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Abstract

It was recently shown that the structure of a weakly scattering object may be

reconstructed from intensity measurements made in a half-space beyond the scatterer.

We review these results and show how they may be extended to more complicated

situations, and illustrate them by examples.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

The possibility of determining the three-dimensional structure of an object

from measurements of the field scattered by the object is of basic importance in
many applications, including medical diagnosis, geophysical surveying, and

structural testing. The two methods of solving this inverse scattering problem

that are most frequently employed are computed tomography and diffraction

tomography.
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Computed tomography, also referred to as computed axial tomography (see

[1, Section 4.11] or [2,3]), which is frequently performed using X-rays, utilizes

measurements of the attenuation of the incident field to determine the object

structure. The algorithm used to reconstruct the object assumes that the inci-
dent field propagates along rays, and is attenuated but not diffracted.

When the wavelength of the probing field is comparable to the scale of

spatial variation of the structure of the object, diffraction and scattering effects

become significant and computed tomography leads to inaccurate results.

Diffraction tomography [1, Section 13.2] or [4], a method which incorporates

diffraction effects, can then be used. This method, however, unlike computed

tomography, requires measurement not only of the intensity of the scattered

field but also its phase. Performing phase measurements at optical frequencies
is typically difficult, requiring the use of interferometric techniques and com-

plicated phase unwrapping algorithms. Perhaps because of this, diffraction

tomography has not found widespread application as has computed tomo-

graphy.

To circumvent the difficulties of phase measurements of an optical field, a

variety of methods have been proposed and tested. Methods of diffraction

tomography that require only intensity measurements have been suggested

which use iterative algorithms [5] or are restricted to reconstructions of objects
whose refractive index is real-valued [6]. Another method, called power-

extinction diffraction tomography [7], requires measurements of the power

extinguished from a pair of plane waves incident simultaneously on the scat-

terer. A method which uses measurements of the intensity of the scattered field

at a plane near the scatterer and also in the far zone has been proposed [8]. One

paper discusses the validity of performing diffraction tomography without

using any phase information at all [9].

It is evidently of great interest to determine how much information about a
scattering object is contained in the intensity of the scattered field. A promising

method proposed by Teague [10] allows the phase of a paraxial field to be

determined by taking intensity measurements on a pair of mutually parallel

planes and then solving a two-dimensional Poisson equation. Several authors

have discussed the reconstruction of objects using Teague’s transport of

intensity equation [11,12]. Very recently, however, a new method of diffraction

tomography has been developed that allows straightforward determination of

the scattering potential using intensity measurements on a pair of planes
[13,14]. The method is similar to Teague’s but is not restricted to paraxial

wavefields and does not require the solution of a partial differential equation to

recover phase information.

In this paper we discuss this new ‘‘intensity diffraction tomography’’ method

and we examine how much information can be obtained about a scattering

object from the intensity of the scattered field. After reviewing the new method

and comparing it to ordinary diffraction tomography, we show that the new
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method can, in principle, be extended to take into account additional infor-

mation contained in the intensity backscattered from the object. Finally, dif-

ficulties that arise when one attempts to reconstruct the low spatial frequency

components of the scattering object are discussed, and methods are proposed
to overcome them.
2. Ordinary diffraction tomography and intensity diffraction tomography

We consider a monochromatic scalar plane wave Viðr; tÞ ¼ UiðrÞe�ixt of

frequency x and wave number k ¼ x=c, with UiðrÞ ¼ eiks0�r and s20 ¼ 1, incident

on a scattering object characterized by a complex potential F ðrÞ, occupying a
volume V . The arrangement is depicted in Fig. 1. Let r ¼ xs1 þ ys2 þ zs0, where
ðs1; s2; s0Þ are unit vectors along the axes of a right-handed coordinate system.

We denote by Rþ the half-space outside the scatterer into which the incident

field is propagating and call it the forward scattering half-space; the region

outside the scatterer from which the field is incident is denoted by R� and

we call it the back scattering region.

