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Abstract
It is well known that light fields which are partially coherent and/or
polychromatic do not typically possess regions of zero intensity and hence
do not possess any obvious phase singularities. It is of interest to ask
whether or not such fields possess singularities in some ‘hidden’ form, and
in this paper we discuss the singular optics of partially coherent fields and
the nature of the singularities in such fields.
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1. Introduction

It is generally accepted that fixed points of complete destructive
interference of a wavefield, i.e. fixed points of zero intensity at
which the phase is necessarily singular, typically occur only in
monochromatic, spatially coherent wavefields. Most of the
research in singular optics [1] concerns fields of this type.
When a wavefield is partially coherent4 and/or polychromatic,
its random fluctuations will tend to move its singular points,
leaving no zeros in the average intensity. The disappearance
of zeros as the coherence of a system is decreased has been
demonstrated for a number of systems [2, 3]. A natural
question which then arises is this: are there any generic5

singularities in such partially coherent wavefields and, if so,
what are their physical characteristics? To answer this question
we will examine two cases: fields which are spatially coherent
but temporally partially coherent (polychromatic), e.g. the
output of a laser operating in a single transverse mode but
in multiple longitudinal modes, and fields which are spatially
partially coherent but quasi-monochromatic, e.g. the output of
a laser operating in a single longitudinal mode but in multiple

3 Present Address: School of Optics/CREOL, University of Central Florida,
Orlando, FL 32816, USA.
4 The term ‘partially coherent’ is often used to refer both to the state of
temporal coherence and the state of spatial coherence of a wavefield. In this
paper we use it to refer exclusively to the state of spatial coherence, reserving
the term ‘polychromatic’ for fields which lack appreciable temporal coherence.
5 ‘Generic’ features of a wavefield are loosely defined as those typical features
that appear naturally in a wavefield. Genericity is discussed in more detail in
chapter 1 of [4].

transverse modes. It is demonstrated in both cases that singular
points of the field do exist, and their connection with the phase
singularities of monochromatic, spatially coherent fields is
discussed.

2. Singularities in spatially coherent, polychromatic
wavefields

The singular behaviour of spatially coherent but polychromatic
fields has been studied recently in a number of papers
(e.g. [5–8]; see also [9, 10]) which have demonstrated that
anomalous behaviour of the field spectrum is related to the
phase singularities which are present in individual spectral
components of the field.

We consider as a simple illustration of such effects the
coherent superposition of three polychromatic plane waves
with propagation directions s1 = ẑ, s2 = ẑ cos θ0 + x̂ sin θ0

and s3 = ẑ cos θ0 − x̂ sin θ0, where x̂ and ẑ are unit vectors.
The cross-spectral density of a spatially coherent field can be
written in the factorized form [11, section 4.5.3]

W (r1, r2, ω) = ψ∗(r1, ω)ψ(r2, ω), (1)

where ψ(r, ω) is an average monochromatic realization of the
field at frequency ω (this is discussed in more detail in [12]).
For our example,

ψ(r, ω) ≡ √
S0(ω)

[
eiks1 ·r + eiks2 ·r + eiks3 ·r] (2)

where k = ω/c is the wavenumber associated with frequency
ω, c is the speed of light in vacuum, and S0(ω) is the spectrum of
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Figure 1. Colour plot of the mean frequency ω̄ of the spectrum of
the total field. Here k0 = ω0/c. For this example ω0 = 1015 s−1,
σ0/ω0 = 0.01, and θ0 = π/6. The colour is more red or blue as the
mean frequency is more redshifted or blueshifted, respectively. The
spectrum at points within the encircled region is shown in figure 2.

(This figure is in colour only in the electronic version)

the individual plane waves, taken to be a Gaussian line of centre
frequency ω0 and rms width σ0. The spectrum of the total field
is given by the diagonal element of the cross-spectral density,
i.e. S(r, ω) = W (r, r, ω), and it follows on substitution from
equation (2) into (1) that it takes on the simple form

S(r, ω) = S0(ω){3 + 2 cos[kz(1 − cos θ0) − kx sin θ0]

+ 2 cos[kz(1 − cos θ0) + kx sin θ0] + 2 cos[2kx sin θ0]}.
(3)

It is clear from equation (3) that, in the xz-plane and at each
frequency ω, the field possesses numerous points at which the
spectral density is zero and at which the phase of the field (i.e.,
the phase of ψ(r, ω)) at that frequency is therefore singular.
However, because of the k-dependence of the different terms of
this equation, the positions of these phase singularities depend
on frequency and in general no point in space will have a zero
spectral density for all frequencies of S0(ω). The total average
intensity I (r) of this field,

I (r) =
∫ ∞

0
S(r, ω′) dω′, (4)

will be nonzero throughout space, and the phase singularities
at a given frequency are therefore ‘hidden’ by the contributions
of other frequency components.

