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An extension of the recently developed method of intensity diffraction tomography is derived that assumes that

the probing field is a spherical wave produced by a point source sufficiently far from the scatterer.

A discus-

sion of the method and numerical reconstructions of a simulated three-dimensional scattering object are pre-

sented. © 2005 Optical Society of America
OCIS codes: 110.6960, 290.3200, 120.5050.

1. INTRODUCTION

Diffraction tomography (DT)! is now a well-established
method for reconstructing the three-dimensional (3D) re-
fractive index of a weakly scattering object by measure-
ments of the field scattered by the object. One of the
most significant challenges in applying the method with
optical fields is that it requires both amplitude and phase
measurements of the scattered field, and phase measure-
ments of optical fields generally present considerable
practical difficulties.

Some recent theoretical results have demonstrated
that DT may be performed with intensity measurements
alone.?? This new method, to be referred to as intensity
diffraction tomography (I-DT), uses plane waves as the
probing fields and replaces phase measurements with
multiple measurements of the diffracted-field intensity
along the direction of propagation. In many practical ex-
periments, however, the probing field may be a spherical
wave produced by a point source located a finite distance
away from the scatterer. Some years ago Devaney” refor-
mulated DT for this case, assuming that the point source
was located sufficiently far from the scattering object.
Specifically, a generalized Fourier diffraction projection
(FDP) theorem was derived that provided a linear rela-
tionship between the measured scattered field (or com-
plex phase perturbation) and the scattering potential of
the object.

In this paper we demonstrate that the previously devel-
oped plane-wave I-DT method can be extended to the
spherical-wave formulation that was considered by Dev-
aney. As in the plane-wave I-DT method, explicit phase
measurements are replaced by measurements of the
diffracted-wave-field intensity on different parallel planes
at each tomographic view angle. In Section 2 we review
those results from plane-wave DT and I-DT that are nec-
essary for our analysis. In Section 3 the new spherical-
wave [-DT method is derived and investigated analyti-
cally. Sections 4 and 5 contain numerical reconstructions
of a simulated 3D scattering object and concluding re-
marks, respectively.
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2. REVIEW OF PLANE-WAVE DIFFRACTION
TOMOGRAPHY AND INTENSITY
DIFFRACTION TOMOGRAPHY

A. Plane-Wave Diffraction Tomography

Here we consider the classical scanning geometry of
plane-wave DT that is illustrated in Fig. 1. A monochro-
matic scalar plane wave U;(r) = exp[iks, - r], where r
= (x,y, 2), k = w/c is the wave number, and time de-
pendence exp(—iwt) is assumed, is incident on an object
occupying a volume V with a (generally) complex index of
refraction n(r). The unit vectors s;, sy, and s, indicate
the directions of the positive x, y, and z axes, respectively.
If the scattering is sufficiently weak (as is usually as-
sumed in diffraction tomography experiments), the field
beyond the scatterer may be expressed in the form of the
first Rytov approximation (Ref. 5, Sec. 13.5),

U(r) = Uj(r)expl ¢ (r)], (D

where
() = ;j F(r,)exp[ik|r - r'|]
Uir) Jv |r — v’

is a complex phase perturbation of the incident field, and

U;(x"d3r' (2)
k2

F(r) = —[n*r) — 1] 3)
4

is referred to as the scattering potential of the object.
Let

F(K) = f F(r")exp[ —iK - r']d%r' (4)
4

(2m)?
denote the 3D Fourier transform of F(r) and define
Flu, v, (w — k)] = F(us; + vsy + (w — k)sp). (5)

By use of the Weyl representation of the free-space
Green’s function (Ref. 6, Sec. 3.2), ¢(r) may be rewritten
in the form
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Fig. 1. Illustration of the configuration for weak scattering and
diffraction tomography.

