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Phase singularities and coherence vortices in linear optical systems
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Abstract

It is demonstrated for a time-invariant linear optical system that there exists a definite connection between the optical vortices (phase
singularities of the field amplitude) which appear when it is illuminated by spatially coherent light and the coherence vortices (phase sin-
gularities of the field correlation function) which appear when it is illuminated by partially coherent light. Optical vortices are shown to
evolve into coherence vortices when the state of coherence of the field is decreased. Examples of the connection are given. Furthermore,
the generic behavior of coherence vortices in linear optical systems is described.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

There has been much interest in recent years in describ-
ing the behavior of wavefields in the neighborhood of re-
gions where the field amplitude is zero and consequently
the phase of the field is singular. The regions of zero ampli-
tude are typically lines in three-dimensional space and their
intersections with a plane are typically isolated points. The
phase has a circular flow around such singular points
(called phase singularities), and such a point is generally re-
ferred to as an �optical vortex�. The study of the behavior of
optical vortices has spawned a subfield of optical research,
now known as singular optics [1].

Following the success of singular optics in classifying the
phase singularities of coherent wavefields, a number of
authors have extended this research to the study of singu-
larities of two-point correlation functions such as the
cross-spectral density [2–5]. Although zeros of intensity
are not typically present in partially coherent wavefields,
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it has been shown that zeros of the cross-spectral density
are common [3], and their study is therefore of interest.

One curious observation concerning such �coherence
vortices� (also referred to as �spatial correlation vortices�
[5,6]) is their relation to ordinary optical vortices of
spatially coherent fields. For certain systems, it has been
observed that optical vortices evolve into coherence vorti-
ces when the spatial coherence of the input light field is
decreased. These observations have been made both theo-
retically [4,7] and experimentally [5], and it seems that such
a transformation is common; however, no general proof of
this has been given. Furthermore, although the typical or
�generic� properties of optical vortices are well-understood,
no study of the generic behavior of coherence vortices has
been undertaken.

The relation between the two types of vortices is of some
significance, especially in light of experimental observa-
tions of beams which possess phase singularities of both
the field amplitude and the correlation function [8]. Fur-
thermore, there has been some interest in the study of the
propagation of vortex fields through atmospheric turbu-
lence [9], a process which inevitably reduces the spatial
coherence of the propagating field.
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In this paper, we demonstrate that optical vortices
which appear in the output field of a time-invariant linear
optical system which is illuminated by spatially coherent
light always evolve into coherence vortices as the spatial
coherence of the illuminating field is gradually decreased.
From this demonstration, the generic behavior of coher-
ence vortices in partially coherent optical fields is deter-
mined. This behavior is illustrated by considering several
examples.

2. Partially coherent fields in linear optical systems

We consider the propagation of scalar wavefields
through an arbitrary time-invariant linear optical system.
We study the response of the system at a single frequency
x, and this frequency dependence will be suppressed in
the equations which follow. If the input field at the plane
z = z0 is given by U0(r?), and the output field in the half-
space z > 0 is given by U(r), then these fields are related
by (see Fig. 1) [10]

UðrÞ ¼
Z

U 0ðr0?Þf ðr; r0?Þ d
2r0?; ð1Þ

where f ðr; r0?Þ is the kernel of the system and represents its
response to a Dirac delta function input at position r0? and
frequency x, and r = (x,y,z), r0? ¼ ðx0; y 0Þ. Throughout the
paper, a single integral sign will be used to refer to a two-
dimensional integral over an infinite plane, either in spatial
variables (x,y) or spatial frequency variables (Kx,Ky), un-
less otherwise specified. It is to be noted that U(r), and
therefore f ðr; r0?Þ, is a solution of the homogeneous Helm-
holtz equation,

ðr2 þ k2ÞUðrÞ ¼ 0; ð2Þ
where k = x/c is the wave number of the field, c being the
speed of light. Eq. (1) can be used to represent a broad class
of optical systems, such as focusing systems, aperture
diffraction systems, and weak scattering systems. For
instance, the kernel for Rayleigh–Sommerfeld aperture dif-
fraction is given by [11, Section 8.11.2, Eq. (14)]
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Fig. 1. Illustration of the notation used in describing a general, time-
invariant linear optical system.
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; ð3Þ

where r 0 = (x 0,y 0,z 0) and Bðr0?Þ is an aperture function, hav-
ing value unity when r0? lies within the aperture, and value
zero elsewhere.