The time-independent part UðrÞ of the total field satisfies the differential

equation
Fig.
½r2 þ k2	UðrÞ ¼ �4pF ðrÞUðrÞ; ð1Þ
1. Illustrating the notation relating to tomographic reconstruction of scattering objects.
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where the scattering potential F ðrÞ is defined by the formula
F ðrÞ ¼ k2

4p
½n2ðrÞ � 1	; ð2Þ
nðrÞ being the (generally complex) index of refraction of the scattering object.

If the scattering potential is sufficiently weak [nðrÞ 
 1], the total field is well-

represented by the lowest-order term in a perturbation expansion of its com-

plex phase, i.e. as
UðrÞ 
 UiðrÞewðrÞ; ð3Þ
where
wðrÞ ¼ 1

UiðrÞ

Z
V
F ðr0Þ e

ikjr�r0 j

jr� r0jUiðr0Þd3r0: ð4Þ
This approximation to the total field is known as the first Rytov approximation

(see [1, Section 13.5]).

In many tomographic experiments, the total field is measured on a plane

z ¼ d, taken to be perpendicular to the direction of incidence s0, an arrange-

ment often referred to as the classical measurement configuration. Expression
(4) may be expressed in a form particularly suitable to this configuration by use

of the Weyl representation of a diverging spherical wave (see [15, Section 3.2]),

viz.,
eikjr�r
0 j

jr� r0j ¼
i

2p

ZZ
1

w
ei½us1þvs2ws0	�ðr�r0Þ dudv; ð5Þ
where the integration extends over the entire u, v plane,
w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � u2 � v2

p
when u2 þ v2 6 k2;

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2 � k2

p
when u2 þ v2 > k2;

�
ð6Þ
and the sign of w in Eq. (5) is taken to be positive or negative according as z is
greater than or less than z0, respectively. On substituting from Eq. (5) into Eq.

(4), the complex phase wðrÞ on the plane z ¼ d may be expressed in the form
wðx; y; dÞ ¼ ð2pÞ2i
ZZ

1

w
eF ½us1 þ vs2 þ ðw� kÞs0	eiðw�kÞdeiðuxþvyÞdudv; ð7Þ
where
eF ðKÞ ¼ 1

ð2pÞ3
Z
V
F ðr0Þe�iK�r0d3r0 ð8Þ
is the three-dimensional Fourier transform of the scattering potential.
From the previous expressions it can be shown that structural information

about the scattering potential may be determined from a careful processing of
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the measured field data. It is to be noted that the complex phase wðrÞ may be

determined from the field data by the use of the relation
wðx; y; dÞ ¼ log
Uðx; y; dÞ
Uiðx; y; dÞ

� �
: ð9Þ
If we take the two-dimensional Fourier transform
ŵðu; v; dÞ ¼ 1

ð2pÞ2
ZZ

wðx; y; dÞe�iðuxþvyÞdxdy ð10Þ
of the complex phase in the plane z ¼ d, it is straightforward to show that
ŵðu; v; dÞ ¼ ð2pÞ2i
w

eF ½us1 þ vs2 þ ðw� kÞs0	eiðw�kÞd : ð11Þ
It can be seen from Eq. (11) that the two-dimensional Fourier transform of the

complex phase w on the plane z ¼ d is directly related to the three-dimensional
Fourier transform of the scattering potential F ðrÞ. In particular, knowledge of

the components of ŵ for u2 þ v2 6 k2 is equivalent to the knowledge of eF on a

half-spherical surface in K-space displaced from the origin (see Fig. 2(a)). If the

direction of propagation of the incident field s0 is moved through all possible

directions, and measurements of the transmitted field are made for each

direction using the standard measurement configuration, one can determine all

those Fourier components of eF ðKÞ for which jKj6
ffiffiffi
2

p
k (Fig. 2(b)).

Eq. (11) forms the theoretical basis of diffraction tomography. Algorithms
have been described in the literature that may be used to efficiently reconstruct

F ðrÞ [16,17]. It is to be noted that reconstruction methods based on Eq. (11)

assume that both the amplitude and the phase of the scattered field are

accessible to measurement; however, in many circumstances, especially at

optical wavelengths, the phase is not easily measurable and often such mea-

surements require the use of complicated phase unwrapping techniques.