1_
b(x,y,2) = i(277)2j f —Flu, v, (w — k)]
w

X expli(w — k)z]expli(ux + vy)]dudv,
(6)
where
(k%2 — u? — v¥)Y2  when u? + v2<k?
W= {i(u2 + 0?2 - k)2 when u? + v? > k%

)

Equation (6) relates the complex phase perturbation
¢ (r) of the incident field to the 3D Fourier components of
the scattering potential. This relation can be put in a
simpler form by considering the two-dimensional Fourier
transform of (r) in the measurement plane that is given

by
1
J J b(x,y,2)
(2m)?

X exp[ —i(ux + vy)]dxdy. (8)

U(u, v;2) =

On substituting from Eq. (6) into Eq. (8) and evaluating
the integrals, it follows that

(2m)%

F[u, v, (w — k)]expli(w — k)z].
9

Equation (9) is the FDP theorem of plane-wave DT. It re-
lates the two-dimensional Fourier transform of the phase
perturbation on a measurement plane to the 3D Fourier
transform of the scattering potential. By use of measure-
ments for multiple directions of the incident field, a low-
pass-filtered reconstruction of the scattering potential
may be obtained. A number of algorithms have been de-
veloped to reconstruct F(r) efficiently in this manner.”®

U(u, v 2) =

B. Plane-Wave Intensity Diffraction Tomography

It is not difficult to see that the intensity of the field in a
single measurement plane does not contain enough infor-
mation to reconstruct the scattering object. If we define
an intensity data function D;(r) by the expression,

Dy(r) = log[I(x)/I;(r)] = ¢(x) + ¢*(r),  (10)
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where I(r) = |U(r)|? and I,(r) = |U;(r)|?, one can show
that the two-dimensional Fourier transform of this data
function in a plane of constant z is given by the expression

Di(u, v; 2)
(2m)? -
=1 {w*Flu, v, (w — k)]expli(w — k)z]
lw|?
— w[F[—u, —v, (w — k)]]* exp[—i(w* — k)z]}.

(11)

It is clear that in a given z plane, different components of
F(K) are mixed together in a way such that their indi-
vidual contributions are not determinable, save possibly
in special cases of high symmetry.

The plane-wave I-DT method consists in defining a
data function of the form

Dy(u, v; d)

ﬁ,(u, v; d) — ﬁ,(u, v; d + A)expli(w — k)A]
= A b
(12)
where intensity data are employed from a pair of mea-
surement planes spaced by a distance A (see Fig. 2). Itis
to be noted that the A in the denominator of Eq. (12) is a

formal convention, chosen to give the data function a non-
zero value in the limit A — 0; i.e.,

A~ d A
lim Dy(u, v; d) = —Dy(u, v; 2)|,-q
A0 dz

—i(w — k)Dy(u, v; d). (13)

This data function is comparable to that used in the phase
reconstruction problem of the so-called transport-of-
intensity equation.® On substituting from Eq. (11) into
Eq. (12), it follows that

(2m)%

Dy(u, v; d) = Flu, v, (w — k)]expli(w — k)d]

X {1 — exp[2i(w — k)AT}. (14)

This equation can be viewed as an FDP theorem for
plane-wave I-DT. On comparison with Eq. (9), it can be
seen that the two equations are nearly identical except for
the presence of an additional A-dependent term in the
I-DT theorem. Intensity diffraction tomography there-
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w
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-

Fig. 2. TIllustration of the configuration for plane-wave I-DT.
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Fig. 3. [Illustration of the configuration for spherical-wave DT.

fore replaces phase measurements of the scattered field
with additional intensity measurements. A physical un-
derstanding of this method and some of its limitations are
discussed in Refs. 2 and 3. One obvious difficulty arises
as a result of the factor in curly braces in Eq. (14): The
data function vanishes for u = v = 0. An identical diffi-
culty appears in spherical-wave I-DT and will be dis-
cussed below.

