furthermore, it can be shown that the series (9) will
have negligible coeff icients for l . ka. One might
assume that the series will take on its asymptotic form
when the highest-order, nonnegligible terms of the
series take on their individual asymptotic forms. The
highest-order, nonnegligible term is approximately
given by l � ka, and we then have the asymptotic
condition

kr ..
ka�ka 1 1�

2
. (10)

If we further assume that ka .. 1, we may approximate
inequality (10) by the form kr .. �ka�2�2, or

pa2

lr
,, 1 , (11)

which is the usual Fresnel number requirement men-
tioned in the introduction.

Numerical computation of the degree of coherence
suggests a different transition to the asymptotic limit.
Figure 2 shows numerical computations of the spectral
degree of coherence on spheres concentric with a source
of normalized radius ka � 100. It can be seen in the
figure that the angular spread of degree of coherence
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Fig. 2. Form of the spectral degree of coherence at different radial distances from a spherical source of (normalized)
radius ka � 100. It can be seen that, once the observation point is more than a few wavelengths away from the source
domain, the functional form of the spectral degree of coherence is essentially unchanging and roughly equal to the far-zone
form, calculated using the van Cittert–Zernike theorem.
is essentially constant once the two field points are
more than a few wavelengths away from the source.
The boundary of the far zone of the source, defined by
Eq. (11), is at a distance kr � 5000.

It is useful to compare these numerical results with
the traditional far-zone calculation of the coherence of
the radiated f ield, based on the van Cittert–Zernike
theorem (Ref. 3, Sect. 10.4.2). The degree of coher-
ence of a planar, incoherent circular source of uniform
intensity and radius a at points in the far zone is then
found to be given by the expression

m�rs1, rs2,v� �
J1�2ka sin�Q�2�	

ka sin�Q�2�
, (12)

where Q is again the angle between the directions of
observation s1 and s2 and J1 is the Bessel function of
the f irst kind and order 1. It can be seen from Fig. 2
that our numerical calculations are in good agreement
with the van Cittert–Zernike result.

Our calculations demonstrate that the spectral
degree of coherence of the f ield generated by an
incoherent source takes on its far-zone behavior at dis-
tances immediately beyond the near zone of the source
and well before one reaches the traditionally defined
far-zone limit. We have performed calculations of the
degree of coherence for sources of various sizes, from
very small �ka � 3� to quite large �ka � 1000�, and
the distance-independent behavior is found to hold
for all cases. It is not possible to use our numerical
methods to directly calculate the coherence of sunlight
(which would require the summation of a series with
ka � 1018 terms), but our results suggest that the
usual van Cittert–Zernike theorem result of a coher-
ence area of sunlight, DA � 3.67 3 1023 mm2 (and
consequent angular width DQ � 4.5 3 10216 rad), is
correct. It is expected that any experimental mea-
surements of the degree of coherence of sunlight will
reproduce not only this coherence area but also the
functional form of the degree of coherence given by
Eq. (12).

In conclusion, we have shown that the effective
far-zone result for the coherence of light from a
spatially incoherent spherical source is in fact valid
immediately beyond a distance of a few wavelengths
from the source surface. This suggests that, at least
for incoherent sources, the usual far-zone condition (1)
is not appropriate. Similar results have recently
been demonstrated for planar incoherent sources,7

suggesting that this phenomenon is a consequence of
the incoherence of the source.
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