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Complete destructive interference of partially coherent fields
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Abstract

A three-point source model is used to study the interference of wavefields which are mutually partially coherent. It is

shown that complete destructive interference of the fields is possible in such a ‘‘three-pinhole interferometer’’ even if the

sources are not fully coherent with respect to each other. An explanation of this surprising effect is given, and conditions

necessary for complete destructive interference are stated.
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1. Introduction

In recent years there has been much interest in

the properties of coherent wavefields in the neigh-

borhood of regions in which the field amplitude is

zero and hence the phase is singular. The rapid
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growth of this subject, referred to as singular op-
tics [1], has encouraged a number of authors to ex-

tend the subject to wavefields which are partially

coherent [2,3]. However, it is generally accepted,

and has been shown for a number of systems [4–

7], that a decrease in spatial coherence generally

reduces the destructive interference of wavefields,

invariably erasing the singular points. Indeed, it

was recently demonstrated [8] by means of the co-
herent mode expansion of the cross-spectral density

of a partially coherent field that the intensity of

such a field generally does not possess zeros at all.

In view of these observations, it is of interest to

determine under what conditions, if any, partially
ed.
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Fig. 1. Illustrating the notation for Young�s two-pinhole

interferometer.
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coherent fields may give rise to complete destruc-

tive interference. We investigate this possibility

by considering the interference of fields produced

by three or more point sources in a ‘‘Young�s mul-

tiple-pinhole interferometer’’; such interferometers
have been shown in recent years to possess a num-

ber of intriguing diffraction properties [9–11]. We

find necessary conditions for destructive interfer-

ence in such a system which turn out to be related

to the non-negative definiteness conditions for the

spectral degree of coherence of a wavefield. Sur-

prisingly, the fields from several point sources

may exhibit complete destructive interference in
isolated regions even if the sources are not fully co-

herent with respect to each other. These results

suggest new possibilities for the study of singular

optics with partially coherent light.

In Section 2 we briefly review the behavior of

the classic Young�s two-pinhole interferometer

with partially coherent light, establishing the con-

cepts and notation needed in the later sections.
In Section 3 we discuss a three-pinhole interfero-

meter and the necessary conditions for it to generate

complete destructive interference. We also discuss

how these results extend to an interferometer with

more than three pinholes. In Section 4 we suggest a

physical explanation for the surprising interference

properties of the three-pinhole interferometer and

a method of producing the correlations necessary
for complete destructive interference.
2 Some notable exceptions are the recent publications

[13–17].
3 The spectral density may be identified with the field

intensity at frequency x. For a quasi-monochromatic field of

center frequency x, the spectral density is roughly proportional

to the total intensity of the field.
2. Coherence and Young�s two-pinhole interfero-

meter

The two-pinhole interference experiment of

Thomas Young and its relationship to the spatial
coherence of the incident field has been discussed

in great detail elsewhere (see, for example, [12,

Sec. 4.3]); here we briefly review those results

which are necessary for our analysis.

The system of interest is illustrated in Fig. 1. A

partially coherent field is incident on an opaque

screen A containing two pinholes, Q1 and Q2, sep-

arated by a distance d. The interference pattern is
examined in the neighborhood of a point P on a

screen B placed a distance L from and parallel

to A. It is assumed that the area a of the individ-
ual pinholes is small enough that they can be

treated as point sources, and it is also assumed that
d�L.

The field incident on the pinholes may in general

be partially coherent and polychromatic. We

will consider its statistical properties at a single fre-

quency x, employing the space–frequency repre-

sentation of a partially coherent field [12, Section

4.7]. Such a treatment is mathematically similar

in form to most studies of singular optics, which
deal primarily with monochromatic fields. 2 Fur-

thermore, if the field is quasi-monochromatic with

center frequency x, its overall behavior is well ap-
proximated by its behavior at the center frequency.