Because it is often difficult to obtain phase information , it is of interest to

determine how much information intensity measurements can provide about
the structure of the scattering object. Now the intensity of the field on the plane

z ¼ d may be defined as
Iðx; y; dÞ � jUðx; y; dÞj2 ¼ ewðx;y;dÞþw�ðx;y;dÞ; ð12Þ
where the asterisk denotes the complex conjugate. We next introduce an

intensity data function
DIðx; y; dÞ � log½Iðx; y; dÞ	 ¼ wðx; y; dÞ þ w�ðx; y; dÞ: ð13Þ
The two-dimensional Fourier transform of this data function on the plane

z ¼ d is given by the expression



Fig. 2. Accessible Fourier components of the scattering potential from measurements of the field in

the forward scattering region in the so called classical measurement configuration. (a) Components

of eF ðKÞ accessible with one direction of incidence. (b) Components accessible with several direc-

tions of incidence.
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bDIðu; v; dÞ ¼
1

ð2pÞ2
ZZ

DIðx; y; dÞe�iðuxþvyÞ dxdy: ð14Þ
On substituting from Eqs. (13) and (7) into Eq. (14), one readily finds that
bDIðu; v; dÞ ¼ i
ð2pÞ2

jwj2
w�eF ½us1n

þ vs2 þ ðw� kÞs0	eiðw�kÞd

� w eF ½h
� us1 � vs2 þ ðw� kÞs0	

i�
e�iðw��kÞd

o
: ð15Þ
Let us consider u, v values such that u2 þ v2 6 k2; values outside this range are
associated with evanescent waves, from which it is appreciably more difficult to

extract structural information (see, for example, [18,19]). The quantity w is

then real, and it can be seen from Eq. (15) that the ðu; vÞth Fourier component

of DI consists of a superposition of two plane waves travelling in the directions
ðu; v;w� kÞ and ð�u;�v;w� kÞ, illustrated in Fig. 3. Because this Fourier



Fig. 3. Vectors ðu; v;w� kÞ and ð�u;�v;w� kÞ.
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transform consists of a weighted sum of eF and eF � which is typically complex, it

follows that it is not, in general, possible to determine eF from measurements of

the intensity on a single plane z ¼ d. What is not immediately obvious, how-

ever, is that it is possible to determine eF by measuring the intensity on two or

more planes perpendicular to s0, as we will now show.

We consider a new data function bDD, defined as
bDDðu; v; dÞ �
bDIðu; v; dÞ � bDIðu; v; d þ DÞeiðw�kÞD

D
: ð16Þ
This new data function is a linear combination of the Fourier transforms of the

intensity data function on two planes, situated at distances z ¼ d and z ¼ d þ D
(see Fig. 4). On substituting from Eq. (15) into (16), it immediately follows that
bDDðu; v; dÞ ¼
ð2pÞ2i
w

eF ½us1 þ vs2 þ ðw� kÞs0	eiðw�kÞdC½w;D	; ð17Þ
where
C½w;D	 �
1� e2iðw�kÞD� 

D
: ð18Þ
Eq. (17), which was first derived in Refs. [13,14], demonstrates that bDD is
proportional to eF . It should be compared to Eq. (11), which forms the basis

of diffraction tomography. The two equations differ significantly only in that

Eq. (17) possesses the additional factor C½w;D	. This factor vanishes for values
of u, v such that
2 k
h

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � u2 � v2

p i
D ¼ 2np; ð19Þ



Fig. 4. A two-plane measurement scheme for performing diffraction tomography with only

intensity measurements.
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where n is an integer. For such values of u and v the function eF cannot be

determined. This includes the value of the function at the origin in Fourier

space, u ¼ v ¼ 0, which we will discuss in Section 4. The simplest reconstruc-

tion schemes will require that only values of u, v such that the left-hand side

of Eq. (19) does not exceed 2p are used, i.e. values such that
u2 þ v2 6
2pk
D

: ð20Þ
In deriving inequality (20) it was assumed for simplicity that u2 þ v2 � k2. This
inequality places a constraint on how closely spaced the measurement planes
must be in order to determine a given Fourier component of eF ; it can be seen

that larger values of u and v require a closer spacing of the measurement

planes.

