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Abstract
A reconstruction theory for intensity diffraction tomography (I-DT) has been
proposed that permits reconstruction of a weakly scattering object without
explicit knowledge of phase information. In this work, we examine the
application of I-DT, using either planar- or spherical-wave incident wavefields,
for imaging three-dimensional (3D) phase objects. We develop and investigate
two algorithms for reconstructing phase objects that utilize only half of the
measurements that would be needed to reconstruct a complex-valued object
function. Each reconstruction algorithm reconstructs the phase object by
use of different sets of intensity measurements. Although the developed
reconstruction algorithms are equivalent mathematically, we demonstrate that
their numerical and noise propagation properties differ considerably. We
implement numerically the reconstruction algorithms and present reconstructed
images to demonstrate their use and to corroborate our theoretical assertions.

1. Introduction

Diffraction tomography (DT) is an imaging technique for reconstructing the complex refractive
index distribution of a semi-transparent object (Wolf 1969, Devaney 1983, Mueller et al 1979).
In DT a scalar wavefield is used to irradiate a scattering object and the scattered wavefield
in the forward direction is measured on a planar detector surface. A set of tomographic
measurements can be acquired by simultaneously rotating the source–detector pair around the
object. An undesirable feature of DT is that it requires knowledge of both the magnitude
and phase of the measured wavefields. Because of this, the success of DT imaging in optical
applications has been hampered by the problem of uniquely determining the wavefield phase
from knowledge of intensity measurements only.
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A new theory of DT that does not require phase information was proposed recently by
Gbur and Wolf (2002a, 2002b). We will refer to this new theory of DT as intensity-DT (I-DT).
Unlike previous attempts to circumvent the lack of phase-information in DT (Devaney 1992,
Maleki and Devaney 1993), the reconstruction theory of I-DT indicates that the generally
complex-valued object function can be reconstructed exactly (or, more precisely, a low-pass
filtered version of the object function). Similar to techniques of wavefield phase retrieval that
are based on the transport-of-intensity equation (Nugent et al 1996, Barty et al 2000), I-DT
requires the wavefield intensity to be measured at each view angle on two parallel detector
planes that are separated by a finite distance.

The development and investigation of tomographic reconstruction techniques for imaging
phase objects, i.e. scattering objects that have real-valued refractive index distributions, is
currently an active research area (Nugent et al 1996, Barty et al 2000, Spanne et al 1999), as
such objects arise in important biomedical and materials science applications. A DT approach
for reconstructing phase objects from intensity measurements was proposed and investigated
in Cheng and Han (2001). In that work, far-field and Born approximations and a specific
scanning geometry were utilized. The recently developed I-DT reconstruction theory is more
general than the method described in Cheng and Han (2001) in the sense that it does not
utilize a far-field approximation and applies even when the scattering object is described by a
generally complex refractive index distribution. Therefore, phase objects represent a subset of
the scattering objects that can be imaged using I-DT. However, we can expect that the amount
of I-DT measurement data required to perform an accurate reconstruction of a phase object
will be less, in general, than the amount needed to reconstruct an arbitrary scattering object
that has a complex-valued refractive index distribution.

In this work, we examine the application of I-DT, using either planar- or spherical-wave
incident wavefields, for imaging two-dimensional (2D) and three-dimensional (3D) phase
objects. We develop and investigate two algorithms for reconstructing phase objects that utilize
only half of the measurements that would be needed to reconstruct a complex-valued object
function. Each reconstruction algorithm reconstructs the phase object by use of different sets of
intensity measurements. The first algorithm, referred to as a half-scan algorithm, requires that
intensity measurements be acquired on two different measurement planes at a given view angle,
but the tomographic scanning needs to cover only one half of the full angular scanning range
(e.g., over the range [0, π) in the 2D case). The second algorithm, referred to as a single-plane
algorithm, requires that only one intensity measurement be acquired at a given view angle, but
the tomographic scanning needs to cover the full angular scanning range (e.g., over the range
[0, 2π) in the 2D case). Although the reconstruction algorithms are equivalent mathematically,
we demonstrate that their numerical and noise propagation properties differ considerably. We
implement numerically the reconstruction algorithms and present reconstructed images to
demonstrate their use and to corroborate our theoretical assertions.

2. Background

Below we review the I-DT reconstruction theory for plane-wave and spherical-wave incident
wavefields as described in Gbur and Wolf (2002a, 2002b) and Gbur et al (2004). To facilitate
the description of measurements corresponding to different tomographic view angles, we will
utilize a rotated Cartesian coordinate system �r = (xr , yr , zr ) that is related to a reference
�r = (x, y, z) system by
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Figure 1. The (xr , yr , zr ) rotated coordinate system as described in section 2.
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Figure 2. The tomographic scanning geometry assumes that the incident wavefield propagates
along the positive zr axis, and the detector plane(s) are parallel to the xr–yr plane. In the incident
spherical-wave case, the source is located at a distance z0 from the centre of the object.

where the polar (θ ) and azimuthal (φ) angles are defined in figure 1. The unit vectors �s1,r (φ, θ),

�s2,r (φ, θ) and �s0,r (φ, θ) indicate the directions of the positive xr, yr and zr axes, respectively.
Unless it is needed, the (φ, θ) dependence of the unit vectors �s1,r (φ, θ), �s2,r (φ, θ), �s0,r (φ, θ)

will be suppressed in the equations below.

2.1. Plane-wave I-DT

We assume the scanning geometry illustrated in figure 2 where a monochromatic plane-wave
Ui(�r) = exp(jk�s0,r · �r), propagating in the �s0,r direction, is employed to probe the scattering
object. Here, k = 2π

λ
and λ denote the wave number and wavelength of the probing field,

respectively. Two intensity measurements of the forward scattered wavefield are acquired in
the xr–yr planes at distances zr = d and zr = d + � behind the object, where � > 0. By
simultaneously rotating the incident wavefield direction and the measurement planes around
the object (i.e. by varying φ and θ ), a set of intensity measurements is acquired that can be
used to reconstruct the object function f (�r) that is related to the complex refractive index
distribution n(�r) as

f (�r) = k2

4π
[n2(�r) − 1].