For input fields which are partially coherent, it is neces-
sary to work with the cross-spectral densities of the input
and output fields instead of the fields themselves. Accord-
ing to the theory of optical coherence in the space–
frequency domain [12, Section 4.7], we may represent the
fields in these regions by ensembles fU 0ðr0?Þg and {U(r)}
of monochromatic fields. The cross-spectral density of the
input field in the plane z 0 = z0 is given by

W 0ðr0?; r00?Þ ¼ hU �
0ðr0?ÞU 0ðr00?Þi ð4Þ

and the cross-spectral density of the field output from the
linear system is given by

W ðr1; r2Þ ¼ hU �ðr1ÞUðr2Þi; ð5Þ
where the angular brackets denote ensemble averaging.
The diagonal element of the cross-spectral density gives
the power spectrum of the field (the intensity at frequency
x), i.e.

SðrÞ ¼ W ðr; rÞ. ð6Þ
We may also define the spectral degree of coherence by the
relation [12, Section 4.3.2],

lðr1; r2Þ �
W ðr1; r2Þffiffiffiffiffiffiffiffiffiffi
Sðr1Þ

p ffiffiffiffiffiffiffiffiffiffi
Sðr2Þ

p . ð7Þ

The spectral degree of coherence is a measure of the spatial
coherence of the wavefield and its modulus is confined to
the values

0 6 jlðr1; r2Þj 6 1; ð8Þ
zero indicating complete incoherence, unity indicating
complete coherence.

We consider partially coherent input fields such that the
plane z = z0 is the waist plane of the input field and the field
therefore has a constant average phase on this plane. It is
to be noted that this condition does not reduce the gener-
ality of the analysis, for optical elements can be added to
our arbitrary linear optical system to produce any average
phase profile that is desired (e.g. a lens could be added to
the entrance of the system to produce an input field which
is a converging spherical wave). We further assume that the
correlations of the field in the input plane are homogeneous
and isotropic, i.e. that the spectral degree of coherence
l0ðr0?; r00?Þ in the input plane depends only upon the magni-
tude of the difference in the position variables,

l0ðr0?; r00?Þ ¼ l0ðjr0? � r00?jÞ. ð9Þ

We may then write the cross-spectral density of the input
field in the form

W 0ðr0 ; r00 Þ ¼ l0ðjr0 � r00 jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S0ðr0?Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
S0ðr00?Þ

p
; ð10Þ
? ? ? ?
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where S0 is the spectral density of the field in the input
plane. Fields with a cross-spectral density in the form of
Eq. (10) are referred to as Schell-model fields [12, Section
5.2.2], and represent a broad class of physically realizable
partially coherent fields.

The effect of the linear system on the cross-spectral den-
sity of the field can be found by substituting from Eq. (1)
into Eq. (5) and taking the ensemble average, leading to
the relation

W ðr1; r2Þ ¼
Z Z

W 0ðr0?; r00?Þf �ðr1; r0?Þf ðr2; r00?Þ d
2r0? d2r00?.

ð11Þ
In analyzing the evolution of the input field from complete
coherence to partial coherence, it is to be noted that there
exists no unique way of making such a transition. The
coherent limit, assuming a constant average phase in the
plane z = z0, is simply given by

lðcohÞ
0 ðjr0? � r00?jÞ � 1. ð12Þ

For partially coherent fields, the spectral degree of coher-
ence has the value unity, when r0? ¼ r00?, and generally
decreases to zero as the points r0? and r00? become more
separated. To define the transition more clearly, we further
assume that the spectral degree of coherence has the fol-
lowing functional dependence, viz:

l0ðjr0? � r00?jÞ � n0½jr0? � r00?j=D�; ð13Þ
where D is the correlation length of the input field, i.e. the
distance over which the field remains essentially correlated
(see Fig. 2). In words, Eq. (13) indicates that a change in D
scales the width of the function l0, while leaving its shape
intact. It is reasonable to assume that l0 has a Fourier rep-
resentation, so that we may express it in the form

l0ðR?Þ ¼
Z

~l0ðK?ÞeiK?�R? d2K?; ð14Þ

with a corresponding inverse Fourier relation. It can be
shown from general properties of Fourier transforms that
in this conjugate space, as the coherence of the input field
is increased, the function ~l0 becomes narrower. Defining
a modified system kernel

F ðr; r0?Þ � f ðr; r0?Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S0ðr0?Þ

p
; ð15Þ

we may rewrite Eq. (11) in the form
∞
  0(|r|)

|r|
0

1

Fig. 2. Dependence of the spectral degree of coherence, l(|r|), on the
correlation length D. For D !1, the field is spatially coherent.
W ðr1; r2Þ ¼ ð2pÞ4
Z

~l0ðK?Þ~F
�ðr1;K?Þ~F ðr2;K?Þ d2K?;

ð16Þ
where

~F ðr;K?Þ �
1

ð2pÞ2
Z

F ðr; r0?Þe�iK?�r0? d2r0? ð17Þ

is the two-dimensional Fourier transform of the modified
system kernel. The form of this equation in the coherent
limit can be found first by substituting from Eq. (12) into
Eq. (14) and taking the inverse Fourier transform. We find
that ~lðcohÞ

0 ðK?Þ ¼ dð2ÞðK?Þ, with d(2) being the two-dimen-
sional Dirac delta function, and the cross-spectral density
output from the system takes on the form

W ðcohÞðr1; r2Þ ¼ ð2pÞ4~F �ðr1; 0; 0Þ~F ðr2; 0; 0Þ. ð18Þ
It is seen from Eq. (18) that the cross-spectral density fac-
torizes and the field output from the system may, in the
coherent limit, be written as

U ðcohÞðrÞ ¼ ð2pÞ2~F ðr; 0; 0Þ. ð19Þ
3. Coherence vortices in linear optical systems

We are interested in studying the behavior of optical
vortices in a time-invariant linear optical system when the
spatial coherence of the input field is decreased. To begin,
we consider a partially coherent field input into the optical
system, but one which is still highly coherent, i.e. ~l0 is
assumed to be extremely localized about the origin in
K?-space. In this case, we are justified in approximating
the two occurrences of ~F in Eq. (16) by their lowest-order
Taylor series expansions in spatial-frequency coordinates
K? = (Kx,Ky),

~F ðri;K?Þ � ~F ðri; 0; 0Þ þ cðriÞ � K? ði ¼ 1; 2Þ; ð20Þ
where c(ri) � (cx(ri),cy(ri)) and

cjðriÞ �
o

oKj

~F ðri;Kx;KyÞ
����
Kx¼Ky¼0

; ð21Þ

with j = x,y. We immediately note from Eq. (19) that the
expression for ~F may be written in terms of the response
of the system to a coherent field, i.e.

~F ðri;K?Þ �
U ðcohÞðriÞ
ð2pÞ2

þ cðriÞ � K?. ð22Þ

On substituting from Eq. (22) into Eq. (16), we may evalu-
ate the integrals over Kx and Ky; using elementary Fourier
analysis, it follows thatZ

~l0ðKx;KyÞ dKx dKy ¼ l0ð0; 0Þ ¼ 1; ð23Þ
Z

~l0ðKx;KyÞK2
x dKx dKy ¼ � o2

oX 2
l0ðX ; Y Þ

����
X¼Y¼0

; ð24Þ
Z

~l0ðKx;KyÞK2
y dKx dKy ¼ � o2

oY 2
l0ðX ; Y Þ

����
X¼Y¼0

; ð25Þ
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Z
~l0ðKx;KyÞKxKy dKx dKy ¼ � o2

oXoY
l0ðX ; Y Þ

����
X¼Y¼0

¼ 0;

ð26ÞZ
~l0ðKx;KyÞKx dKx dKy ¼

Z
~l0ðKx;KyÞKy dKx dKy ¼ 0.