Under the assumption that the angles of incidence

and diffraction are small, the field beyond the

screen A is then given by the sum of contributions

from the individual pinholes, and the spectral den-
sity 3 is given by the expression

SðP ;xÞ ¼ hjU 1ðP ;xÞ þ U 2ðP ;xÞj2i; ð1Þ
where

UjðP ;xÞ ¼ �i
ka2

2p
U 0ðQj;xÞ

eikRj

Rj
ðj ¼ 1; 2Þ ð2Þ

is the field produced by the jth pinhole, U0(Qj,x) is
the value of the incident field at the jth pinhole, Rj
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is the distance from the jth pinhole to the observa-

tion point P, and k=x/c is the wavenumber of the

light, c being the speed of light. In Eq. (1) the an-

gular brackets denote averaging over an ensemble

of space–frequency realizations of the field ([18];
see also [12, section 4.7]). On substituting from

Eq. (2) into Eq. (1), the spectral density of the light

at P is found to be given by the expression [12, Eq.

(4.3–54)]

SðP ;xÞ ¼ Sð1ÞðP ;xÞ þ Sð2ÞðP ;xÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sð1ÞðP ;xÞSð2ÞðP ;xÞ

q
�ðl12e

ikðR2�R1Þ þ l�
12e

�ikðR2�R1ÞÞ; ð3Þ

where

SðjÞðP ;xÞ � ka2

2p

� �2 SjðxÞ
R2
j

ð4aÞ

is the spectral density of light at point P if only the

jth pinhole is open, Sj(x)= ÆjU0(Qj,x)j2æ is the
spectral density of light at the jth pinhole,

l12 ¼ hU �
0ðQ1;xÞU 0ðQ2;xÞi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1ðxÞS2ðxÞ

p
ð4bÞ

is the spectral degree of coherence of the light at

the two pinholes, and the asterisk denotes the com-

plex conjugate. Eq. (3) is known as the spectral in-

terference law for partially coherent light, because

it describes how the spectrum of the diffracted field

depends on the interference between the fields

from the two pinholes. This equation may be sim-
plified by noting that for L�d, R1�R2�R in the

denominator and hence

2pR
ka2

� �2

SðP ;xÞ ¼ S1ðxÞ þ S2ðxÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S1ðxÞS2ðxÞ

p
� ðl12e

ikðR2�R1Þ þ l�
12e

�ikðR2�R1ÞÞ:
ð5Þ

This equation may be rewritten in a compact

matrix form as

2pR
ka2

� �2

SðP ;xÞ ¼ xð2ÞyMð2Þxð2Þ; ð6Þ

where the matrix M(2) is defined as

Mð2Þ �
1 l12

l�
12 1

� �
; ð7Þ
and the vector x(2) is given by

xð2Þ � y1e
i/1

y2e
i/2

� �
ð8Þ

with

yj �
ffiffiffiffiffiffiffiffiffiffiffiffi
SjðxÞ

q
; ð9Þ

and

/j � kRj; ð10Þ

and j=1,2. It is to be noted from Eq. (7) that M(2)

does not depend upon the spectral density of the

light at the two pinholes, nor on the position of

the point of observation; it depends solely upon the
correlation properties of light with respect to the

two pinholes, represented by l12.
We are now in a position to consider zeros of

the spectral density, i.e. points P such that

SðP ;xÞ ¼ 0: ð11Þ

It is shown in Appendix A that a necessary condi-

tion for the spectral density to take on zero value is

that M(2) possesses a zero eigenvalue. It follows

from elementary linear algebra that it has

such an eigenvalue if and only if its determinant

vanishes, i.e. if

1� jl12j
2 ¼ 0; ð12Þ

which implies that

jl12j ¼ 1: ð13Þ

In words, the fields from the two pinholes can cre-

ate complete destructive interference only if the

fields at the two pinholes are completely spatially

coherent.

It is interesting to note that this necessary con-

dition for complete destructive interference is

equivalent to the extreme value of the second-or-

der non-negative definiteness condition discussed
in Appendix B. The requirement for a field to be

non-negative definite to second order at two points

is that

jl12j
2
6 1; ð14Þ

and the extreme value is given by Eq. (13). We will

see later in the discussion of N-pinhole interfero

meters that the necessary condition for complete

destructive interference is that the Nth-order
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non-negative definiteness condition takes on its ex-

treme value.

