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A reconstruction theory for intensity diffraction tomography (I-DT) has been proposed that permits reconstruc-
tion of a weakly scattering object without explicit knowledge of phase information. We investigate the I-DT
reconstruction problem assuming an incident (paraxial) spherical wave and scanning geometries that employ
fixed source-to-object distances. Novel reconstruction methods are derived by identifying and exploiting tomog-
raphic symmetries and the rotational invariance of the problem. An underlying theme is that symmetries in
tomographic imaging systems can facilitate solutions for phase-retrieval problems. A preliminary numerical
investigation of the developed reconstruction methods is presented. © 2005 Optical Society of America
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1. INTRODUCTION

Diffraction tomographyp1 (DT) is a well-established im-
aging method used to determine the complex-valued
refractive-index distribution of a weakly scattering object.
The success of DT imaging in optical applications has
been limited because it requires explicit knowledge of the
phase of the measured wave fields, which can pose well-
known experimental difficulties.” To circumvent the
phase-retrieval problem, a theory of intensity DT (I-DT)
has been proposedﬁ’7 that replaces explicit phase mea-
surements on a single detector plane by intensity mea-
surements on two or more different parallel planes at
each tomographic view angle. Because I-DT addresses a
fundamental inverse scattering problem, advancements
in I-DT reconstruction theory will benefit a wide range of
noninterferometric optical and coherent x-ray imaging
modalities. In addition to improving the efficacy of exist-
ing imaging applications,>®* such advancements may
prompt novel applications. The original I-DT reconstruc-
tion theory assumed plane-wave irradiation and directly
related the intensity measurements at a given tomogra-
phic view angle to certain spatial-frequency components
of the object function. Accordingly, the phase-retrieval
problem is solved implicitly in I-DT during the process of
reconstructing the object function. Unlike phase-retrieval
methods based on the transport-of-intensity equation,n’12
the transmitted wave fields are not required to be
paraxial in I-DT.

We have recently generalized I-DT reconstruction
theory to the case where the probing wave field is a
spherical wave produced by a point source located a finite
distance from the scatterer.'® The spherical-wave I-DT re-
construction theory'® employed assumptions regarding
the placement of the point source and detector planes that
coincided with those of a previous study of spherical-wave
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DT.' As in the plane-wave case, explicit phase measure-
ments were replaced by measurements of the transmitted
wave-field intensities on different parallel detector planes
at each tomographic view angle.

A distinct feature of the spherical-wave I-DT recon-
struction theory was that it required the point-source-to-
object distance to be changed in a prescribed way before
the intensity measurement on the second detector plane
was acquired (at each tomographic view angle). This re-
quires an extra degree of motion in the tomographic scan-
ning that is undesirable because it can introduce errors
into the measurement data and/or increase the time
needed to perform the imaging scan. We demonstrated
that, in principle, image reconstruction in spherical-wave
I-DT could be accomplished assuming scanning geom-
etries that had fixed source-to-object distances. However,
explicit methods used to perform such image reconstruc-
tions were not identified.

In this paper we address the tomographic reconstruc-
tion problem for spherical-wave I-DT assuming scanning
geometries that have fixed source-to-object distances. Al-
though we are interested in studying optical wave fields
that possess polarization, we will be considering only
weak scattering problems in which a scalar description of
the wave field is adequate (see Ref. 15, Section 13.1). The
need to vary the source-to-object distance between inten-
sity measurements is circumvented through the identifi-
cation and exploitation of tomographic symmetries and
the rotationally invariant nature of the problem. Two re-
construction methods are derived that are equivalent
mathematically but utilize different sets of symmetries
implicitly. The reconstruction methods are predicted to
produce virtually identical images when applied to consis-
tent measurement data, but distinct images when applied
to inconsistent (e.g., noisy) measurement data. Prelimi-
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nary numerical investigations of the developed methods
are presented to demonstrate their use and corroborate
our theoretical assertions.

2. BACKGROUND

Below we review the salient features of spherical-wave
I-DT reconstruction theory as described in Ref. 13. To fa-
cilitate the description of the tomographic scanning geom-
etry, we introduce a rotated Cartesian coordinate system
r=(x,y,,2,), shown in Fig. 1, which is related to a refer-
ence system r=(x,y,z) by a rotation about the x axis such
that y,=y cos ¢+z sin ¢ and z,=z cos ¢—y sin ¢. The angle
¢ is measured from the positive y axis. Throughout this
paper, coordinates that have a subscript r will be associ-
ated with the rotated system. The unit vectors sy, s (¢,
and sy ,(¢) indicate the directions of the positive x, y,, and
z, axes, respectively. Unless it is needed, the ¢ depen-
dence of the unit vectors sy ,(¢),s, ,(¢) will be suppressed.