ð27Þ

The values of the last three integrals follow from the isot-
ropy of the spectral degree of coherence, as expressed by
Eq. (9). We may further define the quantity

D0 � � o2

oðX i=DÞ2
l0ðX ; Y Þ

�����
X¼Y¼0

; ð28Þ

where Xi can be either X or Y. D0 can be seen by the use of
Eq. (13) to be a quantity independent of D and, because of
isotropy, independent of i. On substitution of these results
into Eq. (16), it follows that

W ðr1; r2Þ ¼ U ðcohÞ�ðr1ÞU ðcohÞðr2Þ þ ð2pÞ4c�ðr1Þ � cðr2ÞD0=D
2.

ð29Þ
This expression indicates that when the coherence of the in-
put field is decreased, the immediate effect on the cross-
spectral density of the output field is the addition of a term
which is inversely proportional to the square of the corre-
lation length D. The quantity c depends only on the modi-
fied system kernel ~F and describes the response of the
system to the coherence properties of the input field.

We now consider a linear optical system whose output
field contains optical vortices when it is illuminated by a
spatially coherent input field. Let us assume that the system
possesses an optical vortex at the point r(1), i.e. that when a
spatially coherent field is input into the optical system, the
field amplitude takes on zero value at the point r(1). Eq.
(19) then implies that

~F ðrð1Þ; 0; 0Þ ¼ 0. ð30Þ
To determine the response of the system when the input
field is partially coherent, we assume that the observation
point r1 is in the immediate neighborhood of the point
r(1), and that the observation point r2 is in the immediate
neighborhood of another, generally different, point r(2).
We may therefore perform a Taylor expansion of the func-
tions ~F ðri; 0; 0Þ and c(ri) and keep the most significant (low-
est-order) terms of each expansion, i.e.

~F ðr1; 0; 0Þ � bð1Þ � ðr1 � rð1ÞÞ; ð31Þ
~F ðr2; 0; 0Þ � að2Þ; ð32Þ
cðriÞ � cðiÞ; ð33Þ

where

að2Þ ¼ ~F ðrð2Þ; 0; 0Þ; ð34Þ

b
ð1Þ
i ¼ o

oxi
~F ðr; 0; 0Þ

����
r¼rð1Þ

; ð35Þ

cðjÞ ¼ cðrðjÞÞ. ð36Þ
The quantities a(2), b(1) and c(i) are properties of the optical
system, not of the incident field. a represents the system
response at point r2, b characterizes the response of the
system at point r1, and c represents the response of the
system to the coherence properties of the field. On substi-
tuting from these equations into Eq. (29), and making
use of Eq. (19), it follows that

W ðr1; r2Þ ¼ ð2pÞ4fað2Þ½bð1Þ � ðr1 � rð1ÞÞ�� þ cð1Þ� � cð2ÞD0=D
2g.
ð37Þ

This equation represents the local form of the cross-spec-
tral density of the light after passing through a linear
optical system, for the case that the point r1 is in the
immediate neighborhood of a phase singularity of
~F ðr; 0; 0Þ, i.e. a phase singularity of the corresponding
coherent field. To get the most common local forms of
the cross-spectral density, or �generic� forms, we may re-
place the vector b(1) by the vector appropriate for a gen-
eric optical vortex.

It is to be noted that Eq. (37) consists of two pieces, as
does its more general form, Eq. (29): a �coherent part� (the
first, position-dependent term) and a �partially coherent�
part, dependent on D, the correlation length. There are
clearly many degrees of freedom in this equation and hence
many types of behaviors to analyze; we begin by holding r2
fixed and consider how the singularity behaves as the state
of coherence is changed.