Some typical spectral densities observed at the
screen B are shown in Fig. 2 for a variety of val-

ues of jl12j, and with S1(x)=S2(x). We see, as

expected, that only when jl12j takes on the ex-

treme value of unity does the interference pattern

have zeros.

It is important to note that Eq. (13) is only a

necessary condition for complete destructive inter-

ference of the field. Sufficiency requires that, in ad-
dition, the spectral densities at the two pinholes be

equal, i.e. that S1(x)=S2(x). Generating true zeros

in such an interferometer therefore requires a care-

ful tuning of both the spectral degree of coherence

and the spectra at the two pinholes. We will en-

counter similar requirements in interferometers

with more than two pinholes.
3. The three-pinhole interferometer and complete

destructive interference

We now consider a screen A which has three

pinholes (see Fig. 3), located at points Q1, Q2

and Q3. We take all three pinholes to lie within a

circle of radius d centered on the z-axis such that
d�L. In a manner similar to that used in the pre-

vious section, we may express the spectral density

of the field at the point P beyond the screen in

the form

SðP ;xÞ ¼ hjU 1ðP ;xÞ þ U 2ðP ;xÞ þ U 3ðP ;xÞj2i;
ð15Þ
where Uj(P,x) again represents the field produced

by the jth pinhole and is given by formula (2). On

substituting from Eq. (2) into Eq. (15) and taking

the ensemble average, it follows that the spectral

density may be written as

SðP ;xÞ¼
X3

i¼1

SðiÞðP ;xÞþ
X
i<j63

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðiÞðP ;xÞSðjÞðP ;xÞ

q

�ðlije
ikðRj�RiÞ þl�

ije
�ikðRj�RiÞÞ: ð16Þ

Assuming that R1�R2�R3�R, this expression

may also be written in a simple matrix form

as

2pR
ka2

� �2

SðP ;xÞ ¼ xð3ÞyMð3Þxð3Þ; ð17Þ

where

Mð3Þ �
1 l12 l13

l�
12 1 l23

l�
13 l�

23 1

2
64

3
75; ð18Þ

and

xð3Þ �
y1e

i/1

y2e
i/2

y3e
i/3

0
B@

1
CA: ð19Þ

Here yj and /j are again given by Eqs. (9) and

(10), respectively, but now j=1,2,3. As in the

two-pinhole case, a necessary condition for the
spectral density to have zero value is that the ma-

trix M(3) possess a zero eigenvalue, which is equiv-

alent to the matrix possessing a zero determinant,

i.e.
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1� jl12j
2 � jl23j

2 � jl13j
2 þ l12l23l

�
13 þ l�

12l
�
23l13

¼ 0: ð20Þ

Analogous to the two-pinhole case, this condi-

tion is the extreme value of the third-order non-

negative definiteness condition. Indeed, it follows
by extending the preceding analysis to an N-pin-

hole interferometer that a necessary condition for

such an interferometer to give rise to a field which

has zeros of spectral density is that the Nth-order

non-negative definiteness condition take on its ex-

treme value, i.e. that

det MðNÞ� �
¼ 0; ð21Þ

where M(N) is defined as

M
ðNÞ
ij ¼

lij; i 6¼ j;

1; i ¼ j;

�
ð22Þ

and l�
ij ¼ lji.

As a simple example of the three-point source

system, let us consider the case when

l12=l23=l13”l0, and l0 is real-valued. Condition
(20) then takes on the simple form

1� 3l2
0 þ 2l3

0 ¼ 0: ð23Þ

Two of the roots of this cubic equation are unity,

as might be expected – if the fields at the pinholes

are fully coherent with respect to each other, de-

structive interference is possible. However, the
third root of the equation is l0=�1/2. We there-

fore have the surprising result that in a three-pinhole

interferometer, complete destructive interference is

possible even if the field fluctuations at the three

pinholes are not fully coherent with respect to each

other.