A. Review of Spherical-Wave Intensity Diffraction
Tomography

Consider the tomographic measurement geometry illus-
trated in Fig. 2. An incident spherical wave of the form

expljklr =]

Ui(r) = ) (1)

[ — 1|

with an assumed time dependence of exp[—jot]
(j=[-1]2), is employed to probe the scattering object.
Here, ry=(0,0,-z,) denotes the location of the point
source that is expressed in the (x,y,,z,) rotated coordi-
nate system at orientation ¢, and £=27/\ and N\ denote
the wavenumber and the wavelength of the probing field,
respectively. The intensities of the forward-scattered
wave fields are measured on the detector planes z,=d and

Fig. 1. Rotated coordinate system used to describe the tomogra-
phic measurement geometry.
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z,=d+A. These intensity measurements will be denoted
by the functions IZO(x,yr,d);d) and IZO(x,y,,gb;d+A), re-
spectively, where the coordinates x and y, describe loca-
tions on each detector plane. Note that a subscript has
been added to these functions to make clear the depen-
dence of the measured intensities on the source location
zo (which can be different for the two measurements). By
simultaneously rotating the point source and the mea-
surement planes about the x axis (by varying the tomog-
raphic view angle ¢), a set of intensity measurements is
acquired that can be used to reconstruct an estimate of
the object function f(r). The object function is related to
the complex-valued refractive-index distribution n(r) as

k2
flr)= E[nz(r) -1]. 2)

Beyond the scatterer, the total wave field can be ex-
pressed as

Ur) = U(r)expl i, (v)], 3)

where 1//20(1') is a complex phase function. Let
i, O(x,y,,qb;z,) denote i, O(r) evaluated on a plane of con-
stant z, and define

. 1
‘pzo(uwvra ¢;zr) = W f o2 dxdyrlpzo(x:yra ¢;zr)

X eXp[—](ux + vryr)] (4)

and

F(K) =

drf(r)exp[-jK - r 5
(zﬂ)szg fwexpl-jK-¥]  (5)
as the two-dimensional (2D) and three-dimensional (3D)
Fourier transforms of ¢z0(x7 ¥, ®;2,) and f(r), respectively.
It proves convenient to define a modified complex phase
function as

wzo(xxyr’ ¢;Zr)

rg— 1ol

on(xayrr ¢72r) = P (6)

where ry;=(x,y,,2,) denotes a point on the plane z,=d. We
assume that the object is weakly scattering and the first-
order Rytov approximation15 for the forward-scattering
problem is valid. Additionally, we assume that both the
source and the observation locations are sufficiently far
from the scattering object so that the paraxial approxima-
tion may be used in the description of the incident wave
field U;(r) and the Green’s function that is associated with

measurement measurement
plane 1 plane 2

A
N
Y

<——zr=d——>

ez =d+A >

Fig. 2. Measurement geometry of spherical-wave I-DT.
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the (linearized) forward-scattering problem. Under these
conditions, the generalized Fourier diffraction projection
theorem* indicates that

. @2emy .[u v,
on(u’vr’ ¢’Zr) = 2F _251 + _2S2,r + (wa - k)s(),r
ZoW 0 « «
I:"[u/a2,v,/a2,dz]
Xexp[j(wa_ k)zr]7 (7)
where
1/2
z
a= [ : ] (8)
zZ,+2g

is a scale parameter associated with the position of the
source and detector plane,

u 2 v 2 [1/2
ool (-G o

and Qz O(u,vr,cf);zr) denotes the 2D Fourier transform of
QZO(x,yr,¢;zr). Throughout this paper, we will assume
that w, is a real-valued function of z and v,, i.e., (u/a)?
+(v,/ @)?><FE2. This reflects the fact that the contribution
of evanescent wave modes to the measurement data is as-
sumed to be negligible. Equation (7) demonstrates that
the Fourier components of the modified phase function
on are directly related to the 3D Fourier components of
the object function that reside on a shifted semiellipsoidal
surface that intersects the origin and has an orientation
¢. For convenience, we will employ the notation

Uy

~ Al U
F[u/az’vr/a2a¢] EF(_SI+ SZ,r+ (wa_k)SO,r)

a? a?

(10)

to denote the Fourier components of the object that reside
on this surface. Note that for the plane-wave case (a=1),
the surface reduces to the usual Ewald semisphere.2 If
the modified phase function @, is known at a collection of
tomographic view angles ¢, a certain band-limited region
of 3D Fourier space can be specified. From this Fourier
data, an estimate of f(r) can be determined by use of a
spherical-wave DT reconstruction algori‘chm.16

In spherical-wave I-DT, only the intensity I, (x,y,, ¢;2,)
of the forward-scattered wave field is assumed to be mea-
surable on a plane of constant z,. Because the complex
phase remains unknown, Eq. (7) cannot be employed di-
rectly for image reconstruction. An intensity data func-
tion can be defined as

1
Dzo(x,yra ¢7zr) = ln[Izo(xyyn ¢;Zr)]7 (11)
rg = ro|

whose 2D Fourier transform in the plane of constant z, is
denoted by ﬁZO(u,v,,¢;z,). We have shown'® that
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m?%

Zowaa2

D, (u,v,,b;2,) = {Flula? v /e, plexplj(w, - k)z,]

- ﬁ‘*[_ LL/CKZ,— vr/a27 d)]exp[_j(wa - k)Z,.]},
(12)

where * denotes the conjugate of a complex-valued quan-
tity. Equation (12) relates the wave-field intensity on a
plane of constant z, to a linear combination of spatial-
frequency components of the object function. This equa-
tion demonstrates clearly why, in general, frequency com-
ponents of f(r) cannot be reconstructed from a single
intensity measurement.