That there exists such a tomographic method is perhaps not surprising when

one considers that the propagation of a field depends on both its intensity and

phase. One might therefore expect that the change in the intensity of the field as

it propagates contains some information about its phase. We have seen that at

any plane the spatial Fourier transform of the intensity may be considered to
have a contribution from a pair of plane waves. By measuring the same Fourier

components of the intensity further away from the scatterer, we obtain a pair

of equations with two unknowns (eF , eF �), which may be solved for the two

components of eF . It should be noted from Eq. (15) that, for given values of u,
v, the Fourier transform of the intensity is periodic in the s0 direction; the zeros

defined by Eq. (19) correspond to distances at which the measurements at the

two planes give redundant information.

Our tomographic method bears a striking resemblance to the method
developed by Teague [10] for reconstructing the phase of a paraxial field. In
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both methods, the phase is determined from intensity measurements on a pair

of measurement planes. Our method differs from Teague’s in that it applies

even when the scattered field is not paraxial. However, it can be seen from

inequality (20) that determining the Fourier components of plane waves
propagating in a direction appreciably different from s0 requires the mea-

surement planes to be spaced at distances smaller than a wavelength. At optical

wavelengths (k � 10�6 m) such measurements cannot be readily made and

it should be expected in such cases that the method can be used to determine

only the lower frequency components of the scattering object.

It is clear from Eq. (13) that the intensity data function of the field is sin-

gular at points where the intensity of the field vanishes. Under such circum-

stances our method cannot be used. This fact is a consequence of the fact that
the phase reconstruction of a field is not unique when the field contains optical

vortices [20,21]. However, a requirement for the validity of the first Rytov

approximation is that the incident field is only weakly perturbed by the scat-

tering object. Conversely, as long as the first Rytov approximation is valid, the

solution to the phase problem will be unique. Evidently the phase recon-

struction problem is well suited for weakly scattered fields.

We have seen that a single Fourier component of eF may be determined by

the use of a data function bDD. This data function employs Fourier components

of the intensity data function on a pair of measurement planes. However, an

additional Fourier component of eF may be determined from the same intensity

information by using a slightly modified data function, as we now show.

Let us define a modified data function bDm
D by the relation
bDm
Dðu; v; dÞ �

bDIðu; v; dÞ � bDIðu; v; d þ DÞe�iðw�kÞD

D
: ð21Þ
The only difference between this equation and Eq. (16) is the sign of the

exponent. On substituting the appropriate intensity data functions into this

equation, one finds that
bDm
Dðu; v; dÞ ¼ � ð2pÞ2i

w
eF ½h

� us1 þ � vs2 þ ðw� kÞs0	
i�
e�iðw�kÞdCm½w;D	;

ð22Þ
where
Cm½w;D	 �
1� e�2iðw�kÞD� 

D
: ð23Þ
By taking the complex conjugate of Eq. (22), we may determine the quantityeF ½�us1 � vs2 þ ðw� kÞs0	, a component of eF distinct from that determined by

the use of bDD. The values of two Fourier components of eF may therefore be
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deduced from a single u, v Fourier component of the intensity data function,

measured on the two measurement planes.

As an example of the new tomographic method, we consider scattering from
a spherically symmetric object with a scattering potential defined by
F ðrÞ ¼

fa when r6 a
fa � fb
a� a1

ðr � aÞ þ fa when a < r6 a1

fb when a1 < r6 b1

fb
r � b
b1 � b

when b1 < r6 b

0 when r > b;

8>>>>>>><>>>>>>>:
ð24Þ
with na ¼ 1:001þ 0:001i, nb ¼ 1:001þ 0:002i, and fi ¼ ðn2i � 1Þ=4p, where

i ¼ a; b. The radii were chosen to have the (scaled) values ka ¼ 8, ka1 ¼ 12,

kb1 ¼ 16, and kb ¼ 20. The scattered field was calculated using the first Born

approximation [1, Section 13.1.2].