3. SPHERICAL-WAVE INTENSITY
DIFFRACTION TOMOGRAPHY

In tomographic experiments, it is often easier to imple-
ment a configuration in which the incident field is a di-
verging spherical wave. We now describe the extension
of I-DT to the spherical-wave configuration.

We consider a measurement configuration where the
incident field is a spherical wave generated from a point
on the z-axis ry = (0, 0, —z,) (see Fig. 3). The incident
field takes on the form

exp[ik|r — ro[]
U(r)= ———, (15)
Ir — rf
and the complex phase perturbation is again given by Eq.
(2).

It is assumed that both the source point ry, and the ob-
servation point r are sufficiently far from the scattering
object that the paraxial approximation may be used for
both the incident field and the spherical wave in Eq. (2).
It is also assumed that the structure of the scattering ob-
ject is such that the scattering is primarily in the forward
z direction. Under these assumptions, Devaney showed
[Ref. 4, Eq. (24)] that the complex phase ¢(r) may be ex-
pressed in the form

1 explikzg]
Y(r) ~ —— —————explikp?/2(z + z4)]
U;(r) Zg
expliklr, — 1,1 |

’

X f F(r')exp[ikz']
v

vy — 1y
(16)
where p = (x, y) is a vector in the transverse plane with
magnitude p = (x2 + y%)¥2,
r, = (ap, 2), a7
r, = (pla,z), (18)

and
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< 1. (19)

With use of the paraxial approximation for the incident
field,

1
U(r) ~ ﬁexp[ik(z + zo)]explikp?/2(z + z4)],
r— T
(20)
relation (16) simplifies to the form
lr — xo .
p(r) = ————exp[—ikz]
20
eXp[ik|ra - I‘b|:|
X J F(r'exp[ikz' ] ————d3r".
\% |ra - I‘b|
(21)
Let us define a modified phase function as
¥ (r)
Q(r) = ——. (22)
lr — x

The spherical wave in Eq. (21) containing the vectors r,
and r, may be expanded by using the Weyl representa-
tion, and then following steps analogous to those de-
scribed in Section 2 we may derive the relation

. 1 (272 _
Qlu, v; z] = Flula?, via?, w, — k]
ZoW o %
X expli(w, — k)z], (23)
where
w, = [k? — (u/la)? — (v/a)*]V? (24)

and Q is the two-dimensional spatial Fourier transform of
@ in the transverse plane. This formula demonstrates
that in spherical-wave DT, as in plane-wave DT, the Fou-
rier components of the data function @ on the plane are

K /k a0
1.5 0=0.7
1 o=1
0.5
0
0.5 1
os K:/k
-1
-1.5

Fig. 4. Fourier components available when spherical-wave to-
mography is used for different values of the parameter a. Here
K, is the z-component of the wavevector in Fourier space, and K
is the magnitude of the transverse part of the wavevector in Fou-
rier space, i.e., Ky = (K2 + K2)'2.
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Fig. 5. Illustration of the configuration for spherical-wave I-DT.

directly related to the 3D Fourier components of the scat-
tering potential. The available components are illus-
trated in Fig. 4 for various values of the parameter «; it is
to be noted that @ = 1 is the usual plane-wave result.

Following the I-DT analysis described in Section 2, we
define a new spherical-wave intensity data function of the
form

1
Dg(r, zg) = mlogﬂ(r)/li(r)], (25)
0
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If the measurement planes are widely spaced, however
(for instance, to get better measurements of the low-
spatial-frequency components as discussed below), a
method is required that can reconstruct exactly the Fou-
rier components of the scattering potential. A key obser-
vation is that the change in a that occurs by increasing
the measurement plane distance by A can be compen-
sated for by changing the position of the source to a new
axial position —z;. By requiring that the value of « re-
main unchanged for the second intensity measurement,
one finds readily that

(z + A)z,

zy = 27

z

This configuration is illustrated in Fig. 5. It should be
noted that, according to Eq. (27), the second source posi-
tion z( is farther away from the scattering object than is
the first source position z.