We now present several examples of such an

interferometer with l12=l13=l23=�1/2 and
S1(x)=S2(x)=S3(x)”S0(x). As we will see, differ-

ent configurations of the pinholes in the plane A
may result in significantly different behaviors.

When the positions of the pinholes form an

equilateral triangle of side length a (Fig. 4(a)), it

can be readily seen from Eq. (17) that the spectral

density is zero along the z-axis. The spectral density

at a typical plane of constant z is shown in Fig.
4(b). The zero of spectral density on the z-axis is

clearly shown, as are a number of other points
which are strong minima, and possibly zeros as

well.

When the pinholes are located along a line, as

in Fig. 5(a), we obtain a significantly different

pattern of zeros in the spectral density. We can

determine the pattern of zeros analytically by as-

suming that the distance L to the observation
plane is significantly greater than the transverse

separations of the pinholes and the transverse

distance of the point of observation from the z-

axis. The distances Ri may then be expressed in

the approximate form

R1 � L 1þ 1

2

ðxþ aÞ2 þ y2

L2

" #
; ð24Þ

R2 � L 1þ 1

2

x2 þ y2

L2

� �
; ð25Þ
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R3 � L 1þ 1

2

ðx� aÞ2 þ y2

L2

" #
: ð26Þ

It is readily found on substitution from these ex-

pressions into Eq. (17) and the use of simple trig-
onometric identities that the spectral density at P

is given by

2pR
ka2

� �2

SðP ;xÞ

¼ S0ðxÞ 3� 2 cos
ka2

2L
cos

kax
L

� cos
2kax
L

� 	
:

ð27Þ

This expression can only vanish when the product

of the first two cosine terms is equal to unity and

the third cosine term is also equal to unity. Be-

cause the arguments of the latter two cosine terms

only differ by a factor of 2, we have, in fact, only

two equations that must be solved to obtain the lo-

cations of a zero, namely

ka2

2L
¼ pn; ð28Þ

kax
L

¼ pm; ð29Þ

where n and m are integers, either both odd or

both even. It is to be noted that Eq. (28) shows
that the system may only have zeros of the spectral

density at distances where the Fresnel number

N=a2/kL of the system [19, p. 417] takes on integer

value. Because these two equations isolate particu-

lar values of x and L in space, zeros of the spectral

density lie upon lines along the y-direction. Fig.

5(b) shows the result of numerical calculations of

Eq. (27) for the case when ka2/2L=p. It follows
from Eq. (29) that the first zeros will occur at a dis-

tance x=±0.5 mm, which is confirmed by the cal-

culations. Fig. 5(c) shows the spectral density on

the screen when ka2/2L=2p. For this case it fol-

lows that there is a zero at x=0, with the next clos-

est zeros at x=±0.5 mm, a prediction again

confirmed by the figure.

It is to be noted that the requirement (28) pre-
dicts that there are no zeros of spectral density at

distances greater than L=ka2/2p from the screen.
4. Physical interpretation and conclusions

We have demonstrated that it is possible to pro-

duce complete destructive interference in partially
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coherent fields even if the fields are not completely

correlated with each other. An example of such a

situation is a three-pinhole interferometer with

the spectrum at the three pinholes being equal

and the spectral degree of coherence of the light
at each pair of pinholes having the value l0=�1/

2. The existence of such an effect with partially co-

herent fields is surprising, but has a clear physical

explanation, as we now show.

It is to be noted that although the fields from a

pair of point sources may be individually partially

coherent with respect to each other and with re-

spect to the field from a third point source, it is
possible for the sum of the fields from the pair of

point sources to be fully correlated with the field

of the third. In this case, the sum of the fields from

the pair of point sources can destructively interfere

with the field of the third source. To illustrate this,

we first consider a point source P which is fully

correlated with a ‘‘black box’’ source b, as illus-

trated in Fig. 6(a). Because the fields are fully cor-
related, we have
β P
|µ   | = 1Pβ

P
R

Q

bisecting plane

complete
coherence

β

Q

|µ   |,|µ   |,|µ   |<1PQ PR QR

R P

(a)

(b)

(c)

Fig. 6. A physical explanation for complete destructive inter-

ference with partially coherent fields. If (a) a point source P is

fully correlated with a ‘‘black box’’ source b, the two sources

can generate complete destructive interference. The black box

may consist of (b) two other point sources. It is shown that the

black box source is fully correlated with point source P if

l0=1,�1/2. By (c) moving the point sources apart, there

remains a plane on which the field produced by two of the

sources is completely correlated with the third.
jlPbj
2 ¼ 1; ð30Þ

where lPb is the spectral degree of coherence with

respect to the point source and the ‘‘black box’’.