The measurement planes were taken to be at distances kd ¼ 70 and

kðd þ DÞ ¼ 71:4; the distance D was chosen so that no zeros of C½w;D	 are
present in the forward or back scattering arrangements. The intensity was

sampled in-plane at radial intervals kq ¼ 1, to a maximum radius of
kqmax ¼ 250. In performing the reconstruction of the scattering potential, the



G. Gbur, E. Wolf / Information Sciences 162 (2004) 3–20 13
spherical symmetry of the object was assumed as prior knowledge. To dem-

onstrate the stability of the method, Gaussian noise was added to the intensity

data on the two planes with a standard deviation equal to 6% of the average

value of the scattered intensity on a sphere of radius equal to the distance of
the measurement plane from the origin.

To circumvent the difficulties of the data function near the origin, the value

of eF ðKÞ for jKj below a certain spatial frequency was extrapolated as described

in Section 4.

The reconstructions are shown in Fig. 5. The dashed curve represents the

actual scattering potential, while the solid curve represents the reconstruction.

It can be seen that there is excellent agreement between them. It is to be noted

that both the real and imaginary parts of the scattering potential can be
determined, despite the fact that only intensity data was used in the recon-

struction.
3. Intensity diffraction tomography in backscattering

The tomographic method described in Section 2 showed how information in

the intensity of a field scattered by an object into the half-space Rþ may be

used to determine some of the Fourier components of the scattering potential.
One might expect that it might be possible to determine structural information

also from the backscattered field. The backscattered field may be shown to

contain information about higher spatial frequencies of the object and, as

suggested in the previous section, will therefore require the spacing between

measurement planes to be smaller than a wavelength, which would be im-

practical at optical wavelengths. However, a method which can retrieve

information from backscattered fields might be useful for acoustical or other

experiments, and we will therefore consider such a method here.
Returning to Eq. (4) and the Weyl expansion, Eq. (5), it follows that the

complex phase in the region R� is given by
wðx; y; dÞ ¼ ð2pÞ2i
ZZ

1

w
eF ½us1 þ vs2 � ðwþ kÞs0	e�iðwþkÞdeiðuxþvyÞ dudv:

ð25Þ
In a manner strictly similar to that used to derive Eq. (15), it can be shown that
bDIðu; v; dÞ ¼ i
ð2pÞ2

jwj2
w�eF ½us1n

þ vs2 � ðwþ kÞs0	e�iðwþkÞd

� w eF ½h
� us1 � vs2 � ðwþ kÞs0	

i�
eiðwþkÞd

o
; ð26Þ
where we are again considering only values of u and v such that u2 þ v2 6 k2.
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We next define a data function bDd for the back scattering region R� as
Fig. 6

the ba
bDdðu; v; dÞ �
bDIðu; v; dÞ � bDIðu; v; d þ dÞe�iðwþkÞd

d
; ð27Þ
with d < 0. On substitution from Eq. (26) into Eq. (27), we find that
bDdðu; v; dÞ ¼
ð2pÞ2i
wd

eF ½us1 þ vs2 � ðwþ kÞs0	e�iðwþkÞd 1
�

� e�2iðwþkÞd�: ð28Þ
It can be seen that, as in the forward scattering region, the Fourier components
of the scattering potential are directly related to the Fourier transform of the

scattered intensity on a pair of measurement planes. The Fourier components

available for reconstruction are shown in Fig. 6. These Fourier components are

represented by points on a hemisphere that is the complement of the hemi-

sphere of available Fourier components in the forward scattering region. Be-

cause the hemisphere shown in Fig. 6 no longer intersects the origin in Fourier

space, there is no difficulty in determining the u ¼ v ¼ 0 component. However,

in order to avoid other zeros of the term in the curly brackets in Eq. (28), it
is necessary that
ðwþ kÞ2jdj < 2p ð29Þ
for all possible values of w. Since the maximum value of w is k, Eq. (29) sug-
gests that
jdj < p
2k

¼ k
4
: ð30Þ
It is therefore seen that, as noted at the beginning of this section, to take

advantage of the information in the backscattered field the measurement planes

must be spaced at a distance appreciably smaller than a wavelength. This

would be impractical at optical wavelengths, but for electromagnetic radiation
. Fourier components of the scattering potential accessible from measurements of the field in

ck scattering region in the classical measurement configuration.
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of longer wavelength or for acoustical waves such measurements could be
performed.