With this new measurement configuration, we define a
spherical-wave I-DT data function as

zobs(u, v, d, zg) — z(’)ﬁs(u, v;d + A, zg)expli(w, — k)A]

Di(u, v; d) =

and straightforward calculation shows that the two-
dimensional Fourier transform of this data function in
the plane z = d has the form

ﬁs(lh U3 d’ ZO)

(2m?% _
= {Flula?, via?, (w, — k)]expli(w, — k)d]

ZowaCYQ

— [Fl-ula?, —vla?, (w,—k)]1* exp[—i(w,—k)d]}.
(26)

Similarly to the plane-wave case, one might attempt to
utilize Eq. (26), along with the two intensity measure-
ments on the planesz = d andz = d + A, to establish a
system of two equations with two unknowns that can be
solved for F’[u/az, vla?, (w, — k)]. However, this is not
possible if the source-to-object distance z, is kept con-
stant, because the intensity measurements acquired on
thez = d and z = d + A planes will be related to differ-
ent spatial-frequency components of F(r) through Eq.
(26) (because the values of a will be distinct).

There exist at least two possibilities for circumventing
this problem. The simplest of these is to note that « de-
pends very weakly on z, i.e., & = [2o/(z + 2¢)]Y2. If the
spacing A between the selected pair of measurement
planes is appreciably less than z, + d, then a will be ef-
fectively the same on the two measurement planes, and
we may perform a method essentially identical to the
methods described in Refs. 2 and 3.

2
A (28)

On substituting from Eq. (26) into Eq. (28), one finds that

. (2m)% _

Di(u, v; d) = Flula?, vla?, (w, — k)1
?w A
— exp[2i(w, — k)Al expli(w, — k)d].

(29)

This expression is nearly identical to Eq. (14), the only
significant changes being the contraction of u and v by 2,
as in ordinary spherical-wave diffraction tomography, and
the replacement of w by w,. Equation (29) can be
viewed as the FDP theorem for spherical-wave I-DT, be-
cause it relates the Fourier components of the intensity
on two measurement planes to the 3D Fourier compo-
nents of the scattering potential. It is to be noted that
the components of F' that satisfy

2(w, — k)A = 2nm, (30)

where n is an integer, cannot be determined through Eq.
(29).

Interestingly, the Fourier components of F(r) may also
be determined from intensity measurements even if the
source—object spacing z is held fixed, albeit at a signifi-
cant increase in computational complexity. We discuss
such possibilities in Appendix A.

4. NOISE PROPERTIES

To understand some basic statistical properties of the
spherical-wave I-DT method, we assume that the inten-



234 J. Opt. Soc. Am. A/Vol. 22, No. 2/February 2005

sity measurements are corrupted by some source of sto-
chastic noise and treat the functions ﬁi(u, v; d) and
Flu/a?, v/a?, (w, — k)] as random variables. (Here
and in the following, a boldface font will denote a random
variable.) By use of Eq. (29) one finds readily that

Var{f‘[u/az, v/, (w, — k)1}

a‘w?A? Var{f)i(u, v; d)}
a (2m* 2[1 — cos(2(w, — AT 1

where Var{-} denotes the variance of a random variable.
Equation (31) describesA how Var{F[u/a?, v/a?, (w,
— )]} depends on Var{D$(u, v; d)} (determined from
the statistics of the measured data), wavenumber %, de-
tector spacing A, and geometry parameter a. This equa-
tion demonstrates that the variance in the estimate
Var{F[u/a?, v/a?, (w, — k)]} becomes exceedingly large
for components (u, v) near the singular points (u,, v,)
that satisfy 2(w, — £)A = 2n 7, which includes the zero-
frequency component (u, = 0,v, = 0) for the case n
= 0. In practice, it is therefore advisable to estimate F
only for (u, v) # (0,0) that have values smaller than
those defined by the n = 1 case of Eq. (30). It is also
very important to estimate accurately the low-frequency
components of F in order to avoid significant distortions
and nonuniform background structures in the recon-
structed scattering potential F(r). It is evident that for
(u, v) near (0, 0), the value of the denominator in Eq. (31)
increases as the value of A increases, thereby reducing
the variance of the estimate. _Therefore the variance of
low-frequency components of F can be reduced by use of
scanning geometries that employ sufficiently large values
for the detector spacing A. In Section 5, we demonstrate
numerically the regularizing effect that suitable choices
for A can have in spherical-wave I-DT.