Below we review the basic equations that permit such a reconstruction in plane-wave I-DT.
The wavefield beyond the scatterer can be represented as

U(�r) = Ui(�r)eψ(�r) (1)
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where ψ(�r) is the complex phase function and elastic scattering is assumed. We will let
ψ(xr, yr , φ, θ; d) denote ψ(�r) evaluated on the detector plane zr = d and define

ψ̂(ur , vr , φ, θ; d) = 1

(2π)2

∫∫
R

2
dxr dyrψ(xr , yr , φ, θ; d) e−j (ur xr +vryr ) (2)

and

F̂ ( �K) = 1

(2π)3

∫
R

3
d�rf (�r) e−j �K·�r (3)

as the 2D and 3D Fourier transforms of ψ(xr, yr , φ, θ; d) and f (�r), respectively. Under the
first Rytov approximation, ψ̂(ur , vr , φ, θ; d) and F̂ ( �K) are related by the Fourier diffraction
projection (FDP) theorem as (Wolf 1969, Devaney 1983, Mueller et al 1979)

ψ̂(ur , vr , φ, θ; d) = (2π)2j

wr

F̂ (ur�s1,r + vr�s2,r + (wr − k)�s0,r )︸ ︷︷ ︸
F̂ [ur ,vr ,φ,θ]

ej (wr−k)d (4)

where

wr =
√

k2 − u2
r − v2

r

and

F̂ [ur, vr , φ, θ ] ≡ F̂ (ur�s1,r + vr�s2,r + (wr − k)�s0,r ). (5)

We will assume that u2
r + v2

r � k2 and therefore wr will be a real-valued quantity. This
reflects that the evanescent modes of U(�r) will not, in general, be measurable in practice.

An intensity data function DI(xr , yr , φ, θ; d) can be defined as

DI(xr , yr , φ, θ; d) ≡ ln[I (xr , yr , φ, θ; d)] = ψ(xr, yr , φ, θ; d) + ψ∗(xr , yr , φ, θ; d) (6)

where I (xr , yr , φ, θ; d) = eψ(xr ,yr ,φ,θ;d)+ψ∗(xr ,yr ,φ,θ;d) is the wavefield intensity on the detector
plane zr = d and ψ∗ denotes the complex conjugate of ψ . The 2D Fourier transform of
DI(xr , yr , φ, θ; d) is related to the 3D Fourier transform of f (�r) as

D̂I (ur , vr , φ, θ; d) = j (2π)2

wr

[F̂ [ur, vr , φ, θ ] ej (wr−k)d − F̂ ∗[−ur,−vr , φ, θ ] e−j (wr−k)d ].

(7)

At each view angle the intensities I (xr , yr , φ, θ; d) and I (xr , yr , φ, θ; d + �) are measured,
so D̂I (ur , vr , φ, θ; d) and D̂I (ur , vr , φ, θ; d + �) can be regarded as known quantities. From
this knowledge, equation (7) can be employed to establish a system of two equations involving
the two unknowns F̂ [ur, vr , φ, θ ] and F̂ ∗[−ur,−vr , φ, θ ] that can be solved readily to obtain

F̂ [ur, vr , φ, θ ] = D̂I (ur , vr , φ, θ; d) − D̂I (ur , vr , φ, θ; d + �) ej (wr−k)�

j (2π)2 ej (wr−k)d{1 − e2j (wr−k)�}/wr

(8)

which is the key result of (plane-wave) I-DT and can be interpreted as the I-DT version of
the FDP theorem. Equation (8) indicates that the wavefield intensities measured on the two
planes zr = d and zr = d + � at a particular view angle can be used to determine the
spatial frequency components of f (�r) on the shifted Ewald sphere surface ur�s1,r + vr�s2,r +
(wr − k)�s0,r . When the incident wavefield direction and the measurement planes are
simultaneously rotated to cover a 4π solid angular range, the frequency components of f

that reside inside of a sphere of radius
√

2k that is centred at the origin can be determined.
From this Fourier data, a conventional DT reconstruction algorithm (Devaney 1982, Pan 1998,
Anastasio and Pan 2000) can be employed for reconstruction of a low-pass filtered version of
the object function f (�r). Throughout this paper, terminology such as ‘reconstruction of f (�r)’
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will always be taken to mean the reconstruction of the appropriately low-pass filtered version
of f (�r).

2.2. Spherical-wave I-DT

The reconstruction theory of I-DT has also been generalized to account for curvature in
the incident wavefield (Gbur et al 2004). Let the probing wavefield be a monochromatic
spherical-wave of the form

Ui(�r) = ejk|�r−�r0|

|�r − �r0| (9)

where �r0 = (0, 0,−z0) is the location of a point source (see figure 2). As in the plane-wave
case, at each view angle the intensities of the forward-scattered wavefields are measured on
the detector planes zr = d and zr = d + �, and will be denoted by Iz0(xr , yr , φ, θ; d) and
Iz0(xr , yr , φ, θ; d + �), respectively. Here, note that the subscript z0 has been added to make
explicit the dependence of the measured intensities on the source location. It will be useful to
define an intensity data function as

Dz0(xr , yr , φ, θ; zr) = 1

|�r − �r0| ln
[
Iz0(xr , yr , φ, θ; zr)

]
(10)

where �r = (xr , yr , zr ) describes a point on the detector plane.
Through use of a FDP theorem for the fan-beam geometry (Devaney 1985), the 2D Fourier

transform of Dz0(xr , yr , φ, θ; zr) can be related to the 3D Fourier transform of f (�r) by the
equation

D̂z0(ur , vr , φ, θ; zr) = (2π)2j

z0wα,rα2
{F̂ [ur/α

2, vr/α
2, φ, θ ] ej (wα,r−k)zr

− F̂ ∗[−ur/α
2,−vr/α

2, φ, θ ] e−j (wα,r−k)zr } (11)

where

α =
√

z0

zr + z0
(12)

and

wα,r =
√

k2 −
(ur

α

)2
−

(vr

α

)2
. (13)

The fan-beam FDP theorem (Devaney 1985), and consequently equation (11), assumes that
both the source location �r0 and observation location �r are sufficiently far from the scattering
object so that paraxial approximations may be used when describing the incident and scattered
wavefields. Similar to the plane-wave case, one can attempt to utilize equation (11) along
with the two intensity measurements obtained at a given view angle to establish a system of
two equations and two unknowns that can be solved for F̂ [ur/α