B. Image Reconstruction: Geometries with Variable
Source-to-Object Distances

For a fixed source-to-object distance zg, let us consider
that intensity measurements are acquired on the two
planes z,=d and z,=d +A(A>0). Let

zo |2 2 1/2
ap = y = | T —
d+z (d+A)+2z

describe the scale parameters associated with the two
measurements [see Eq. (8)]. According to Eq. (12),
IZO(x,yr,d);d) and IZO(x,y,,gb;d+A) are related to the ob-
ject function as

., em% .
Dzo(uvvr} d’?d) = —Q{F[u/alzﬂ)Jalz’ ¢]exp[i(wal - k)d]

Zowalal

- Fl-wla)®,- v Ja;?, dlexpl- j(w,, - k)d]},

(13)
) eny .,
Dzo(u)vn d)’d + A) = —Z{F[u/a2 ’Ur/az » ¢]
Zowa2a2
><exp[]'(w0(2 -k)d+A)]
- ﬁ'*[— U/azza— Ur/CYzz’ ¢]
Xexpl-j(w,, ~ k)(d + A)]). (14)

Equations (13) and (14) reveal that the measurements
IZO(x ,Vr, &;d) and IZO(x,yr, ¢;d+A) define a system of two
equations with four unknowns, where the unknown quan-
tities  Flu/a,?,0,/a,%, ¢], Fl-ula?,~v,/ )%, ¢],
fi‘[u/a22,vr/a22, ¢], and I:’:E:[—u/a22,—v,/a22, ¢] represent
distinct spatial-frequency components of the object that
we wish to determine. These frequency components reside
on semiellipsoidal Ewald surfaces as defined by Eq. (10).
Note that this indeterminacy occurs because a; # as.

To circumvent this problem, before acquiring the inten-
sity measurement on the plane z,=d +A, we proposed13 to
change the source-to-object distance to the value z
=zo(d+A)/d. In this way, ay=ay, and IZO(x,y,,qS;d) and
Iz(r)(x Vrsd;d+A) define a system of two equations with
two unknowns whose solution yields
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D, (u,0,,;d) = Dy (w,0,, 3 + A)explj(w,, - F)ALy/zo

Flulad,v,/af, ¢] =

From this Fourier data, a spherical-wave DT reconstruc-
tion algorithmM’M’17 can be employed to determine (an es-
timate of) the object function f(r).

To use Eq. (15), the source-to-object distance must be
changed from z, to z/, before we acquire the intensity mea-
surement on the plane z,=d+A. This introduces an extra
degree of motion in the tomographic scanning procedure
that is undesirable because it can introduce errors into
the measurement data and/or increase the time needed to
perform the imaging scan. We have demonstrated'® that,
in principle, image reconstruction in spherical-wave I-DT
can be performed by use of a conventional in-line mea-
surement geometry in which the source-to-object distance
zo remains fixed. However, explicit reconstruction formu-
las used to achieve such reconstructions were not identi-
fied. This task is accomplished in the remainder of the pa-
per.

3. FOURIER SPACE SYMMETRIES IN
SPHERICAL-WAVE INTENSITY
DIFFRACTION TOMOGRAPHY

Below we identify some explicit Fourier space symmetries
that will facilitate the derivation of the reconstruction for-
mulas in Section 4. These symmetries can be interpreted
as tomographic symmetries in the sense that they relate

values of the Fourier data 13"[- ,*,¢] that correspond to dif-
ferent tomographic view angles ¢. As before, for a fixed z,
let @y and @y denote the scale factors associated with the
measurements on the planes z,=d and z,=d+A, respec-
tively. Note that «; > ay because A>0. By definition [see
Eq. (10)], we know that, for a fixed ¢, the functions
ﬁ‘[u/a%,vr/a%, ¢] and ﬁ[u/ag,vr/ag, ¢] describe Fourier
components of the object function that reside on different
semiellipsoidal surfaces. These surfaces coincide only at
the origin of Fourier space (v=v,=0). However, by rotat-
ing one of the surfaces about the u axis (the direction s;),
the two surfaces can be made to intersect at prescribed lo-
cations.

S
M

Fig. 3. Intersection of the ellipsoidal surfaces S; and S, with a
plane of constant « in the 3D Fourier space (#=0.3 in this ex-
ample). The diagram was generated using k=1, and S; and S,
correspond to values «=0.7 and a=0.5, respectively.