From the definition

lPb �
W Pbffiffiffiffiffi
SP

p ffiffiffiffiffi
Sb

p ; ð31Þ

of the spectral degree of coherence, it follows on

substitution into Eq. (30) that

jW Pbj2 ¼ SPSb: ð32Þ

Now let us assume that the ‘‘black box’’ b consists

of a pair of closely spaced point sources Q and R,

as illustrated in Fig. 6(b). We further assume that

the sources Q and R are separated by a distance
smaller than the wavelength, so that the total field

produced by them is approximately given by their

sum. It then follows that

W Pb ¼ W PQ þ W PR; ð33Þ
and that

Sb ¼ SQ þ SR þ 2
ffiffiffiffiffiffiffiffiffiffi
SQSR

p
ReflQRg; ð34Þ

Re denoting the real part. The latter equation fol-
lows from the spectral interference law, Eq. (3).

Let us further assume that the spectral degree of

coherence of light with respect to all pairs of point

sources is real and equal to each other, i.e. that

lPQ=lPR=lQR=l0, and that the spectra of the

light at the three-point sources are equal to S0. Af-

ter substitution from Eqs. (33) and (34) into Eq.

(32), we arrive at the equation

4l2
0 � 2l0 � 2 ¼ 0: ð35Þ

We obtained this equation by assuming that one
point source was perfectly correlated with the

sum of the other two. The roots of this equation

are l0=1, as might be expected, but also l0=�1/

2, the result from Section 3. Our explanation is

thus in agreement with our earlier results.

If the point sources Q and R are now moved

away from each other, the field on the plane bisect-

ing the distance between them will be given by the
sum of the fields produced by each source (Fig.

6(c)). The field produced by the third source is

completely correlated with the field on this bisect-

ing plane. In this way, we may move the pair of
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sources Q and R to produce the equilateral triangle

geometry of Fig. 4(a), or the linear geometry of

Fig. 5(a), and we can see that in both these systems

there is a correlation between the field produced by

two of the sources and by the third source.
The correlations described in this article obvi-

ously represent a rather unique state of coherence

of the incident field, and it is not immediately ob-

vious how to produce such a field. One possibility

is to generate them by use of an incoherent super-

position of Laguerre–Gauss modes, as we will now

show.

In the waist plane of a Laguerre–Gauss beam of
radial order p=0 and helical order l=±1, the field

amplitude is [20, p. 87]

U 0
�1ðrÞ ¼

ffiffiffi
2

p
Ae�i/ r

w0

e�r2=w2
0 ; ð36Þ

where A is the amplitude of the beam and w0 is the
beam width in the waist plane. If we take an inco-

herent superposition of two such beams with equal

amplitude but l-values of opposite sign, the cross-

spectral density of the resulting field is given by the

expression

W ðr1; r2Þ ¼
2jAj2

w2
0

r1r2e�ðr2
1
þr2

2
Þ=w2

0fe�ið/2�/1Þ þ eið/2�/1Þg:

ð37Þ

Such a beammight be produced by superimposing a

Laguerre–Gauss beam of l=+1 with a beam of

l=�1 originating from two independent lasers. It

is straightforward to show that the spectral degree

of coherence of such a field is given by the expression

lðr1; r2Þ ¼ cosð/2 � /1Þ: ð38Þ
When the azimuthal coordinates of r1, r2 differ by

2p/3, it immediately follows that l=�1/2. If this

partially coherent beam is allowed to impinge on

a screen with pinholes arranged in an equilateral
triangle (as in Fig. 4(a)), the desired state of coher-

ence is achieved.
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Appendix A. Zeros of the spectral density