2, vr/α
2, φ, θ ]. However,

it is not possible to accomplish this if the source-to-object distance z0 is kept constant
because the intensity measurements acquired on the zr = d and zr = d + � planes will
be related to different spatial frequency components of f (�r) via equation (11) (because
the values of α will be distinct). To circumvent this problem, when making the intensity
measurement of the second plane, the source-to-object distance z0 can be chosen to ensure that
the parameter α remains fixed. It can be shown that the measurements Iz0(xr , yr , φ, θ; z = d)

and Iz′
0
(xr , yr , φ, θ; z = d + �) where

z′
0 = z0(d + �)

d
(14)
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along with equations (10) and (11) can be used to establish a system of two equations and two
unknowns that can be solved to obtain

F̂ [ur/α
2, vr/α

2, φ, θ ] = D̂z0(ur , vr , φ, θ; d) − D̂z′
0
(ur , vr , φ, θ; d + �) ej (wα,r−k)�z′

0/z0

j (2π)2 ej (wα,r−k)d [1 − ej2(wα,r−k)�]/(z0wα,rα2)
.

(15)

When the incident wavefield direction and the measurement planes are simultaneously rotated
to cover a 4π solid angular range, the above procedure indicates that the frequency components
residing inside of a sphere of radius k

√
1 + 1

α
that is centred at the origin can be determined

completely. From this Fourier data, a spherical-wave DT reconstruction algorithm (Devaney
1985, Lu 1985, Anastasio and Pan 2003) can be employed for reconstruction of the object
function f (�r).

3. Half-scan and single-plane reconstruction algorithms for I-DT imaging
of phase objects

Below we develop and investigate two I-DT reconstruction algorithms for reconstructing
phase objects that each utilize only half of the measurements that would be needed by a
conventional I-DT reconstruction algorithm for reconstruction of an arbitrary complex-valued
object function.

The algorithms below exploit the fact that, because f (�r) is real valued for a phase object,
its Fourier transform F̂ ( �K) possesses the conjugate-symmetry property

F̂ ( �K) = F̂ ∗(− �K) (16)

or, equivalently,

F̂ [ur, vr , φ, θ ] = F̂ ∗[ur, vr , φ
π , θπ ] (17)

where

φπ ≡ φ + π and θπ ≡ θ + π.

Figure 3 demonstrates graphically equation (17) for the 2D case. For the spherical-wave DT
case, equation (16) implies the symmetry

F̂ [ur/α
2, vr/α

2, φ, θ ] = F̂ ∗[ur/α
2, vr/α

2, φπ , θπ ] (18)

which reduces to equation (17) for α = 1. In (conventional) DT imaging, Devaney (1989)
recognized that equation (17) can be exploited to reconstruct a real-valued object function
from measurements taken over a π angular scanning interval, and we will utilize this fact in
the next section.

3.1. Half-scan I-DT for phase objects

The terminology ‘half-scan’ reflects that measurements acquired over only one half of the
total angular scanning range (i.e. 2π steradians in the 3D case or π radians in the 2D case)
are utilized. However, as in the I-DT reconstruction theory that was described in section 2,
a half-scan algorithm will require the transmitted wavefield intensity to be measured on two
parallel detector planes at each view angle.
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Figure 3. A 2D illustration of the conjugate-symmetry property described by equation (17). When
f is real valued, the values of its Fourier transform F̂ obtained from measurement data acquired
at conjugate view angles are redundant. For example, the value of F̂ at point A (B) is equal to the
complex conjugate value of F̂ at point C (D).

3.1.1. Half-scan reconstruction algorithm for plane-wave I-DT. A half-scan reconstruction
algorithm for plane-wave I-DT can be formed as

[P-1] Use equation (8) to determine F̂ [ur, vr , φ, θ ] for (φ, θ) corresponding to the available
view directions {�s0,r (φ, θ)}. We assume that measurements at views �s0,r (φ, θ) or
�s0,r (φ

π , θπ ) are acquired, but not both.
[P-2] Reconstruct f (�r) via a DT reconstruction algorithm that explicitly or implicitly utilizes

equation (17) to determine the missing Fourier components of F̂ that are conjugate to
those obtained in step [P-1].

3.1.2. Half-scan reconstruction algorithm for spherical-wave I-DT. A half-scan reconstruction
algorithm for spherical-wave I-DT can be formed as

[S-1] Use equation (15) to determine F̂ [ur/α
2, vr/α

2, φ, θ ] for (φ, θ) corresponding to the
available view directions {�s0,r (φ, θ)}. We assume that measurements at views �s0,r (φ, θ)

or �s0,r (φ
π , θπ ) are acquired, but not both.

[S-2] Reconstruct f (�r) via a spherical-wave DT reconstruction algorithm that explicitly or
implicitly utilizes equation (18) to determine the missing Fourier components of F̂ that
are conjugate to those obtained in step [S-1].

As an example, we consider the case where the required (two) intensity measurements
are obtained at view direction {�s0,r (φ, θ)} for 0 � φ < π, θ = 0. This corresponds to
an experimentally feasible tomographic scanning geometry in which the incident wavefield
direction �s0,r (φ, θ) and xr -yr detector planes at zr = d and zr = d + � are rotated
simultaneously through a π angular range about the z-axis. According to equations (8)
or (15), the data acquired in this scanning geometry will not permit for the determination of
all components of F̂ inside the sphere of radius k

√
1 + 1

α
, but the determined values of F̂

can be employed for the reconstruction of a certain low-pass filtered f (�r). In the appendix,
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we show that a 3D filtered backpropagation algorithm (Devaney 1982) can reconstruct an
estimate of f (�r) from knowledge of F̂ [ur/α

2, vr/α
2, φ, 0] for φ ∈ [0, π).

3.2. Single-plane I-DT for phase objects

The necessity of the half-scan reconstruction algorithms to acquire two intensity measurements
on different detector planes at each view angle is, in general, undesirable because it necessitates
complications in the scanning motion that can introduce errors into the measurement data
and/or increase the time needed to perform the imaging scan. In this section we develop
single-plane reconstruction algorithms, where the terminology ‘single-plane’ reflects that
only one intensity measurement at each tomographic view angle is utilized. The single-plane
reconstruction algorithms assume that the object-to-detector distance is fixed, and the scanning
motion corresponds to that of a conventional (full-angular scan) tomographic experiment.