We may consider several �generic� singularities of a
coherent optical field, namely pure screw dislocations [13,
Section 5.2.1], for which

U ðcohÞðr1Þ � ð2pÞ2½bð1Þ � ðr1 � rð1ÞÞ�
¼ b0½ðx1 � xð1ÞÞ þ iðy1 � yð1ÞÞ� ð38Þ

and pure edge dislocations [13, Section 5.2.2], for which

U ðcohÞðr1Þ � ð2pÞ2½bð1Þ � ðr1 � rð1ÞÞ�
¼ b0½aðx1 � xð1ÞÞ þ iðz1 � zð1ÞÞ�; ð39Þ

where a and b0 are constants. Let us define

f0 � b�
0a

ð2Þ ð40Þ
and

g0 � D0c
ð1Þ� � cð2Þ. ð41Þ

If the point r(1) is the location of a screw dislocation, the
cross-spectral density from Eq. (37) may therefore be writ-
ten in its generic form as

W ðr1; r2Þ ¼ ð2pÞ4f0f½x1 � ðxð1Þ þ dxÞ� � i½y1 � ðyð1Þ þ dyÞ�g;
ð42Þ

with

dx ¼ �Re
g0
f0D

2

� �
; ð43Þ

dy ¼ Im
g0
f0D

2

� �
. ð44Þ
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Eq. (42) has the mathematical form of a screw dislocation.
It demonstrates that the cross-spectral density has a screw
dislocation (coherence vortex) with respect to r1 if the cor-
responding coherent field has a screw dislocation (optical
vortex) at r(1). The location of the coherence vortex is
shifted spatially by (dx,dy) with respect to the position of
the optical vortex. This shift depends on the position of
the second observation point, r2, through the parameter
f0. However, in the fully coherent limit, D ! 1, this shift
vanishes identically, the cross-spectral density factorizes,
and the phase singularity of the coherence function be-
comes a zero of the field amplitude at the point r(1), i.e.
an optical vortex.

Similarly, if the point r(1) is the location of an edge dis-
location, the cross-spectral density may be written in its
generic form as

W ðr1; r2Þ ¼ ð2pÞ4f0fa½x1 � ðxð1Þ þ dxÞ� � i½z1 � ðzð1Þ þ dzÞ�g;
ð45Þ

with dx now given by the expression

dx ¼ �Re
g0

af0D
2

� �
ð46Þ

and

dz ¼ Im
g0
f0D

2

� �
. ð47Þ

We thus have the following observation regarding coher-
ence vortices and optical vortices: a decrease in spatial
coherence does not eliminate an optical vortex with respect
to position r1, but only shifts its position by a distance
Dr � x̂dx þ ŷdy (for a screw dislocation), and it becomes a
coherence vortex. The position of this vortex is generally
dependent on r2, and is only independent of it in the coher-
ent limit.

We may conclude from this result that there is an inti-
mate connection between the optical vortices and coher-
ence vortices which appear in time-invariant linear
optical systems. In fact, it is therefore reasonable to con-
sider an optical vortex in such systems as a special case
of the more general class of coherence vortices.
4. Examples

We consider here two examples which have been dis-
cussed in other articles and show how the generic form of
a coherence vortex appears in each example.

4.1. Beam wander of a Laguerre–Gauss beam

In a paper which discusses �hidden� singularities of par-
tially coherent fields [4], an example was given of a La-
guerre–Gauss beam whose center axis, containing the
vortex core, is a random function of position. The proba-
bility distribution function for the center axis was taken
to be a Gaussian distribution,
f ðr0Þ ¼
1ffiffiffi
p

p
d
e�r2

0
=d2 . ð48Þ

In the limit d ! 0, the beam axis does not wander at all and
the beam is spatially coherent. For d 5 0, the cross-
spectral density is given by the expression

W ðr1; r2;xÞ ¼
2

ffiffiffi
p

p
jU 0ðxÞj2

w6
0A

3d
e�ðr1�r2Þ2=w4

0
A e�ðr2

1
þr2

2
Þ=d2w2

0
A

�f½c2ðx1 þ iy1Þ þ ðx1 � x2Þ þ iðy1 � y2Þ�
� ½c2ðx2 � iy2Þ � ðx1 � x2Þ þ iðy1 � y2Þ� þw4

0Ag;
ð49Þ

where c � w0/d, r = (x,y), w0 is the width of the beam waist
and

A � 2

w2
0

þ 1

d2

� �
. ð50Þ

It is to be noted from the first exponential in Eq. (49) above
that the correlation length D may be defined by the
expression

D2 ¼ w4
0A; ð51Þ

which means that d is roughly an inverse correlation length,
i.e.