It is to be noted that additional measurement planes
(measurements for more values of A) could be used to ob-
tain better estimates of F near (0, 0) and near the other
singular points (u,, v,). This possibility is discussed
briefly for the plane-wave I-DT case in Ref. 10.

5. NUMERICAL RESULTS

We performed simulation studies to validate and demon-
strate the spherical-wave I-DT reconstruction method.

A. Simulation Data

Noiseless and noisy scattered field data were generated
from a simulated (weakly) scattering object that was com-
posed of three uniform spherical scatterers with radii of 1,
1.2, and 1.5 (arbitrary units) that were centered at the co-
ordinates (x, y, z) = (13.5,13.5,9), (-13.5,-13.5,0)
and (—18, 18, 4.5), respectively. Transverse slices of the
phantom corresponding to the planes z = 1.91, 0, and
—1.69 are shown in Figs. 6(a), 6(b), and 6(c), respectively.
A 3D scanning geometry was employed in which the inci-
dent wave-field direction s, and x—y detector planes at z
=d and z=d + A were rotated simultaneously
through a 27 angular range about the z axis. The prob-
ing spherical wave had a wavelength of A = 2.5 X 107*
(arbitrary units), and the two-dimensional detector ar-
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rays in the z = d and z = d + A planes were of dimen-
sion of 20 X 20 and contained 1024 X 1024 elements.
Two measurement configurations were considered that
had (d = 100,A = 4,z, = 96.08,z, = 99.92) and (d
= 100, A = 16,z = 96.08,z; = 111.45). These will be
referred to as spherical-wave geometries one and two, re-
spectively. Note that both of these configurations result
in @« = 0.7. We also considered a plane-wave case (a
= 1) for which (d = 100, A = 4).

The complex phases ¢ (x, y; z) on the detector arrays
were calculated analytically by use of Eqs. (22) and (23),
and the intensity functions at each tomographic
view angle were formed as I(x, y; 2z)

= exp| Y(x,y;2)+ ¢*(x,y;2)]. The simulated intensities
I(x,y;d) and I(x, y; d + A) were calculated at 128
evenly spaced view angles over the interval [0, 277). Note
that the phantom objects were, by construction, weakly

scattering objects. The deleterious effects of strong scat-
11,12

tering in linearized DT are well known and are not in-

vestigated in this paper.

(©)

Fig. 6. The z = 1.91, 0, and —1.69 planes of the simulated 3D
scattering potential.
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(©)

Fig. 7. Noiseless reconstructions of the z = 1.91, 0, and —1.69
planes obtained by use of the plane-wave I-DT method (a = 1).

To investigate the noise-propagation properties of the
reconstruction method, we treated the intensity data as
realizations of an uncorrelated Gaussian stochastic pro-
cess that was characterized by its mean u and standard
deviation o. In generating the noisy data, u was set
equal to the noiseless value of I(x, y; z) at a given detec-
tor location and o was chosen to satisfy o/u = 0.1%.

B. Reconstruction Procedure

From the simulated intensity measurements, we formed
Dg(x, y; d, zg) and Dg(x, y; d + A, z) according to Eq.
(25), and used Eq. (29) to estimate F[u/az, vla?, (w,
— k)] for components (u, v) # (0,0) that have smaller
values than those defined by the n
= 1 case of Eq. (30). From the determined values of
Flul/a?, vla®, (w, — k)], a low-pass-filtered approxima-
tion of F(r) was reconstructed by use of the reconstruc-
tion algorithm for spherical-wave DT that is described in
Ref. 13.