3.2.1. Single-plane reconstruction algorithm for plane-wave I-DT. The plane-wave I-DT
version of the FDP theorem given in equation (8) was derived by solving a system of two
equations that involved the measured intensities on two different planes at a given view angle as
the known quantities. We must now modify this procedure because we have only one intensity
measurement at each view that is acquired in the plane zr = d. From the wavefield intensity
measured in the zr = d plane with orientation �s0,r (φ, θ), as before, we can obtain equation (7).
To obtain a second linearly independent equation that involves the same unknowns as
equation (7), consider the intensity measurement in the zr = d plane with orientation
�s0,r (φ

π , θπ ). According to equation (7) we find that

D̂I (ur , vr , φ
π , θπ ; d) = j (2π)2

wr

{F̂ [ur, vr , φ
π , θπ ] ej (wr−k)d

− F̂ ∗[−ur,−vr , φ
π , θπ ] e−j (wr−k)d}. (19)

By taking the complex conjugate of equation (19) and utilizing equation (17), we can form an
equation that involves the same unknowns as in equation (7). These two linearly independent
equations can be solved to obtain

F̂ [ur, vr , φ, θ ] = D̂I (ur , vr , φ, θ; d) + [D̂I (ur , vr , φ
π , θπ ; d)]∗ e−j2(wr−k)d

j (2π)2 ej (wr−k)d(1 − e−j4(wr−k)d)/wr

(20)

which represents an FDP relationship for single-plane I-DT imaging of phase-objects.
Equation (20) is similar in structure to equation (8) but contains important differences that
will be discussed in sections 3.3 and 3.4. The use of equation (20) for determination of
F̂ [ur, vr , φ, θ ] coupled with a conventional DT reconstruction algorithm for obtaining f (�r)
will be referred to as a single-plane reconstruction algorithm for plane-wave I-DT.

3.2.2. Single-plane reconstruction algorithm for spherical-wave I-DT. In the same way that
equation (20) was derived, for the spherical-wave case we can obtain

F̂ [ur/α
2, vr/α

2, φ, θ ] = D̂z0(ur , vr , φ, θ; d) +
[
D̂z0(ur , vr , φ

π , θπ ; d)
]∗

e−j2(wα,r−k)d

j (2π)2 ej (wα,r−k)d(1 − e−j4(wα,r−k)d)/(z0wα,rα2)
(21)

where D̂z0(ur , vr , φ, θ; d) is defined in equation (11). Recall that in the half-scan
reconstruction algorithm for spherical-wave I-DT, as formulated in section 3.1, each of the
two required intensity measurements at each view angle had to correspond to distinct (and
specified) values of the source location in order to keep α fixed (which was needed to establish
a system of two equations with two unknowns). Equation (21) indicates that this experimental
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complication is not needed in the single-plane reconstruction method because a single intensity
measurement acquired at each view angle provides information that is sufficient to specify F̂

(and hence f via a DT reconstruction algorithm). The use of equation (21) for determination
of F̂ [ur/α

2, vr/α
2, φ, θ ] coupled with a spherical-wave DT reconstruction algorithm for

obtaining f (�r) will be referred to as a single-plane reconstruction algorithm for spherical-
wave I-DT.

3.3. Resolution limitations in half-scan and single-plane I-DT

Equations (8) and (20), which underlie the half-scan and single-plane reconstruction
algorithms, respectively, are equivalent mathematically in the sense that, up to a set of
measure zero (Wheeden and Zygmund 1977), they can both recover the same components
of F̂ from consistent (i.e. error-free) measurement data. However, equations (8) and (20)
contain singularities and therefore, in practice, can be used only to estimate components of F̂

that do not correspond to or are not near the singular points. As discussed below, the locations
of singularities in equations (8) and (20) are generally different. Consequently, the estimable
components of F̂ , and accordingly the reconstructed image resolutions and noise properties,
will be different in half-scan and single-plane I-DT. For simplicity, we will consider here only
the plane-wave case. The results that follow can be extended readily to the spherical-wave
case.

3.3.1. Half-scan I-DT. As discussed in Gbur and Wolf (2002b), equation (8) becomes
singular when

2�(
k −

√
k2 − u2

r − v2
r

) = 2nπ (22)

where n is an integer. Therefore the components of F̂ [ur, vr , φ, θ ] that satisfy equation (22)
cannot be determined via equation (8). Moreover, when the measured intensities contain noise,
the magnitude of this noise will be amplified greatly in estimates of F̂ [ur, vr , φ, θ ] for (ur , vr)

near a singular point (see section 3.4 below). To avoid regions of Fourier space that contain
singular points, one can estimate F̂ [ur, vr , φ, θ ] at frequency components (ur , vr) �= (0, 0)

that satisfy

2�(
k −

√
k2 − u2

r − v2
r

)
< 2π. (23)

If

F̂ [ur, vr , φ, θ ] ≈ 0 for |ur | > umax and |vr | > vmax

then, when k2 
 u2
max + v2

max, equation (23) simplifies to

u2
r + v2

r < 2πk/�. (24)

Equations (23) or (24) restrict the the region of Fourier space over which F̂ can be
determined, thereby indicating how the spatial-frequency content (i.e. spatial resolution) of
the reconstructed f is limited in half-scan I-DT.

3.3.2. Single-plane I-DT. On the other hand, in the single-plane I-DT algorithm, the
denominator of equation (20) will be zero when

4d
(
k −

√
k2 − u2

r − v2
r

) = 2nπ. (25)



2742 D Shi et al

To avoid regions of Fourier space that contain singular points, one can estimate F̂ [ur, vr , φ, θ ]
at frequency components (ur , vr) �= (0, 0) that satisfy

4d
(
k −

√
k2 − u2

r − v2
r

)
< 2π (26)

or, when k2 
 u2
max + v2

max,

u2
r + v2

r < πk/d. (27)

Equation (26) or (27) restrict the the region of Fourier space over which F̂ can be
determined, thereby indicating how the spatial-frequency content (i.e. spatial resolution) of
the reconstructed f is limited in single-plane I-DT.