J(2m)? explj(w,, - K)d](1 - explj2(w,, — k) AN/ (zgw,,aF)

(15)

To facilitate the discussions that follow, let S; and Sy
denote the 2D surfaces (of the semiellipsoids) that repre-

sent the domains of the functions Flu/ a%,v,/ a?,d)] and

Flu/ ag L0,/ ag, @], respectively, for a fixed ¢. An example of
the intersection of S; and Sy with a particular plane of
constant « is shown in Fig. 3. In the plane defined by
K-si=u/ a?, let A and C denote the two points of intersec-
tion of S; with a circle of radius R that is centered at the
origin of this plane (see Fig. 3). In this plane, the points A
and C correspond to locations wy=-(v,/ a%)sg,ﬁ(wal
-k)sg, and vC=(v,/a%)sz,ﬁ(wal—k)s(),r, respectively, and

therefore
0. \2 1/2
R= (—2> +(w,, —R?| . (16)
a

Similarly, let B and D denote the two points of intersec-
tion of Sy, with the same circle of radius R. The locations
of points B and D in the plane K-s;=u/ a% are given by
VB=_(U;C/a§)s2,r+(wl;z_k)so,r and vD=(vr’/aé)sg’ﬁ(w,’l2
-k)sy,,, respectively, where

u' 2 v’ 2 11/2
w‘; - k2_<_> _(_r)
2 (2] (¢

CYZ 2
u’=u<—) . (17)
ay

The frequencies v, must be real valued and satisfy the

condition
o'\ 2 1/2
R= (—2> +w, —k)?| . (18)
as 2

It can be seen from Fig. 3 that by rotating S; by an
angle —¢' about the u axis, point A on S; can be made to
coincide with point B on S,. Similarly, if S; is rotated by
an angle ¢’ about the u axis, point C on S; coincides with
point D on Ss. It can be verified that these observations
result from the symmetries

and

Flula? v/, ¢+ ¢'1=Flu'lav!la?, $], (19)

where

(20)

~b+ [bQ _ 4ac]1/2 1/2
2a ’

v, = sgn(v,){

with sgn(v,)=1 for v,=0 and -1 otherwise, and
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1 1)\2 :
=l—-—=], 21
a aé arg (21a

4k2 ( , <u>2) 1 1 o1
=— 2| R?+| — ———, 21
aé (%)) Dlé ag
u/ 4 u/ 2
c=|—] +2R?*| — | +R*-4k’R? (21c)
Qg Qg

(see Appendix A for details). The angle ¢’ is given by

vlla2 v,/a?
¢' =-arctan| ——— | +arctan ) (22)

w ay

0[2,7‘
When (u/ay)?+(v,/a)?<k?, v. and ¢' are real-valued
functions of u, v,, a1, and as.

Equation (19) relates the Fourier components on S;
and S, that reside on the same halves of the Ewald sur-
faces [i.e., v, and v, have the same sign in Eq. (19)]. How-
ever, by rotating S; by an angle ¢" about the u axis, as
defined in Fig. 3, point C on S; can be made to correspond
to point B on S,. Similarly, by rotating S; by an angle —¢”,
point A on S can be made to correspond to point D on S,.
It can be verified that these observations result from the
symmetries

Flula®v,la?,¢— ¢') = Flu'la2,-v!/a2, ¢], (23)

where

v)lad v,/a]
¢" = — arctan - — arctan 1) (24)

ag ay

From these observations, it can be seen that one can find
information about a particular Fourier component of the
object function in numerous distinct intensity measure-
ments. No single intensity measurement or pair of mea-
surements can determine this Fourier component; how-
ever, it can be determined by combining many intensity
measurements in a nontrivial way. We consider two strat-
egies for doing this in the next section.

4. RECONSTRUCTION METHODS

Here we derive and investigate two novel reconstruction
methods for spherical-wave I-DT assuming scanning ge-
ometries with fixed source-to-object distances z,. To ac-
complish this, we exploit the Fourier space symmetries
described in Section 3 and an invariance property of the
Fourier integral (specifically, the Fourier-shift theorem).
For convenience, we will define

) . 2
Dzo(uv Uprs ¢’Zr)20waa

2m?%

D(u,vr’ ¢’Zr) = exp[_j(wa_ k)Zr]'

(25)

In terms of this data function, according to Eq. (12), the
intensity measurements acquired on the planes z,=d and
z,=d+A are related to the object function as
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ﬁ(u>vr7 ¢3d) = F[u/aivr/ai d)] - I/\?*[_ U/a%a_ v,/a%, ¢]
Xexp[- 2j(w,, - k)d], (26)

where (u/a)?+(v,/0q)?<k? and

ﬁ(u,v,,¢;d +A)= f’[u/a%,v,/ag, b - ﬁ’*[— u/ag,— vr/ag,¢]
Xexp[— 2j(wa2—k)(d+A)], (27)

where (u/a9)?+ v,/ as)? <k2.

A. Reconstruction Method 1
In this subsection we employ the set of symmetries de-
scribed by Eq. (19) to derive a method for reconstruction
of f(r). A second reconstruction method that exploits the
symmetries given by Eq. (23) is developed in Subsection
4.B.

Consider Eq. (27) evaluated at the frequencies u=u’
and v,=v,:

i)(u’,v,’,qﬁ;d +A) =ﬁ’[u’/a§,v,’/a§,¢]
-F[- u’/a/g,— v;/ag, |

Xexp[-2j(w,, - k)(d+A)], (28)

where we recall that w ;2 denotes w,, evaluated at the fre-
quencies u=u' and v,=v,. By making use of the symmetry
property in Eq. (19), Eq. (28) can be expressed as

D' v}, ¢;d + A) = Flulai,v a3, ¢+ §' (v,)]

-Fl-uld},-v,/d}, ¢~ ¢'(v,)]
Xexp[- 2j(w;2 -k)d+A)], (29)

where the dependence of ¢’ on v, has been made explicit
(although its dependence on u, «;, and ay remain sup-
pressed), and the property ¢’'(-v,)=-¢’(v,) has been uti-
lized. Because of the presence of the ¢’ terms in Eq. (29),
Egs. (29) and (26) still represent a 2 X4 system that can-
not be solved uniquely.