These singularities still manifest themselves in the
spectrum of the field, however, as can be readily shown. We
first consider the mean frequency ω̄ of the spectrum at different
points in space. A colour-coded plot of the mean is shown in
figure 1, where the colour is more red or more blue as the
mean frequency of the spectrum is more redshifted or more
blueshifted, respectively. The directions of propagation of
the three plane waves are shown on the figure for illustrative
purposes. It can be seen that, although the mean frequency
throughout most of the region is essentially the same as the
mean frequency of each of the individual plane waves S0(ω),
there exist isolated regions where the mean frequency changes
rapidly, for instance at the encircled location along the z = 0
axis. A detail of the spectrum at selected points within this
region is shown in figure 2. It can be seen that the changes in
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Figure 2. Detail of the (normalized) spectrum s(r, ω) at selected
points in the neighbourhood of the first axial singular region, with
k0z = 0. The spectra are normalized to have their peak values equal
to unity, i.e. s(r, ω) ≡ S(r, ω)/S(r, ωmax), where ωmax is the
frequency at which the spectrum at position r attains its maximum
value. All other parameters are as in figure 1.

the spectrum result from the presence of a zero in the spectrum
of the total field, corresponding to a phase singularity at that
frequency. The presence of this zero causes the spectrum to be
effectively redshifted, blueshifted, or even split into two lines,
depending on its position within the spectrum.

For light of narrow bandwidth, the region of space within
which the spectrum changes rapidly is quite small, and the
intensity within such a region is quite low, and hence would
be difficult to measure. Such measurements have already been
successfully carried out, however [13]. The spectral changes
described here have been shown to be a generic feature of
wavefields which possess phase singularities [7]. It is to be
noted that a decrease in spatial coherence of the wavefield
tends to remove the zeros of the spectrum and consequently
reduce the spectral changes of the field [14].

3. Singularities in quasi-monochromatic, partially
coherent wavefields

For a spatially coherent field as considered in the previous
section, it is still reasonable to speak about phase singularities
at a given frequency of the field because the field has a well
defined phase at each frequency, i.e. the phase of ψ(r, ω).
When a field is partially coherent, however, its phase itself is
random and is no longer well defined, even if the field is quasi-
monochromatic. This can be seen using a heuristic argument
based on the coherent mode representation [11, section 4.7] of
the cross-spectral density of a partially coherent field within a
finite volume V , i.e.

W (r1, r2, ω) =
N∑

n=1

λn(ω)ψ∗
n (r1, ω)ψn(r2, ω), (5)

where ψn(r, ω) are the coherent modes of the field, mutually
orthogonal within the volume V , and the λn(ω) are real and
positive. The index n generally represents multiple indices,
two indices in a two-dimensional domain, three indices in a
three-dimensional domain, and for a partially coherent field
N > 1 and is possibly infinite. Because of the orthogonality
of the modes, the cross-spectral density cannot be factorized as
in equation (1), and hence there is no well defined phase of the
field. Furthermore, it can be readily shown from equation (5)
that zeros of the spectral density are not generic: a zero of
the spectral density would require the real and imaginary parts
of each mode to vanish at the same point, which requires that
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Figure 3. Equiphase contours of the cross-spectral density in the neighbourhood of coherence vortices. In both examples, w0 = 1.0 mm. In
(a), δ = 1 mm, x1 = 0.1 mm, y1 = 0.1 mm. In (b), δ = 0.75 mm, x1 = 0 mm, y1 = 1 mm.

2N homogeneous equations must be solved simultaneously.
In three-dimensional space, and with N > 1, this is an
overspecified set of equations which generally has no solution.

However, one can produce model random fields for which
every realization of the field possesses phase singularities but
for which the average intensity has no zeros. An example of
this is a Laguerre–Gauss beam containing an optical vortex
which passes through weak atmospheric turbulence. Because
an optical vortex is stable under small perturbations of the
field, it will generally be present even after passing through
the turbulent region. Its position, however, will change as the
atmosphere fluctuates, so that on average no point in space will
possess a vortex structure. One might wonder if the presence
of this vortex is expressed in another property of the field, in
some sort of ‘hidden’ vortex.