The above observations have implications on the choice of scanning geometries that are
best suited for use with half-scan and single-plane I-DT. According to equation (27), for a
given k, the spatial resolution of images reconstructed by use of the single-plane algorithm
can be increased by use of a scanning system with a small object-to-detector distance d.
Of course, the detector plane cannot intersect the support of the scattering object, so the
radius of the scattering object establishes a minimum realizable value for d. According to
equation (24), the resolution of images reconstructed by use of the half-scan algorithm is
limited only by k and the detector plane spacing �, and is independent of d. To maximize
the image resolution, one can therefore utilize a small value for �, but, as discussed below,
this strategy can significantly amplify the noise levels of the low-frequency components of
the reconstructed f (Gbur and Wolf 2002c). According to equations (24) and (27), the sets
of estimable components of F̂ in the half-scan and single-plane methods will coincide when
� = 2d. Otherwise stated, the locations of the singularities corresponding to n = 1 in
equations (23) and (26) (that we need to avoid) will coincide when � = 2d. When � < 2d

the distance from the origin of the object’s 3D Fourier space to the location of the singular
points will be larger in the half-scan method than in the single-plane method. As such, the
half-scan method will be capable of recovering more high-frequency components of F̂ than
can the single-plane method. The converse is true when � > 2d.

The origin of the singularities in equations (8) and (20) lies in the periodicity of the Fourier
transform of the intensity data function (equation (7)) in the zr direction. In the half-scan
configuration, when the two detector planes are spaced by a distance � such that equation (22)
is satisfied, the equations that relate D̂I on the two measurement planes to the object function
are linearly dependent and cannot be used to determine F̂ . Similarly, in the single-plane
configuration, when the measurement plane distance d satisfies equation (25), the equations
that relate D̂I at view angles (θ, φ) and (θπ , φπ) to the object function are linearly dependent
and cannot be used to determine F̂ .

3.4. Noise amplification in half-scan and single-plane I-DT

In addition to imposing a practical limit to the image resolution, the singularities in the
denominators of equations (8) and (20) can influence dramatically the statistical variance of
the reconstructed images. Again, we will consider here the plane-wave case, but the results
below can be generalized readily to the spherical-wave case.

3.4.1. Half-scan I-DT. We assume now that the intensity measurements are corrupted by
some source of stochastic noise and treat the intensity data functions DI(xr , yr , φ, θ; d) and
DI(xr , yr , φ, θ; d + �) as random variables. (Here and in the following, a boldface font will
denote a random variable.) If we define

Dhs(ur , vr , φ, θ) ≡ D̂I(ur , vr , φ, θ; d) − D̂I(ur , vr , φ, θ; d + �) ej (wr−k)� (28)
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then by use of equation (8) one finds readily that

Var{F̂ hs[ur, vr , φ, θ ]} = w2
r

(2π)4

Var{Dhs(ur , vr , φ, θ)}
2 [1 − cos(2(wr − k)�)]

(29)

where Var{·} denotes the variance of a random variable and the superscript ‘hs’ denotes
that F̂ hs[ur, vr , φ, θ ] is obtained by use of the half-scan I-DT algorithm (i.e. equation (8)).
Equation (29) describes how Var{F̂ hs[ur, vr , φ, θ ]} depends on Var{Dhs(ur , vr , φ, θ)}
(determined from the measured data), wave number k and the detector spacing �. Note that,
for any realistic noise model, Var{Dhs(ur , vr , φ, θ)} remains finite for all ur and vr . Therefore
Var{F̂ hs[ur, vr , φ, θ ]} becomes unbounded as (ur , vr) → (0, 0) and as (ur , vr) → (uhs, vhs),
where (uhs, vhs) is a singular point that satisfies equation (22) for n = 1.

3.4.2. Single-plane I-DT. If we define

Dsp(ur , vr , φ, θ) ≡ D̂I (ur , vr , φ, θ; d) + [D̂I (ur , vr , φ
π , θπ ; d)]∗ e−j2(wr−k)d (30)

then by use of equation (20) one can show that

Var{F̂ sp[ur, vr , φ, θ ]} = w2
r

(2π)4

Var{Dsp(ur , vr , φ, θ)}
2 [1 − cos(4(wr − k)d)]

(31)

where the superscript ‘sp’ denotes that F̂ sp[ur, vr , φ, θ ] is obtained by use of the single-plane
I-DT method (i.e. equation (20)). We see that Var{F̂ sp[ur, vr , φ, θ ]} becomes unbounded
as (ur , vr) → (0, 0) and as (ur , vr) → (usp, vsp), where (usp, vsp) is a singular point that
satisfies equation (25) for n = 1.

The above discussions indicate that the variance in the estimates F̂ sp[ur, vr , φ, θ ] and
F̂ hs[ur, vr , φ, θ ] becomes exceedingly large for (ur , vr) near a singular point. The noise
amplification problem associated with the (non-zero) singular points located at {(usp, vsp)} or
{(uhs, vhs)} can be circumvented readily by restricting the range of (ur , vr) values that F̂ is
estimated over. For example, equations (24) and (27) can be replaced by the more restrictive
conditions

u2
r + v2

r < 2πk/� − ε1, (32)

and

u2
r + v2

r < πk/d − ε2, (33)

respectively, where ε1, ε2 > 0 can be regarded as real-valued regularization parameters (that
can be chosen according to some rule that makes use of knowledge of the noise properties).
In effect, this regularization strategy directly sacrifices the spatial-frequency content of the
reconstructed f in exchange for stability.

The noise amplification problem associated with the singular point at the origin must
be handled differently. Without knowledge of F̂ [u, v, φ, θ ] for (u, v) near the origin,
the reconstructed image will generally contain significant distortions and inaccuracies.
Accordingly, we cannot simply trade the spatial-frequency content of f for stability by setting
F̂ [u, v, φ, θ ] = 0 for (u, v) near the origin. However, the effects of noise amplification can
be mitigated by use of certain scanning geometries that employ sufficiently large values for
� (for the half-scan method) and d (for the single-plane method). To understand this, we
can consult the variance expressions in equations (29) and (31). The key observation is that,
for (u, v) near (0, 0), the values of the denominators in equations (29) and (31) increase
as the values of � and d increase, respectively, thereby reducing Var{F̂ sp[ur, vr , φ, θ ]} and
Var{F̂ hs[ur, vr , φ, θ ]}, respectively. In the results section, we demonstrate numerically the
regularizing effect that suitable choices for � and d can have in half-scan and single-plane
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Figure 4. An image of the mathematical phantom.

I-DT. As usual, the price to pay for this regularization is decreased spatial-resolution of the
reconstructed f . Recall that, according to the conclusions of section 3.3, the spatial-frequency
content of the reconstructed images in half-scan and single-plane I-DT varies inversely with
� and d, respectively.