Because f)(u,v,, ¢;z,) is a periodic function of ¢, it can
be expressed as the Fourier series

D(U’,vr’ ¢;Zr‘) = E Dn(u7vr;zr)exp|:jn ¢]7

n=-"

where
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. |
Dn(u’ur;zr) = f d¢D(u7vr7¢;zr)eXp[_jn¢]' (30)
27 ),

On substituting from Eq. (26) into Eq. (30), one obtains
D, (u,v,;d) = F,[ula},v,/a}] - (F_,[- ula}, - v,/a}])"
xexp[- 2j(w,, - k)], (31)
where
1 27
F,[ula?,v,/a3] = 2—J dpFlula?,vla?, plexp[-jnd].
TJo

(32)
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Similarly, on substituting from Eq. (29) into Eq. (30),
one obtains

D,(u',v};d +A) = expling’ (v,)]F,[ulo},v,/of]

— exp[-jned' ) IF_,[- ula?,—v,/A])"
xexp[-2j(w,, —k)(d+A)]. (33)

We now find that Eqgs. (31) and (33) represent a linearly
independent system of two equations with two unknowns
that can be solved to determine

D, (u,v,5d) - D, (' ,v)5d + Aexpljng' (v,) + 2w, -k)(d+A) - 2j(w, - k)d]

F,[ulod,v,l0f] =

(34)

1-expl2(nd' (v,) + Wi, ~k)d+ )~ (w,, ~k)d)]

for (u/ay)?+(v,/ay)?<k% Equation (34) represents the
sought-after reconstruction formula. From knowledge of
Fn[u/ a?,v,/ a%], or equivalently

Fluldd,v b, ¢l = 2, Fluldd,vJadlexpljng], (35)

n=—o

an estimate of f(r) can be reconstructed by use of a
spherical-wave DT reconstruction algorithm.'%7

B. Reconstruction Method 2
In this subsection we employ the set of symmetries de-
scribed by Eq. (23) to derive a second reconstruction
method.

Consider Eq. (27) evaluated at the frequencies u=u’

and v,=-v,:

Dw',- v,,d;d +A) = ff’[u’/a%,— vllaz, ¢
- F'[-u'ld5,v//a5, ¢]

><exp[—j(w;2 - k)(d+A)]. (36)

ﬁ'n[u/a%,v,/a%] =

By making use of the symmetry property in Eq. (23), Eq.
(36) can be expressed as

ﬁ(u/y_ U;, ¢?d + A) = ﬁ‘[u/aivr/aid) - d)ﬁ(vr)]

- Fl-uldf,-v /i, ¢+ ¢'(v,)]

xexp[- %j(w,, ~k)Nd+A)], (37)
where the dependence of ¢’ on v, has been made explicit
(although its dependence on u, «;, and @y remain sup-
pressed), and the property ¢"(-v,)=-¢"(v,) has been uti-

lized.
On substituting from Eq. (37) into Eq. (30), one obtains

D,(u',~v};d + A) = exp[- jn ¢ (v,)IF,[ul o}, v,/ o]
— exp[+jnd"(v,)(F_,[- ulaf,~ v,/a})"
xexp[-2j(w,, —k)(d+4)]. (38)

We find now that Eqgs. (31) and (38) represent a linearly
independent system of two equations with two unknowns
that can be solved to determine

D,\(u,0,5d) = D, ('~ v/3d + A)expl-jnd(v,) + 2w}, ~k)(d+A) - 2j(w,, ~k)d]

(39)

1—expl2i(-nd'(v,) + (w), ~k)d+4) - (w,, ~k)d)]

for (w/ay)?+ v,/ ay)><k2
ﬁ’n[u/ a?,v,/ a%], an estimate of f(r) can be reconstructed
by use of a DT reconstruction algorithm.

From  knowledge  of

C. Comments on the Reconstruction Formulas
As discussed in Subsection 2.B, for a scanning geometry
in which the source-to-object distance z is fixed, the two

intensity measurements acquired on the z,=d and z,=d
+A at a given tomographic view angle do not determine
uniquely any of the Fourier components of the object func-
tion. To circumvent this difficulty, the reconstruction for-
mulas derived in Subsections 4.A and 4.B make use of
symmetries that relate Fourier components of the object
function that reside on the two Ewald surfaces (corre-
sponding to scale parameters a; and ay) at different to-
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mographic view angles. An important feature of the angu-
lar shifts denoted by ¢’ and ¢” in Eqs. (19) and (23),
respectively, is that they do not depend on the tomogra-
phic view angle ¢. This reflects that the I-DT imaging
model is rotationally invariant. Because of their invari-
ance to angular shifts, reconstruction formulas for deter-
mination of the Fourier series expansion coefficients

ff’n[u/ a% 0,/ a%] were determined readily. The proposed re-
construction methods for spherical-wave I-DT are funda-
mentally distinct from other I-DT reconstruction methods
in the sense that they employ measurements from all to-
mographic view angles ¢e[0,2m) for reconstruction of
any specified Fourier component of the object function.
The inversion formulas given in Eqgs. (34) and (39) are
equivalent mathematically. In the absence of data incon-
sistencies and finite sampling effects, they will yield iden-

tical estimates of I:’n[u/ a% 0,/ a%]. However, when the data
contain inconsistencies, Egs. (34) and (39) will generally

produce distinct estimates of f?n[u/ a?,v,/ a%]. This is be-
cause Eqgs. (34) and (39) exploit different Fourier space
symmetries and therefore utilize different components of
the measurement data to form the estimates of