A good candidate for such hidden vortices is the
singularities of two-point correlation functions described
recently, so-called coherence vortices [15]. Such vortices are
pairs of points at which the spectral degree of coherence of the
field vanishes, i.e. where

µ(r1, r2, ω) ≡ W (r1, r2, ω)√
S(r1, ω)S(r2, ω)

= 0, (6)

but at which the spectrum S(ri , ω) (i = 1, 2) of the field is
nonzero. Coherence vortices have been shown to be a generic
feature of partially coherent wavefields [15].

To investigate the relation between coherence vortices of
a partially coherent field and traditional optical vortices, we
consider as an example a monochromatic field which consists
of a low-order Laguerre–Gaussian beam propagating in the
z-direction whose central axis is a slowly varying random
function of position. Such a field may be considered a simple
model of so-called ‘beam wander’ in atmospheric turbulence
(see for instance, [16, section 6.5.3]). The cross-spectral
density of such a field in the plane z = 0 can be written as

W (r1, r2, ω) =
∫

f (r0)U
∗(r1 − r0, ω)U (r2 − r0, ω) d2r0,

(7)
where f (r0) is the probability density for the position of the
axis, and

U (r, ω) ≡ √
2U0(ω)e−iφ r

w0
e−r2/w2

0 (8)

is the transverse profile of a Laguerre–Gaussian beam of order
l = 1, n = 0 which possesses a vortex at the origin, φ being
the azimuthal angle, and U0 represents the field amplitude of
the beam. We take the probability density to be a Gaussian
function,

f (r0) = 1√
πδ

e−r2
0 /δ2

. (9)

In the limit δ → 0, the position of the beam axis is fixed and
the field is spatially coherent. An increase in δ corresponds to
a decrease in the spatial coherence.

The integral (7) can be evaluated by straightforward but
tedious calculation, and the result is given by

W (r1, r2, ω) = 2
√

π |U0(ω)|2
w6

0 A3δ
e−(r1−r2)

2/w4
0 Ae−(r2

1 +r2
2 )/δ2w2

0 A

× {[
γ 2(x1 + iy1) + (x1 − x2) + i(y1 − y2)

]
× [

γ 2(x2 − iy2) − (x1 − x2) + i(y1 − y2)
]

+ w4
0 A

}
,

(10)

where γ ≡ w0/δ, r ≡ (x, y), and

A ≡
(

2

w2
0

+
1

δ2

)
. (11)

The zero points of the cross-spectral density are
determined by the zeros of the factor in the curly brackets of
equation (10). It can be seen immediately by setting r1 = r2

that no zeros of the spectral density exist when the field is
partially coherent—the phase singularity of the Laguerre–
Gauss beam does not appear in the average intensity due to
the wandering of the beam axis.

For a given value of r1, however, it can be shown that there
exists a pair of coherence vortices in the z = 0 plane which are
collinear with the x = y = 0 axis. For positive r1, the radial
positions of these coherence vortices are given by the formula

r2 =
(γ 4 + 2γ 2 + 2)r1 ±

√
[γ 8 + 4γ 6 + 4γ 4]r2

1 + 4(γ 2 + 1)w4
0 A

2(γ 2 + 1)
.

(12)
Two examples of these coherence vortices are shown in

figure 3. It can be seen from the example that the location
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Figure 4. Illustration of the evolution of a coherence vortex into an intensity vortex. The contour lines of the phase of µ(r1, r2, ω) are
shown for selected values. For this example x1 = 0.5 mm, y1 = 0, w0 = 1.0 mm. It can be seen that as the field is made more coherent (δ is
decreased) the leftmost coherence vortex moves to the origin and evolves into the usual intensity vortex of the Laguerre–Gauss mode.

of the vortices depends on the choice of the position variable
r1, and therefore cannot be assigned to any definite location in
space.

To investigate further the connection between the
coherence vortices and the intensity vortex of the Laguerre–
Gauss beam, we examine the behaviour of the coherence
vortices for a fixed value of r1 as the coherence of the field
is continuously increased. Phase maps of the cross-spectral
density are shown in figure 4 for several values of δ. It can be
seen that as the coherence is increased, the rightmost vortex
moves off towards infinity, whilst the left one moves to the
origin. In the coherent limit, this leftmost coherence vortex
becomes the vortex of intensity of the coherent Laguerre–
Gauss beam. As is to be expected, although the position of the
coherence vortex depends on the position r1, as it becomes an
intensity vortex, it in fact becomes independent of this position.

This example suggests that coherence vortices are the
manifestations of intensity vortices in partially coherent fields.
In this sense, the traditional intensity vortices might be
considered a special case of the broader class of singularities of
two-point coherence functions of a field. More study is needed
to elucidate the connection between these ‘hidden’ coherence
vortices and their fully coherent intensity counterparts.
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