4. Simulation studies

We performed simulation studies to corroborate our theoretical assertions and to investigate
the numerical properties of the half-scan and single-plane reconstruction algorithms.

4.1. Phantom and simulation data

A 2D mathematical phantom that contained four uniform ellipses, shown in figure 4, was
utilized in our simulation studies. The length of the long axis of ellipse #1 (the largest ellipse)
was 0.55 (arbitrary units). Two versions of the phantom were constructed. The first phantom
contained only real-valued refractive index values and will be referred to as the ‘phase object’,
for which the refractive index values n1, n2, n3 and n4 are 1.001, 1.0025, 1.0025 and 1.002,
respectively. The second phantom had complex refractive index values for two of the ellipses
(n2 = n3 = 1.0025 + j0.005) and will be referred to as the ‘complex object’. As described
later, the complex object will be employed to investigate how the reconstruction algorithms
respond to the violation of the assumption that f (�r) is real valued (i.e. equation (16)).

The 2D scanning configuration shown in figure 5 was employed, which is described by the
coordinate system in figure 1 with θ = 0. The probing wavefield was a plane-wave travelling
along the positive zr -axis (with λ = 1 × 10−6 or λ = 1 × 10−3) and the linear detector array
had a length of 3.072 and contained 1024 elements (therefore the detector sampling interval
was �xr = 0.003). For the single-plane method, three different object-to-detector distances
d = 0.4, 0.9, 1.8 were used. For the half-scan method, six detector plane spacing intervals
� = 0.005, 0.01, 0.1, 0.3, 0.6, 1.2 were used in combination with one of the d values listed
above.

The complex phases ψ(xr, φ; d) on the detector arrays were calculated analytically by use
of equation (4), and the intensity functions were formed as I (xr , φ; d) = eψ(xr ,φ;d)+ψ∗(xr ,φ;d).
Note that the phantom objects were, by construction, weakly scattering objects. The
deleterious effects of strong scattering in linearized DT are well known (Slaney et al 1984,
Chen and Stamnes 1998) and are not investigated in this work. In the experiments for the
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Figure 5. A schematic of the 2D scanning geometry that was employed in the numerical
experiments.

single-plane method, I (xr , φ; d) was calculated at 360 evenly erspaced view angles over
the interval [0, 2π). In the experiments for the half-scan and conventional I-DT methods,
I (xr , φ; d) and I (xr , φ; d + �) were calculated at 180 evenly spaced view angles over the
interval [0, π) and 360 evenly spaced view angles over the interval [0, 2π), respectively.

4.2. Noise model

To investigate the noise propagation properties of the algorithms, the intensity data were
treated as realizations of an uncorrelated Gaussian stochastic process that was characterized
by its mean µ and standard deviation σ . When generating the noisy data, µ was set equal
to the noiseless value of I (xr , φ; zr) at a given detector location and σ was chosen to satisfy
σ
µ

= 0.5% or σ
µ

= 1.0%.

4.3. Reconstruction procedure

Using the single-plane and half-scan algorithms, images were reconstructed from the noiseless
and noisy measurement data. For the single-plane algorithm, we formed DI(xr , φ; d) =
ln[I (xr , φ; d)] and used equation (20) (with the explicit vr dependence removed and wr ≡√

k2 − u2
r ) to obtain F̂ [ur, φ]. For the half-scan algorithm, DI(xr , φ; d) = ln[I (xr , φ; d)]

and DI(xr , φ; d + �) = ln[I (xr , φ; d + �)] were calculated and used in equation (8)
(with the explicit vr dependence removed and wr ≡ √

k2 − u2
r ) to obtain F̂ [ur, φ].

For each φ, F̂ [ur, φ] was determined at 1024 evenly spaced samples over the interval[− π
�xr

, π
�xr

]
, where �xr = 0.003. The phantom objects were quasi-bandlimited and satisfied

|F̂ [ur, φ]| ≈ 0 for |ur | > π
�xr

. In both the single-plane and half-scan algorithms, from the

determined F̂ [ur, φ], f (x, z) was reconstructed by use of a discretized version of the filtered
backpropagation formula

f (x, y) = Re

{∫ π

0
dφ

∫
u2

r �k2
dur

k|ur |
wr

F̂ [ur, φ] ej (urxr +(wr−k)zr )

}
(34)



2746 D Shi et al

(a) (b) (c)

Figure 6. Images of the phase object reconstructed from noiseless data by use of the (a) single-
plane, (b) half-scan and (c) conventional I-DT reconstruction algorithms. The scanning geometries
corresponded to the values λ = 1 × 10−6, d = 1.8 and � = 0.1 (arbitrary units).

(a) (b) (c)

Figure 7. Images of the phase object reconstructed from noiseless data by use of the (a) single-
plane, (b) half-scan and (c) conventional I-DT reconstruction algorithms. The scanning geometries
corresponded to the values λ = 1 × 10−3, d = 0.4 and � = 0.05.

where x = −xr sin φ + zr cos φ and y = xr cos φ + zr sin φ, which is the 2D equivalent of
equation (A.4) with α = 1. For comparison, images were also reconstructed by use of
equation (8) to estimate F̂ [ur, φ] for φ ∈ [0, 2π) coupled with the conventional 2D-filtered
backpropagation algorithm (Devaney 1982) that backpropagates over a 2π angular range
and does not assume the symmetry given in equation (17). We will refer to this algorithm,
which can reconstruct a generally complex-valued object function, as the ‘conventional’
I-DT reconstruction algorithm. In all cases, the reconstructed images were represented by a
201 × 201 matrix with pixel dimensions �x = �z = 0.003.

5. Reconstructed images and discussion

5.1. Reconstructed images of phase object

Figures 6 and 7 contain images of the phase object that were obtained by use of the single-plane
(figures 6(a) and 7(a)), half-scan (figures 6(b) and 7(b)) and conventional I-DT reconstruction
algorithm (figures 6(c) and 7(c)) from noiseless data corresponding to two scanning geometries
having different parameters λ, d and �. Figure 6 shows the images for the scanning geometry
λ = 1×10−6, d = 1.8 and � = 0.1 (recall that � is relevant to the half-scan and conventional
methods only). In this case, all of the reconstruction methods produced images that were
accurate representations of the true phantom shown in figure 4. This is explained by the
fact that, for the given values of λ, d and �, F̂ [ur, φ] can be estimated for all non-zero
ur ∈ [− π

�xr
, π

�xr

]
. This is because the locations of the singularities described by equation (27)
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(a) (b) (c)

Figure 8. Images of the phase object reconstructed from noisy data with σ
µ

= 0.5% by use of the
(a) single-plane, (b) half-scan and (c) conventional I-DT reconstruction algorithms. The scanning
geometries corresponded to the values λ = 1 × 10−6, d = 1.8 and � = 0.3.