D2 ¼ B2=d2; ð52Þ
where B � w2

0. If we consider points r1 and r2 very close to
the origin, and assume that the field is very nearly fully
coherent (d� w0), Aw

4
0 � B2=D2 and Eq. (49) reduces to

the very simple form

W ðr1; r2Þ / c4fðx1 þ iy1Þðx2 � iy2Þ þ B2=D2g; ð53Þ

which is in the generic form of a screw-type coherence vor-
tex as given by Eq. (42), with x(1) = y(1) = 0, f0 = c4(x2 �
iy2)/(2p)

4 and g0 = c4B2/(2p)4. The transition of an optical
vortex to a coherence vortex is illustrated in Fig. 3. The
lines of constant phase of the cross-spectral density are
plotted as a function of r1, with r2 fixed. The cross-spectral
density is calculated with the formula (49). It can be seen
that for small d (high coherence), the cross-spectral density
only has a phase singularity at the origin, and it coincides
with the zero of intensity of the equivalent coherent field.
However, as the coherence is decreased (d is increased),
the position of the vortex shifts, as predicted in Eq. (42).
As the coherence is decreased significantly, a second coher-
ence vortex appears, evidently �moving� in from infinity.
This vortex is does not appear in the generic form of the
cross-spectral density, which is only a depiction of the
behavior local to a particular phase singularity.
4.2. Coherence vortices in high Fresnel-number focusing

systems

Coherence vortices and optical vortices in the focal re-
gion of high Fresnel-number focusing systems have been
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Fig. 3. Illustration of the transition of an optical vortex of the coherent field into a coherence vortex of the partially coherent field. For this example,
x2 = 0.1 mm, y2 = 0.1 mm, w0 = 1.0 mm. An increase in d corresponds to a decrease in spatial coherence.
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analyzed in [7], for the case that the field in the aperture is
taken to be a Gaussian Schell-model field [12, Section
5.3.2]. The cross-spectral density of the field in the neigh-
borhood of the geometrical focus is given by

W ðr1; r2Þ ¼
1

ðkf Þ2
Z Z

W

e�ðq00�q0Þ2=2r2g eikðq
0 �r1�q00 �r2Þ d2r0 d2r00;

ð54Þ
where f is the focal length of the system, k = 2p/k, and rg is
the correlation length of the input field. Also, q 0 is a unit
vector in the direction r 0, with a similar definition for q00,
and the integral is over the wavefront W in the aperture
(see Fig. 4). It is well-known [11, Section 8.8.4] that in
the coherent limit there are phase singularities in the geo-
metrical focal plane at radii from the geometrical focus
such that

J 1ðvÞ ¼ 0; ð55Þ
where J1 is the Bessel function of the first kind and order
1, v ¼ 2pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=ðkf Þ is one of the so-called Lommel

variables, and a is the radius of the aperture; these rings
of zeros are typically referred to as the Airy rings. We
consider the behavior of the cross-spectral density when
the point r1 is in the immediate neighborhood of the first
zero of J1(v), i.e. v � 3.83, and the spatial coherence of
O

a
f

r

z

v

u

w

Fig. 4. Illustration of the notation used to describe high-Fresnel number
focusing.
the input field is extremely high (i.e. rg > a). In this limit,
we may approximate the spectral degree of coherence of
the input field by a low-order Taylor series expansion,
namely

e�ðq00�q0Þ2=2r2g � 1� ðq00 � q0Þ2

2r2
g

. ð56Þ

On substitution from Eq. (56) into Eq. (54), we have

W ðr1; r2Þ �
1

ðkf Þ2
Z Z

W

eikðq
0 �r1�q00 �r2Þ d2r0 d2r00

� 1

ðkf Þ2
1

2r2
g

Z Z
W

ðq00 � q0Þ2eikðq0 �r1�q00 �r2Þ d2r0 d2r00.