Vol. 22, No. 2/February 2005/J. Opt. Soc. Am. A 235

C. Reconstructed Images

Figures 7 and 8 contain reconstructions of the z = 1.91, 0,
and —1.69 transverse slices that were obtained from the
noiseless measurement data corresponding to the plane-
wave geometry (¢ = 1) and spherical-wave geometry one
(= 0.7,A = 4), respectively. As expected, both the
plane-wave and the spherical-wave I-DT reconstruction
methods produced low-pass-filtered images that resemble
closely the true phantom slices shown in Fig. 6.

Figures 9 and 10 contain images of the same transverse
slices that were reconstructed from the noisy measure-
ment data corresponding to spherical-wave geometries
one (¢ = 0.7,A = 4) and two (« = 0.7, A = 16), respec-
tively. It is to be noted that the images in Fig. 9 have a
noisier appearance than those in Fig. 10. Specifically,
the images contained in Fig. 9 have more non-uniform
backgrounds than those contained in Fig. 10. This is
consistent with our assertion that the variance of the low-

(©)

Fig. 8. Noiseless reconstructions of the z = 1.91, 0, and —1.69
planes obtained by use of the spherical-wave I-DT method with
geometry one (o = 0.7, A = 4).
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(b)

Fig. 9. Noisy reconstructions of the z = 1.91, 0, and —1.69
planes obtained by use of the spherical-wave I-DT method with
geometry one (o = 0.7, A = 4).

frequency components of F can be reduced by increasing
the detector plane spacing A of the measurement geom-
etry.

6. SUMMARY

Although DT is a well-established imaging method, it has
the undesirable feature that it requires knowledge of both
the magnitude and the phase of the measured fields,
which can pose experimental difficulties in optical appli-
cations. Because of this, the success of DT imaging in op-
tical applications has been limited. A new theory of I-DT
using plane-wave incident fields has been proposed
recently?? that replaces explicit phase measurements by
(two) intensity measurements taken in different parallel
planes at each tomographic view angle. In many practi-
cal experiments, however, a measurement geometry may
be employed in which the probing field is a spherical wave
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produced by a point source located a finite distance away
from the scatterer. Under certain assumptions regarding
the placement of the point source and the detector plane,
a spherical-wave DT reconstruction method was devel-
oped previously.* However, this method requires knowl-
edge of the magnitude and phase of the measured fields.

In this work we derived a reconstruction method for
spherical-wave I-DT. In accomplishing this, we em-
ployed the same assumptions about the measurement ge-
ometry and object that were used in the spherical-wave
DT formulation. As in the plane-wave I-DT method, ex-
plicit phase measurements are replaced by measure-
ments of the diffracted-wave-field intensity on different
parallel planes at each tomographic view angle. To ob-
tain a simple spherical-wave I-DT reconstruction method
that is similar in structure to the plane-wave I-DT recon-
struction method, we showed that the source position
must be varied in a specific way between intensity mea-

(b)

(©)

Fig. 10. Noisy reconstructions of the z = 1.91, 0, and —1.69
planes obtained by use of the spherical-wave I-DT method with
geometry two (a = 0.7, A = 16).
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surements on the (two) detector planes at each view
angle. The reconstruction method was implemented nu-
merically and employed successfully for reconstruction of
noiseless and noisy images of a simulated 3D weak-
scattering object.

APPENDIX A: DETERMINATION OF F(K)
WITH A FIXED SOURCE-OBJECT
SPACING

With a fixed spacing between the spherical-wave source
and the scattering object, reconstruction of the Fourier
components of the scattering potential can be accom-
plished by a careful mixing of data from multiple mea-
surement directions. In this appendix we discuss how
such reconstructions could be accomplished, at least in
principle.