(a) (b) (c)

Figure 9. Images of the phase object reconstructed from noisy data with σ
µ

= 1.0% by use of the
(a) single-plane, (b) half-scan and (c) conventional I-DT reconstruction algorithms. The scanning
geometries corresponded to the values λ = 1 × 10−6, d = 1.8 and � = 0.3.

(
√

πk
d

for the single-plane method) and equation (24) (
√

2πk
�

for the half-scan and conventional
methods) (with vr = 0 in this 2D example) lie outside the interval

[− π
�xr

, π
�xr

]
. Figure 7

shows the images for the scanning geometry λ = 1 × 10−3, d = 0.4 and � = 0.01 (it
is to be noted that the wavelength is much larger in this example). We find now that the
image reconstructed by use of the single-plane method (figure 7(a)) is no longer an accurate
approximation of f (x, z). This occurs because F̂ [ur, φ] is estimated only for all non-zero
ur ∈ (−√

πk
d

,
√

πk
d

)
, where

√
πk
d

< π
�xr

, because the location of the singularity at ur =
√

πk
d

now resides inside the quasi-bandwidth region
[− π

�xr
, π

�xr

]
. As a result, F̂ [ur, φ] is not

determined for ur ∈ [− π
�xr

,−
√

πk
d

)⋃ (√
πk
d

, π
�xr

]
and the reconstructed image is a blurred

approximation of f (x, y). The images reconstructed by use of the half-scan and conventional
algorithms shown in figures 7(b) and (c), respectively, appear virtually identical to those shown
in figures 6(b) and (c), respectively, reflecting that the singularity located at

√
2πk
�

remains
outside the quasi-bandwidth interval

[− π
�xr

, π
�xr

]
for this scanning geometry.

Figures 8–11 display images of the phase object that were reconstructed from the noisy
data corresponding to scanning geometries having different parameters λ, d and �. Figures 8
and 9 contain images corresponding to scanning geometries with λ = 1 × 10−6, d = 1.8
and � = 0.3, reconstructed from noisy data with σ

µ
= 0.5% and σ

µ
= 1.0%, respectively.

The images reconstructed by use of the single-plane algorithm (figures 8(a) and 9(a)) appear
virtually unaffected by the data noise unlike the images reconstructed by use of the half-scan
algorithm (figures 8(b) and 9(b)) that are significantly corrupted by noise. It is also apparent
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(a) (b) (c)

Figure 10. Images of the phase object reconstructed from noisy data with σ
µ

= 1.0% by use of the
(a) single-plane, (b) half-scan and (c) conventional I-DT reconstruction algorithms. The scanning
geometries corresponded to the values λ = 1 × 10−6, d = 0.9 and � = 0.6.

(a) (b)

Figure 11. Images of the phase object reconstructed from noisy data with σ
µ

= 1.0% by use of
the (a) half-scan and (b) conventional I-DT reconstruction algorithms. The scanning geometries
corresponded to the values λ = 1 × 10−6, d = 0.9 and � = 1.2.

that the noise in figures 8(b) and 9(b) resides primarily in the low-frequency components
of the reconstructed images. These observations are consistent with our noise analysis in
section 3.4. Because � � 2d, equations (29) and (31) predict that the variance of the low-
frequency components of f (x, y) will be much more amplified in the half-scan algorithm
than in the single-plane algorithm. The images reconstructed by use of the conventional I-DT
algorithm are shown in figures 8(c) and 9(c). The texture of the noise appears similar to
that of the images reconstructed by use of the half-scan algorithm, but the magnitude of the
noise is diminished because twice as many measurement data are utilized for reconstruction
of f (x, y), which serves to eliminate certain components of the data noise.

Figures 10 and 11, which display images of the phase object that were reconstructed
from noisy data with σ

µ
= 1.0% and λ = 1 × 10−6, demonstrate further how the choices of

d and � can influence the noise properties of the images reconstructed by use of the single-
plane and half-scan algorithms, respectively. The images shown in figure 10 correspond to
scanning geometries with d = 0.9 and � = 0.6, which are one-half and twice the values
for d and �, respectively, that were employed in figure 9. The magnitude of the noise in
the image reconstructed by use of the single-plane algorithm in figure 10(a) is larger than
the corresponding image in figure 9(a), which shows, consistent with equation (31), that the
magnitude of the noise components in the low-frequency components of f will increase as
d decreases. Conversely, the magnitude of the noise in the image reconstructed by use of
the half-scan algorithm in figure 10(b) is less than in figure 9(b) because the value of �

that corresponds to figure 10(b) is larger. Although, in this example, the value of d cannot



Half-scan and single-plane intensity diffraction tomography for phase objects 2749

(a) (b) (c)

Figure 12. Images of the complex object reconstructed from noiseless data by use of the
(a) single-plane, (b) half-scan and (c) conventional I-DT reconstruction algorithms. The scanning
geometries corresponded to the values λ = 1 × 10−3, d = 1.8 and � = 0.005.

(a) (b) (c)

Figure 13. Images of the complex object reconstructed from noiseless data by use of the
(a) single-plane, (b) half-scan and (c) conventional I-DT reconstruction algorithms. The scanning
geometries corresponded to the values λ = 1 × 10−6, d = 1.8 and � = 0.005.

be substantially reduced without having the detector line intersect the object function, we
are free to make � larger to investigate its impact on the noise properties of the half-scan
algorithm. In figure 11 the detector plane spacing corresponds to � = 1.2. Figure 11(a)
shows the image reconstructed using the half-scan algorithm, while figure 11(b) shows the
image reconstructed by use of the conventional I-DT algorithm. Consistent with our noise
analysis, these figures demonstrate that the magnitude of the noise in the reconstructed images
decreases as � increases.