ﬁ‘n[u/ a%,vr/ a%]. Numerical examples of this are provided
in Section 5.

Equations (34) and (39) contain poles whose locations
depend on d, A, k&, and the measurement geometry (more
specifically, a; and «ay). Because the collection of poles rep-
resents a set of measure zero, this presents no math-
ematical difficulties. In theory, the spherical-wave I-DT
reconstruction methods specify exactly the same object
function as the conventional spherical-wave DT method
in Ref. 14. However, the poles can pose considerable prac-
tical difficulties when the methods are applied to dis-
cretely sampled and inconsistent measurement data.
First, the poles are not uniformly spaced, and are gener-
ally difficult to avoid when we attempt to determine
I:’n[u/a%,vr/a%] at uniformly spaced values of u and v,.
Simply setting ﬁ'n[u/ a%,v,/ af]:O at the location of the
poles can lead to inaccuracies in the reconstructed image.
Second, even if the poles are avoided, data errors can be
greatly amplified when the denominators of Eqs. (34) and
(39) take on small values, which occurs in the vicinity of
poles. These observations indicate that the reconstruction
methods will need to be regularized in practical applica-
tions. We refer the reader to Ref. 18 for an introduction to
regularization methods applied to imaging problems. Al-
ternatively, these problems can be circumvented if a third
measurement plane is employed. Because the locations of
the poles depend on d and A, the poles and their immedi-
ate neighborhoods can be avoided by use of an appropri-
ate pair of detector planes. A simple demonstration of this
implementation strategy is demonstrated in the next sec-
tion. As in the plane-wave I-DT theory,®’ the zero-
frequency component of the object function remains unde-
termined.

5. NUMERICAL RESULTS

We conducted a preliminary numerical investigation of
the two spherical-wave I-DT reconstruction methods de-
veloped in Section 4.
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A. Phantom and Simulation Data

The 2D mathematical phantom shown in Fig. 4 was uti-
lized in our simulation studies. The length of the long axis
of the largest ellipse (i.e., the background ellipse) was
0.92 mm, and the refractive-index values of the object are
indicated in Fig. 4. The 2D scanning geometry is de-
scribed in Fig. 5. The point source (A\=1X10"° m) was lo-
cated at z,=-z3=-0.04 m and three detector planes were
positioned behind the object at z,=0.04, 0.044, and 0.05 m
(i.e., d=0.04 m, A;=0.004 m, and A3=0.01 m in Fig. 4).
The three detector planes correspond to scale parameters
a1=0.707, @9=0.690, and @3=0.667, respectively, via Eq.
(8). Each detector array had a length of 5.12 ¢cm and con-
tained 2048 elements (therefore the detector sampling in-
terval was Ay,=25 um).

Because the phantom was comprised of uniform el-
lipses, its 2D Fourier transform was known analytically.
The intensity data I,y(y,, ¢;z,) on the three detector ar-
rays were calculated by use of Egs. (11) and (12), with the
u and x dependencies of the equations omitted. Intensity
data were calculated at 360 evenly spaced tomographic
view angles over the interval [0,27). Note that the phan-
tom was, by construction, a weakly scattering object. The
deleterious effects of strong scattering19’20 are not inves-
tigated in this work. To investigate the noise propagation
properties of the reconstruction methods, the intensity
data were treated as realizations of an uncorrelated
Gaussian stochastic process that was characterized by its
mean u and standard deviation o. When generating the
noisy data, u was set equal to the noiseless value of
I(y,, ¢;z,) at a given detector location and o was chosen to
satisfy o/u=1.0%.