There is a difficulty in the analysis just described which is not immediately

obvious. It is to be noted that the field described by Eqs. (3) and (4) represents

the total field, the sum of incident and scattered fields. In the region Rþ, where

the incident and scattered fields are both propagating into the same half-space,

it is natural to assume that it is the total field UðrÞ that will be measured by a

detector, i.e. that one can measure the data function DIðrÞ directly. However,

in the region R�, the incident field and the scattered field are propagating
into different half-spaces, and a detector set up in the region R� will gen-

erally measure only the scattered field Us, where
UsðrÞ ¼ UðrÞ � UiðrÞ: ð31Þ
This scattered field will generally have a small amplitude and will possess zeros

of intensity, i.e. phase singularities, a difficulty we have already mentioned. To

measure the quantities considered in this section will require that a plane wave

with a phase equal to the phase of the incident plane wave be made to interfere

with the scattered field. Such a procedure could be carried out with an

appropriate interferometric technique. One might expect that to perform such

a procedure would require sensitivity in measuring position much less than a

wavelength; however, we have also seen that such sensitivity is assumed already
in the positioning of the pair of measurement planes.
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As an example, we again consider the spherically symmetric object with the

scattering potential given by Eq. (24). We take all parameters to be the same as

in the previous example, except that now a pair of additional planes is used

in the backscattering direction at distances kd ¼ �70 and kðd þ dÞ ¼ �71:4, and
the higher spatial frequency Fourier data are reconstructed from these planes.

The reconstruction is shown in Fig. 7. There seems to be little improvement

in the reconstructions, save perhaps that the flat surfaces of the scattering

potential are more accurately reconstructed.
4. Reconstruction of low spatial-frequency components of scattering object

A helpful property of the new tomographic method is that it does not re-

quire the processing of more data than does traditional diffraction tomogra-

phy. Measurements of the intensity and phase of the field on a plane are

replaced by measurements of the intensity on a pair of planes. One compli-

cation that arises in the use of the new method is the vanishing of bDD when

u ¼ v ¼ 0. Consequently eF at the origin in Fourier space cannot be determined
directly from the data function. Furthermore, the reconstruction of compo-

nents of eF near the origin will be highly susceptible to noise because these

components are determined by dividing the data function bDD by the function

C½w;D	, which has a very small value for small values of u, v. One must

therefore use indirect methods to find the behavior of eF near the origin. We

will briefly consider some possibilities of doing so.

The reason for this complication may be understood by returning to the

arguments which follow Eq. (15). At a given pair of values ðu; vÞ, the Fourier
transform of the field intensity in a plane contains contributions from a pair of

plane waves travelling in different directions. By measuring the intensity in two

planes, it is possible to isolate the contribution of each of these plane waves and

so determine eF . The values of (u; v) determine the angular spread of the pair of

waves. For smaller values of (u; v), these plane waves propagate farther along

the z-direction before an appreciable phase difference is built up between them.

When u ¼ v ¼ 0, bDI is constant with respect to position, and the wave number

of each plane wave has zero value.
Several options exist for overcoming this difficulty. To begin with, it is to be

noted that since the scattering object is finite, F ðrÞ is nonzero only within a

finite domain. It follows from a theorem concerning functions of several

complex variables (Ref. [22, p. 352]) that eF ðu; v;wÞ is the boundary value on

the real axes of an analytic function in three complex variables. It is therefore,

in principle, possible to use analytic continuation methods to determine un-

known values of the function eF from the known values.