5.2. Reconstructed images of complex object

Figures 12 and 13 display images of the complex object that were reconstructed from noiseless
data corresponding to scanning geometries with d = 1.8,� = 0.005 with λ = 1 × 10−3

and λ = 1 × 10−6, respectively. As before, the sub-figures (a), (b) and (c) contain the
images reconstructed by use of the single-plane, half-scan and conventional I-DT algorithms,
respectively. The images reconstructed by use of the conventional I-DT algorithm shown in
figures 12(c) and 13(c) are both accurate reconstructions of f (x, y). This is expected because
the conventional I-DT algorithm does not assume that the object function is real valued.
On the other hand, the images reconstructed by use of the single-plane algorithm, shown in
figures 12(a) and 13(a), are both blurred dramatically, and no longer even remotely resemble
the object and its background medium. The image reconstructed by use of the half-scan
algorithm with λ = 1×10−3, shown in figure 12(b), contains certain horizontal streaking-like
artefacts, but is of much better visual quality than the corresponding image reconstructed by
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use of the single-plane algorithm. The image reconstructed by use of the half-scan algorithm
with λ = 1×10−6, shown in figure 13(b), does not contain the streaking artefacts, and appears
comparable in visual quality to the images reconstructed by use of the conventional I-DT
algorithm. This improvement in the fidelity of the image reconstructed by use of the half-scan
algorithm can be understood by noting that the imaging problem gets more ‘Radon transform-
like’ as λ decreases. Indeed, as λ → 0 the shifted Ewald sphere surfaces in Fourier space, over
which equation (8) determines F̂ on, reduce to planar surfaces and therefore measurements
taken over the angular range φ ∈ [0, π) will completely determine F̂ .

These observations indicate that the half-scan reconstruction algorithm is much more
robust to violations of the assumption that f is real valued than is the single-plane
reconstruction algorithm. The single-plane algorithm employs equation (20) to determine
F̂ [ur, φ] for all φ ∈ [0, 2π). This equation, however, assumes the symmetry F̂ [ur, φ] =
F̂ ∗[ur, φ

π ] (which is valid only if f is real valued), so all the determined values of F̂ will
be incorrect when f is complex. In contrast, the half-scan algorithm uses equation (8) to
determine F̂ [ur, φ] for φ ∈ [0, π); this equation does not assume that f is real-valued and
so these values of F̂ [ur, φ] can be determined accurately even for complex f . Only the
components corresponding to φ ∈ [π, 2π) are determined by the assumption that f is real
valued, and so at least half of the Fourier data can be determined accurately in the half-scan
algorithm. All of these discussions can be generalized immediately to address the 3D and
spherical-wave phase I-DT problems.

6. Summary and conclusions

A new theory of I-DT has been proposed recently that permits for the reconstruction of the
complex-valued refractive index distribution of a weak scatterer from knowledge of wavefield
intensity measurements. At each tomographic view angle, I-DT requires the wavefield
intensity to be measured on two parallel detector planes that are separated by a finite distance.
In many imaging tasks in biology and materials science, the imaginary component of the
refractive index distribution n(�r) of the scattering object may be approximately zero and such
scattering objects are referred to as phase objects. Although the theory of I-DT permits for the
reconstruction of phase objects, we can expect that the amount of measurement data needed
to reconstruct a phase object will be less than that needed to reconstruct an complex-valued
refractive index distribution. Reducing the amount of required measurement data has the
obvious benefit of minimizing the experimental complexity of an I-DT imaging study, which
in turn can minimize the probability of artefacts due to object motion (e.g., when imaging
biological samples) and improve the efficiency of high-throughput imaging applications.

In this work, we developed and investigated two I-DT reconstruction algorithms for
reconstruction of 3D phase objects that each utilize only half of the measurements that would
be needed by a conventional I-DT reconstruction algorithm for reconstruction of an arbitrary
complex-valued object function. The first algorithm, referred to as the half-scan algorithm,
required that intensity measurements be acquired on two different measurement planes at a
given view angle (as in conventional I-DT), but the tomographic scanning needed to cover only
one-half of the full angular scanning range (e.g., over the range [0, π) in the 2D case). The
second algorithm, referred to as the single-plane algorithm, required that only one intensity
measurement be acquired at a given view angle, but the tomographic scanning needed to
cover the full angular scanning range (e.g., over the range [0, 2π) in the 2D case). Both the
half-scan and single-plane algorithms were generalized to accommodate spherical incident
wavefields. Although the half-scan and single-plane reconstruction algorithms were equivalent
mathematically, we demonstrated analytically and numerically that their resolution and noise
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propagation properties can differ considerably, depending on the choice of the parameters of
the scanning geometries.

We are currently performing a detailed investigation of the noise properties of
reconstructed images in I-DT and their objective assessment, and will report this work in
a future publication. Furthermore, we intend to evaluate I-DT reconstruction algorithms by
use of experimental coherent x-ray and optical measurement data.

Acknowledgment

The corresponding author (MA) thanks Dr Xiaochuan Pan for stimulating discussions and his
encouragement.

Appendix

Here we provide a derivation, which represents a specialized version of the 3D filtered
backpropagation algorithm for reconstruction of a real-valued f (�r) from data acquired over a
π angular range.

If F̂ [ur/α
2, vr/α

2, φ, 0] is known ∀φ ∈ [0, 2π), then an estimate of f (�r) can be obtained
by use of the spherical-wave filtered backpropagation reconstruction algorithm (Lu 1985,
Anastasio 2001) as

f (�r) = f1(�r) + f2(�r) (A.1)

where

fi(�r) = 1

2

∫
Ai

dφ

∫ ∫
u2

r +v2
r �α2k2

dur dvr

|ur |
α6wα,r

[(1 − α2)wα,r + α2k]

× F̂ [ur/α
2, vr/α

2, φ, 0] exp
(
j

(ur

α2
xr + (wα,r − k)zr +

vr

α2
yr

))
(A.2)

and, for i = 1, 2, the integration over φ is performed over the intervals

Ai =
{

[0, π) : i = 1
[π, 2π) : i = 2.

By letting φ → φ + π in the expression for f2(�r) and making use of equation (18), one finds
that

f2(�r) = f ∗
1 (�r). (A.3)

The use of equation (A.3) in equation (A.1) yields

f (�r) = f1(�r) + f ∗
1 (�r) = 2 Re{f1(�r)}. (A.4)
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