We begin by assuming that measurements of the scat-
tered intensity have been taken on two measurement
planes, situated at distancesz = d and z = d + A for all
directions of incidence of the scattered field. Measure-
ments taken at the inner measurement distance will be
referred to as a measurement on plane 1; likewise, mea-
surements taken at the outer distance will be referred to
as a measurement on plane 2. The value of « on a given
measurement plane will be referenced with a subscript;
i.e., the value of @ on plane 2 is referred to by a,. We
will consider intensity measurements for four directions
of incidence, to be denoted s, where i = a, b, ¢, d.

Let us first consider the information contained in an in-
tensity measurement on a single measurement plane for
a single direction of incidence. We have seen (recall Fig.
5) that such an intensity measurement contains informa-
tion about the components of Fona semi-ellipse whose
axes are dictated by the value of @. In particular, a single
Fourier component of the intensity data function in the
measurement plane is a linear sum of Fourier compo-
nents of the scattering potential located at a pair of coor-
dinates on opposite sides of the ellipse, as seen in Eq. (26);
we denote the directions of the wave vectors of these com-
ponents by ' and q'¥’, where i = a, b, ¢, d refers to the
direction of incidence being considered [see Fig. 11(a)].
The half-angle 6; between the two complimentary wave
vectors is readily found to be given by

u? + viz/ozj2
0, = tan™! , (A1
\/k2 - (ui/aj)z - (vi/aj)z -k

where u;, v; are the selected transverse Fourier compo-
nents for the ith measurement and j = 1, 2 refers to the
measurement plane used to make the measurement.
Furthermore, the length L; of each of these wave vectors
is given by

L; = uilaj + vilaf + (w, — k)% (A2)

It is to be noted from this expression that Fourier compo-
nents taken from different measurement planes can be
found with equal lengths, because even though a; # a5y,
we are free to select a u;, v; and uy, vy such that L,
= L,.
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We now consider how to determine the component of F
with wave vector q'*).  We consider four intensity mea-
surements with Fourier components arranged as in Fig.
11(b). The intensity measurements in directions a and ¢
are taken on plane 1, and the measurements in directions
b and d are taken on plane 2. The lengths of all Fourier
components are taken to be equal; this can be done by an
appropriate choice of the transverse components of the
wave vectors for the two measurement planes.

The result of this arrangement is that we end up with
four linear equations [the relations between the intensity
and the components of F for four measurements, all de-
rived from Eq. (26)] and four unknowns [the components
of F(q'”)]. We may therefore solve for the component of
F with wave vector q'*.

Although this reconstruction procedure requires four
intensity measurements for reconstruction of a compo-
nent of F, the solution to the system of equations that fol-
lows results in the determination of F for four wave vec-
tors (q'“, '?, q'°, and '¥). This is similar to the case
for the plane-wave I-DT, in which two components of the
scattering potential can be determined from two intensity
measurements. It might be said that the reconstruction
of the scattering potential requires a “presorting” of the
intensity data set before the Fourier components of F may
be determined. An exact way of performing such a pre-
sorting, however, is not yet known.

The series of equations derived by use of this method
will have a solution if and only if the determinant of the
coefficients is nonzero. It can be shown after some calcu-
lation that this determinant is given by

q(,-) A "(i(i)

(b)

Fig. 11. TIllustration of (a) the wave vectors of the scattering po-
tential, that are mixed together in a single intensity measure-
ment and (b) a four-measurement arrangement used to extract a
component of the scattering potential.
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Det =

X sin[2(wa1 - waz)d + 2w, — k)A].

(A3)

This term is comparable to the factor which appears in
the original I-DT formula [see, for instance, Eq. (12) of
Ref. 3].

*Present address, Department of Physics and Optical
Science, University of North Carolina at Charlotte, 9201
University City Boulevard, Charlotte, North Carolina
28223. Phone, 704-687-4511; e-mail, gjgbur@uncc.edu.
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