The condition for the spectral density of an N-

slit interferometer to possess zeros may be written

in a matrix form as

2pR
ka

� �2

SðP ;xÞ ¼ xðNÞyMðNÞxðNÞ ¼ 0; ðA:1Þ

where the components of the matrix are given by

Eq. (22), and the components of the vector are given

by the expression x
ðNÞ
i ¼ yie

�i/i . It is assumed that

all the yi are non-zero (otherwise we would be

dealing with a ‘‘less-than-N-pinhole’’ interferome-
ter). There are two possible ways for a matrix

equation of the form (A.1) to be satisfied: either

the matrix possesses a zero eigenvalue, or the ma-

trix rotates the vector x(N) to a position orthogonal

to itself.

To investigate these possibilities, it is useful to

use Dirac�s ‘‘bra–ket’’ notation. We may write

the matrix M(N) in the form

MðNÞ ¼
XN
n¼1

knjnihnj; ðA:2Þ

where jnæ is the nth eigenvector of the matrix, and

knP 0 is the nth eigenvalue. Such an expansion is

possible because the matrix M(N) is Hermitian and

non-negative definite. We may expand the vector
x(N) in the form

xðNÞ ¼
XN
n¼1

xnjni; ðA:3Þ

where xn is the component of x(N) in the n-direc-

tion. On substituting from Eqs. (A.3) and (A.2)

into Eq. (A.1), it follows that

xðNÞyMðNÞxðNÞ ¼
XN
n¼1

knjxnj2: ðA:4Þ
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The only way that this quantity can have zero value

without all the xn being zero is if kn=0 for one or

more values of n. Therefore a necessary condition

for the spectral to possess zeros is that the matrix

M(N) possesses one or more zero eigenvalues. It
follows from elementary considerations based on

linear algebra that a necessary and sufficient condi-

tion for the matrix to possess a zero eigenvalue is

that the determinant of the matrix vanishes.
Appendix B. Non-negative definiteness of correla-

tion functions

Here we briefly review the concept of non-neg-

ative definiteness of a correlation function; further

description can be found in [19, Appendix VIII]

and the reference therein.

We consider a field measured at N distinct

points, and consider the following superposition

Us(x) of the fields at those points:

UsðxÞ �
XN
n¼1

anUðQn;xÞ; ðB:1Þ

where Qn are the N distinct points and the an are

arbitrary real or complex constants. It is obvious

that the squared modulus of this quantity is non-

negative, and so is the ensemble average of the

squared modulus, i.e.

hjUsðxÞj2i ¼
XN
n¼1

anUðQn;xÞ













2* +

P 0: ðB:2Þ

On taking the average of the appropriate quanti-

ties, this formula may be expressed in the form

XN
i;j¼1

a�i aj
ffiffiffiffiffiffiffiffiffiffiffi
SiðxÞ

p ffiffiffiffiffiffiffiffiffiffiffiffi
SjðxÞ

q
lij P 0: ðB:3Þ

We assume that the spectra Si(x) are non-zero. We

may then define new constants bi � ai
ffiffiffiffiffiffiffiffiffiffiffi
SiðxÞ

p
, so

that condition (B.3) becomes

XN
i;j¼1

b�i bjlij P 0: ðB:4Þ

This equation is the non-negative definiteness con-

dition for a field at N points. It may be expressed

in a matrix form as
bðNÞyMðNÞbðNÞ P 0; ðB:5Þ
where M(N) is given by Eq. (22), bj=bj, and

lji ¼ l�
ij. The matrix M(N) that appears in the

non-negative definiteness condition is, therefore,

the same that appears in the interference prob-

lem. A necessary condition that inequality (B.5)
be satisfied is that the determinant of M(N) be

non-negative. For N=2 this condition takes on

the form

jl12j
2
6 1; ðB:6Þ

and for N=3 this condition takes on the form

1� jl12j
2 � jl23j

2 � jl13j
2 þ l12l23l

�
13

þ l�
12l

�
23l13 P 0: ðB:7Þ
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