The measurement of values of eF near the origin may be directly improved
simply by using additional measurement planes spaced at greater distances
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apart. Fig. 8 shows the value of the function Cðw;DÞ for several values of

spacing D between the planes. It can be seen that as the spacing of the planes is

increased, the low values of the function become more compressed about the

origin. This suggests that a three-plane measurement system might be useful

in some circumstances: two planes spaced as constrained by inequality (20),

and a third plane placed at a distance far from the first two.
It is also to be noted that one additional piece of information is available

about eF at the origin. Returning to Eq. (15), it can be seen that, for u ¼ v ¼ 0,

the equation reduces to
bDIð0; 0; dÞ ¼ � 2ð2pÞ2

k
Im eF ð0; 0; 0Þn o

: ð32Þ
The imaginary part of eF ð0; 0; 0Þ can therefore readily be determined from the

integral of the intensity over a single measurement plane. This result is anal-

ogous to the well-known optical theorem, according to which the power
extinguished from a plane wave incident on a scattering object is proportional

to the imaginary part of the forward scattering amplitude [1, Section 13.3]. The

information in Eq. (32) can be used as a check on the validity of any scheme

used to determine the low-frequency components of eF .
Because eF ðKÞ is the boundary value of an entire analytic function, it may be

expanded in a Taylor series about the origin,
eF ½K	 ¼ eF ½0	 þ K � rK 0 eF ½K0	jK0¼0 þ
1

2
K � rK 0ð Þ2eF ½K0	jK0¼0 þOðK3Þ; ð33Þ
where K ¼ K1s1 þ K2s2 þ K0s0 and rK 0 ¼ o=oK 0
1s1 þ o=oK 0

2s2 þ o=oK 0
0s0. This

equation contains 10 complex parameters: one complex number for the zeroth

order term, three complex numbers for the linear term, and six for the
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quadratic term. One can therefore assume that, near the origin, eF is well-

approximated by an equation of the form
eF ½u	 
 Aþ u � Bþ ðu � C � uÞ; ð34Þ

where A is a complex constant, B is a complex vector, and C is a complex

symmetric matrix. The parameters A, B, and C can be found most readily by

matching Eq. (34) to reconstructed values of eF near the origin. In the most
general case, this results in 10 complex equations which can be solved to

determine the coefficients of the Taylor expansion; if more data is available,

it can be used to improve the quality of the reconstruction.

In the examples described in the previous two sections, this method was used

to determine the low spatial frequency components of the scattering potential.

For a spherically symmetric scattering potential, the linear term of Eq. (33)

vanishes and the quadratic term simplifies, leaving only two undefined complex

parameters (four real parameters). Near the origin, the potential was therefore
assumed to have the form
eF ðKÞ ¼ A1 þ A2K2; ð35Þ

where A1 and A2 are complex constants. This approximation was used for K-
values below a chosen cutoff spatial frequency Kcutoff ; above this spatial fre-

quency, Eq. (17) was used to reconstruct the Fourier components of eF ðKÞ. The
constants A1 and A2 were then determined by minimizing a function of the form
MðA1;A2Þ ¼
XN
n¼1

A1

�� þ A2K2
n � eF ½Kn	

��2 þ Im½A1	
 

þ 1

2ð2pÞ2
bDIð0; 0; dÞ

!2

;

ð36Þ

where the sum is over N selected values of the reconstructed data whose spatial

frequencies Kn were above Kcutoff . The use of Eq. (36) represents a simplified

method of curve fitting. In the examples of the previous two sections, the

parameters were chosen to be Kcutoff=k ¼ 0:1 and N ¼ 20. It can be seen that

this method and this choice of parameters resulted in good reconstructions
of the scattering potential.
5. Conclusions

In this paper we have reviewed and extended a new method of performing

diffraction tomography without the use of phase information; it has been

shown that intensity data is sufficient for reconstructing the scattering object.

Although there exists a problem in the reconstruction of the low frequency
components of the scattering potential as discussed in Section 4, practical

methods exist for overcoming this problem. It seems that this new tomographic



G. Gbur, E. Wolf / Information Sciences 162 (2004) 3–20 19
method could be used in circumstances when phase measurements are not

feasible, or could be used to simplify existing diffraction tomography tech-

niques by eliminating the need for a phase measuring apparatus.
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