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We read the preceding comment [1] with interest and we agree that there was
an algebraic error in our previous derivations [2] of the optimal pit depth.
This error arises from improperly assuming that the phase difference of the
focused fields within the aperture of the lens system is the same as the phase
difference between the point sources on the land and on the pit surfaces of the disk,
an assumption which can be shown to be incorrect by a straightforward paraxial
wave analysis. However, there is an additional phase factor which influences the
optimum pit depth, neglected by the authors of the preceding comment and in fact
incorrectly determined in our original analysis, and we would like to address its
effects.

It is worth mentioning that the original theoretical results were motivated by
experimental work [3] which suggested that, under certain circumstances, the
optimal pit depth is in fact �/2, not �=4 as is ordinarily assumed. The �/4 result is
derived by assuming that the field illuminating the CD surface is a normally
incident plane wave [4]. Of course, realistic compact disk readout systems use
focused fields, and it is well-known that the spacing of the equiphase surfaces of a
focused wave in the region of focus differs from that of a plane wave [5], a fact that
is responsible for, among other things, the so-called Gouy phase shift of focused
waves ([6], p. 498). We believed that this change of spacing could be responsible in
some systems for the deviation of the optimal pit depth from the usually assumed
�/4 value.

To see the effect of this ‘scaling’ of the spacing of phase surfaces on the optimal
pit depth, we briefly rederive the results of the papers [7, 2], but incorporate the
correct phase as described in [1] and show where the ‘scaling’ phase arises in the
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analysis. At typical points Q1 and Q2 on the spherical wavefronts originating from
the two point sources, the field distributions can be expressed in the form
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with a similar expression for  0
2. Here  1 ¼ 0 and  2 ¼ �k�. Now the important

point is to use diffraction theory, rather than geometrical optics, to determine the
propagation of these two converging waves to the detector plane. Standard results
from the theory of focusing indicate that the field in the region of focus of each of
the two waves is given by the expressions ([6], section 8.8)
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where C is a constant factor which is approximately the same for both waves, and
ui, vi are the dimensionless Lommel variables [defined in [2], equations (3) and
(4)]. The field intensity at a point P in the region of superposition is then given by
the expression

IðPÞ ¼ jU1ðPÞ þU2ðPÞj
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and where �i (i ¼ 1; 2) is the phase of the integral in equations (4) and (5). For
arbitrary u and v this latter phase is not expressible in a closed analytic form, but
on the axis (vi ¼ 0) it takes on the simple form
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We now consider the physical significance of each of these factors. The  0
i are

the phase differences introduced by the path length differences of the two focused
fields, now correctly given by equation (3). From the definition of ui, it follows that
the factors ðR0

i=aÞ
2ui are simply the longitudinal phase factors kzi. The �i, however,

are the phase factors which were absent in our earlier work and represent the
‘scaling’ of the phase front spacing discussed earlier. They are proportional to the
kzi factors and thus alter the spacing of the phase fronts from the ‘ideal’, normally
incident plane wave.
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As has been stated earlier, and can be immediately seen from equation (6), the
optimal pit depth is then given by the values

�1 � �2 ¼ mp ðm ¼ 1; 3; 5; . . .Þ: ð9Þ

Assuming that the detector plane is located directly between the geometrical focal
points of the two focused waves, it follows that u1 � �u2 and R0

1 � R0
2, and a

straightforward analysis together with the use of equations (7) of reference [2]
show that
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On substituting from this equation into equation (9), and solving for �, one finds
that
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where we have used the fact that MTa=R
0
1 ¼ a=R1. If the ratio a=R1 is small

compared to unity, then the optimal delta will be an odd multiple of �/4. If,
however, this ratio is appreciable, as it can be under practical circumstances, the
optimal � could be given by a larger value, possibly approaching �/2. This is in
agreement with the experimental evidence, and now properly confirms our earlier
claim that a focused field may have a different optimal pit depth than that of a
plane wave.

The basic conclusion to be drawn from this analysis is that the phase of a
focused field has a non-trivial structure and that any study of the interference of
such waves in the focal region must necessarily use diffraction theory and not
geometrical optics as in [1], especially since the spatial separation of the sources in
the problem are less than a wavelength. Because the phase spacing ‘scaling’ in the
focal region is highly dependent on the parameters of the focusing system
(through, for instance, the ratio a=R1), it is not true that ‘the optimum pit depth
can in no way depend on a system parameter such as magnification’, as claimed by
the authors of the preceding comment.

One can, of course, argue that our model of an optical readout system is
oversimplified, as it does not take into account multiple point emitters on the data
surface, electromagnetic effects, and so forth. However, considering the most
detailed previous theoretical study of the optimum pit depth examines only the
interference of plane waves, we consider our results to be a positive step towards
understanding the question at hand.
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