B. Reconstruction Procedure

Let ﬁ(v,,qﬁ;d), ﬁ(v,,¢;d+A1), and ﬁ(v,,¢;d+A3) denote
the Fourier data functions, as defined in Eq. (25), that
correspond to the three detector planes. (Here and else-
where, the u dependence of the equations will be omitted
for this 2D example.) When computing these data func-
tions, the one-dimensional fast-Fourier-transform (FFT)
algorithm was employed to compute D,o(v,,d;z,) [Eq.
(12)] at uniformly spaced values of v, from knowledge of
D,o(y,,d;z,) lor equivalently, I(y,,¢;z,) via Eq. (11)] at
uniformly spaced values of y,. From the set of uniformly
spaced values of v,, the set of nonuniformly spaced values
v, was computed by use of Eq. (20). Let b(v;,¢;d+A1)
and ﬁ(vr’, ¢;d+A3) denote the Fourier data functions
evaluated at the nonuniformly spaced frequencies v,.
These data function values were determined by first in-
creasing the sampling density of the uniformly spaced
data D(v,, #;d+A;) and D(v,, ¢;d+A3) by a factor of 8 (by
zero padding in the spatial domain), followed by a linear
interpolation operation. In a similar way, the data func-
tion values lA)(—v,f,¢;d+A1) and I:)(—vr', ¢;d+As) were de-
termined. The Fourier series expansion -coefficients
D,(v,;d), D,(v,;d+41), D, (v,5d+43) Dy(-v];d+4y), and
ﬁn(—v;;d+A3) were calculated by applying the FFT algo-
rithm to the sampled angular coordinate (¢) of the corre-
sponding data functions.
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Fig. 5. Shown is the 2D scanning geometry employed in the nu-
merical simulations. Intensity data were acquired on three detec-
tor planes at each view angle.

To demonstrate the feasibility of the proposed recon-
struction methods, a simple strategy for utilization of the
intensity data measured on the three detector planes was
adopted. Let

NY[v,]
DY,

Fv, /o] = (40)

where fo)[vr] and Ds)[vr] represent the numerator and
denominator, respectively, of Eq. (34) or Eq. (39) for the
cases where A=A;, i=1,3. Therefore F;l)[vr/a%] is ob-

e o i

20 T 60 80

(d)

(a) Real component of the phantom object. (b) Imaginary component of the phantom object. (¢) Profile through the central row in

tained by use of intensity data on detector planes one and
two, and Ff')[vr/ a%] is obtained by use of intensity data on
detector planes one and three. Although an estimate of
F,[v,/ a?] could also be obtained by use of intensity data
on the second and third detector planes, we do not make
use of this fact here.

As discussed previously, the motivation for employing a
three-detector-plane geometry is to avoid the problems as-
sociated with the singularities in the reconstruction for-
mulas. In our reconstruction procedure, we implemented
the following simple rule to achieve this:

FMwlai] : |IDM[v,] = |DPv,]|

Bl po,

otherwise.

(41)

In this way, for a given frequency component v,, F,[v,/ a?]
is determined by use of the detector plane pair that avoids
encountering a singularity and minimizes the amplifica-
tion of data inconsistencies. From the estimated
F,[v,/ a%], an estimate of the object function f(r) was ob-
tained by use of the DT reconstruction algorithm in Ref.
21. The matrix size of the reconstructed images was
2048 X 2048 pixels, but only an 81 X 81 pixels subregion
that contains the object is shown. Using these procedures,
images were reconstructed from the noiseless and noisy
simulated data sets by use of reconstruction methods 1
and 2.
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C. Reconstructed Images

Noiseless reconstructions of the scattering object are
shown in Fig. 6. The real and imaginary components of
the refractive-index distribution n(r) reconstructed from
noiseless data by use of method 1 are shown in Figs. 6(a)
and 6(b), respectively. The corresponding images recon-
structed by use of method 2 are shown in Figs. 6(c) and
6(d). Profiles through the central rows of Figs. 6(a) and
6(c) are represented by the solid and dashed curves, re-
spectively, in Fig. 7(a). Profiles through the central rows
of Figs. 6(b) and 6(d) are represented by the solid and
dashed curves, respectively, in Fig. 7(b). Because the pro-
files are nearly identical, the dashed curves are obscured
in these figures. These results reveal that, in the absence
of data noise, reconstruction methods 1 and 2 produce im-
ages that are nearly identical and represent low-pass-
filtered estimates of the true refractive-index distribution.
This is consistent with our claim that the methods are
identical mathematically.

Noisy reconstructions of the scattering object are
shown in Fig. 8. The real and imaginary components of
the refractive-index distribution n(r) reconstructed from
noisy data by use of method 1 are shown in Figs. 8(a) and
8(b), respectively. The corresponding images recon-
structed by use of method 2 are shown in Figs. 8(c) and
8(d). Profiles through the central rows of Figs. 8(a) and
8(c) are represented by the solid and dashed curves, re-
spectively, in Fig. 9(a). Profiles through the central rows
of Figs. 8(b) and 8(d) are represented by the solid and
dashed curves, respectively, in Fig. 9(b). These results re-
veal that, in the presence of data noise, reconstruction
methods 1 and 2 have a visually different response to that
noise. This is so because the methods exploit different
Fourier space symmetries and therefore utilize distinct

(a) (b)
() (d)

Fig. 6. (a) Real and (b) imaginary components of the refractive-
index distribution n(r) reconstructed from noiseless data by use
of method 1. (¢) and (d) The corresponding images reconstructed
by use of method 2.
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Fig. 7. (a) Profiles through the central rows of Figs. 6(a) and 6(c)
are represented by the solid and dashed curves, respectively. (b)
Profiles through the central rows of Figs. 6(b) and 6(d) are rep-
resented by the solid and dashed curves, respectively. In both
graphs, the dashed curves are completely obscured by the solid
curves.