ð57Þ

At this point we have almost obtained the generic form of
the cross-spectral density, for the first term of Eq. (57) can
be factorized into the product of two coherent focused
fields, i.e.

U ðcohÞðrÞ ¼ 1

kf

Z
W

eikq
0 �r d2r0; ð58Þ

and the second term is already proportional to the inverse
square of the correlation length, r�2

g . Assuming that r2 is
fixed at point r(2) and that r1 is in the immediate neighbor-
hood of a point on the first Airy ring r(1) (say along the
y1 = 0 line), we may keep only the lowest-order Taylor ser-
ies terms of W(r1, r2). We may therefore write

W ðr1; r2Þ � U ðcohÞ�ðr1ÞU ðcohÞðr2Þ þ
g0
r2
g

; ð59Þ

where

g0 � � 1

2ðkf Þ2
Z Z

W

ðq00 � q0Þ2eikðq0 �rð1Þ�q00 �rð2ÞÞ d2r0 d2r00. ð60Þ

This is the generic form of the cross-spectral density, illus-
trated in Eqs. (29) and (37). It is to be noted that the right-
hand term of Eq. (57) depends on the two positions of
observation r1 and r2, whereas g0 in Eq. (60) is independent
of these positions. With the point r1 in the neighborhood of
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an edge dislocation, we may further expand U(coh) to find
the local form of the cross-spectral density.

The behavior of the coherence vortex near the first Airy
ring is illustrated in Fig. 5, for two different values of the
correlation length rg. The cross-spectral density was calcu-
lated numerically from Eq. (54). The figure is plotted in the
dimensionless Lommel variables u1 = 2pa2z1/(kf

2) and
v1 ¼ 2pa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ y21

p
=ðkf Þ. It can be seen, as expected, that

for a high degree of coherence, the location of the singular-
ity is very near the position of the first Airy ring (i.e. u2 = 0,
v2 = 3.86) and only weakly dependent on the position of
the point r2. For a lower degree of coherence, the singular-
ity is displaced from the position of the first Airy ring and
its location depends on the position of the point r2, as
expected from Eqs. (45)–(47).

5. Conclusions

It is not clear from the preceding analysis how to phys-
ically explain the origin of the relation between the two
types of vortices. We may, however, give two informal
arguments concerning why this relation is physically rea-
sonable. First, it is well known that a topological charge
[1] may be associated with any optical vortex, and this
charge is a conserved quantity through any continuous
change in the system parameters. The conversion of an
optical vortex to a coherence vortex may be interpreted
as a generalized form of topological charge conservation,
in which the topological charge �moves� from the field to
the coherence function as the field coherence is decreased.
Furthermore, it is known [14] that optical vortices are of-
ten – though not always – associated with orbital angular
momentum of an optical field. Since it is reasonable to ex-
pect that this orbital angular momentum is conserved
even as the field coherence is decreased, it is also reason-
able to expect that the vortices associated with it must
also remain.

It is to be noted that although our analysis has demon-
strated that optical vortices always evolve into coherence
vortices as the coherence of the field decreases, the converse
is not necessarily true – that is, a phase singularity or vor-
tex of a coherence function cannot always be connected to
some vortex in a corresponding coherent field. For in-
stance, the correlation functions of black body radiation
are known to possess an infinite number of phase singular-
ities (related to the zeros of the spherical Bessel functions
[15]). There is no way to define a system of �coherent black
body radiation� – black body radiation is always partially
coherent – and so the analysis of this paper does not apply.

Further investigation will hopefully clarify the physical
origin of the relation between coherence vortices and opti-
cal vortices.

In conclusion, we have analyzed the response of a time-
invariant linear optical system for the case that the state of
coherence of the input field gradually changes from fully
coherent to partially coherent. It was shown that under this
change, optical vortices evolve into coherence vortices, and
the generic features of this process were described. It was
illustrated by two recently discussed examples.
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