(a) (b)
(©) (d)

Fig. 8. (a) Real and (b) imaginary components of the refractive-
index distribution n(r) reconstructed from noisy data by use of
method 1. (¢) and (d) The corresponding images reconstructed by
use of method 2.
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Fig. 9. (a) Profiles through the central rows of Figs. 8(a) and 8(c)
are represented by the solid and dashed curves, respectively. (b)
Profiles through the central rows of Figs. 8(b) and 8(d) are rep-
resented by the solid and dashed curves, respectively.

components of the measurement data to form the recon-
structed images.

6. SUMMARY

Because it permits measurements of the wave-field phase
to be replaced by measurements of the wave-field intensi-
ties, spherical-wave I-DT may be useful for tomographic
optical imaging of semitransparent objects. A distinct fea-
ture of the previously proposed13 spherical-wave I-DT re-
construction method was that it required the source-to-
object distance of the scanning geometry to be changed in
a prescribed way to acquire the intensity data at each to-
mographic view angle. This requires an extra degree of
motion in the tomographic scanning that is undesirable
because it can introduce errors into the measurement
data and/or increase the time needed to perform the im-
aging scan. Although we demonstrated theoretically that
spherical-wave I-DT could be implemented with scanning
geometries that had fixed source-to-object distances, ex-
plicit methods for reconstructing images were not identi-
fied.

In this paper we developed tomographic reconstruction
methods for spherical-wave I-DT assuming scanning ge-
ometries that have fixed source-to-object distances. The
need to vary the source-to-object distance between inten-
sity measurements was circumvented by the identifica-
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tion and exploitation of tomographic symmetries and the
rotational invariance of the problem. Two reconstruction
methods were derived that are equivalent mathemati-
cally but utilize different sets of symmetries implicitly.
Preliminary numerical investigations of the developed
methods were presented to demonstrate their use and
corroborate our theoretical assertions.

An interesting and unique characteristic of the devel-
oped reconstruction methods is the manner in which they
utilize the available intensity measurements. In most of
the existing in-line holographic, or phase-retrieval-based,
tomography techniques,>?>* the intensity measure-
ments acquired at a given tomographic view angle are
processed independently of the intensity measurements
acquired at all other view angles. For example, in phase-
contrast tomography, two intensity measurements at a
given tomographic view angle are utilized to determine
the phase of the transmitted wave field at that view
angle.22_24 In plane-wave I-DT, a Fourier space relation-
ship exists that relates two intensity measurements at a
given tomographic view angle to certain spatial-frequency
components of the object function. The developed recon-
struction formulas for spherical-wave I-DT are expressed
in terms of the Fourier series expansion coefficients of the
object and data functions. Accordingly, the reconstruction
of the Fourier components of the object function requires
knowledge of the intensity measurements at all view
angles, and therefore the processing of the intensity mea-
surements at each view angle is not decoupled. To our
knowledge, this is the first work to exploit tomographic
symmetries for establishing a solution to a phase-
retrieval problem.

Several features of the developed reconstruction meth-
ods remain topics for future investigations. In our simu-
lation studies, a 2D object and three detector planes were
assumed. It will be important to implement and investi-
gate the methods for the full 3D problem. Additionally,
suitable regularization strategies should be developed
that can be employed when intensity data on only two de-
tector planes are available at each tomographic view
angle. Finally, the incorporation and investigation of
multiple-scattering effects in I-DT is an interesting and
important topic for future research.

APPENDIX A

Here we provide a derivation of the frequency variables u’
and v, that first appear in Eqgs. (19) and (23). Consider
points A and B that correspond to the intersection of the
surfaces S; and Sy with a plane of constant u, as de-
scribed in Section 3 and shown in Fig. 3. The locations of
these points are given by KA=(LL/C¥%)51—(Ur/a%)SQ’r+(wa1
-k)sg, and KB=(u’/ag)sl—(vr’/ag)szﬁ(waz—k)so’,, re-
spectively. On substitution from Eq. (17), Kz can be ex-
pressed as KB=(u/a?)sl—(v;/ag)sz,ﬁ(u)az—k)so,r. There-
fore Eq. (17) dictates that points A and B reside on the
same plane of constant u.

For the points A and B to reside on the same circle of
radius R in this plane, v, must be an appropriate function
of v,, u, aq, and ay. To determine this function, we can em-
ploy the observation that v, must satisfy
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(T

where R is defined by Eq. (16). From Eq. (A1) one finds
that v, satisfies the fourth-order equation

a)*+b@)%+c=0, (A2)

where a, b, and ¢ are defined in Eq. (21). The four roots of
Eq. (A2) are

-b+ [b2 _ 4(10]1/2 1/2
v/ V=@ [— , (A3)

2a

(A4)

—b—[b% - 4ac]2 |12
v!® =W [— .

2a

It can be verified that for (u/ap)?+ v,/ aq)?2<k?, v;(l) and
v ;(2) are real valued, while v'® and v ;(4) are complex val-
ued. Therefore v;(?’) and v;(4) are not meaningful physi-
cally. The fact that there exist two (real-valued) values of
v, that satisfy Eq. (A1) [or Eq. (A2)] reflects that S, inter-
sects the circle of radius R at two locations, corresponding
to a positive and negative value of v,. For example, in Fig.
3, v;(l) and v;(2) correspond to the points D and B, respec-

tively.
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