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A multispectral intensity diffraction tomography (I-DT) reconstruction theory for quasi-nondispersive scatter-
ing objects is developed and investigated. By “quasi-nondispersive” we refer to an object that is characterized
by a refractive index distribution that is approximately nondispersive over a predefined finite temporal fre-
quency interval in which the tomographic measurements are acquired. The scanning requirements and mea-
surement data are shown to be different than in conventional I-DT. Unlike conventional I-DT that requires
intensity measurements on a pair of detector planes for each probing wave field, this new method uses mea-
surements on a single detector plane at two frequencies. Computer simulation studies are conducted to dem-

onstrate the method. © 2006 Optical Society of America

OCIS codes: 290.3200, 110.6960, 120.5050.

1. INTRODUCTION

Diffraction tomography™? (DT) is a linearized inverse
scattering method for determination of the complex-
valued refractive index distribution of an object. The po-
tential applications of DT are numerous, and include a
variety of imaging problems in optics,>® coherent x-ray
imaging,®” and acoustics.>? DT can be viewed as a gener-
alization of conventional x-ray computed tomography
(CT) in which a time-harmonic coherent wave field is used
to probe the object and certain first-order coherent scat-
tering effects are accounted for. However, unlike in x-ray
CT where the projection data represent intensity mea-
surements, DT imaging requires knowledge of the phase
and amplitude of the transmitted wave fields. Although
wave field phase measurements can sometimes be per-
formed experimentally when imaging with low-frequency
wave fields, they introduce well-known experimental
difficulties® in high-frequency imaging applications that
arise in optics.

A new version of DT, which we have termed'®!! inten-
sity DT (I-DT), has been proposed in recent years by Gbur
and Wolf.'*13 I-DT circumvents the need to measure the
transmitted wave field phase by requiring two or more
measurements of wave field intensity in different parallel
detector planes at each tomographic view angle. In es-
sence, the I-DT reconstruction theory performs an im-
plicit noninterferometric phase retrieval during the pro-
cess of recovering the scattering potential. This is possible
because of the extra degree of freedom in the measure-
ment data afforded by the second intensity measurement,
and is conceptually similar to explicit phase retrieval ap-
proaches  based on the transport-of-intensity
equation.m’15

The success of I-DT rests in the ability to extract a pair
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of distinct equations for a pair of Fourier components of
the scattering object by the use of two intensity measure-
ments at different distances from the scatterer. The use of
multiple measurement planes introduces an additional,
potentially undesirable, degree of complexity to the prob-
lem. It is reasonable to expect, however, that any change
in the measurement system that results in two distinct
measurements related to object structure for a single di-
rection of incidence would be similarly successful. One
possibility is to use multiple temporal frequencies for
each measurement direction, but this is restricted by the
fact that the scattering properties of an object are typi-
cally frequency dependent (i.e., the object is dispersive). If
the scattering properties of the object are effectively con-
stant over the range of frequencies used to probe the ob-
ject, however, useful information can potentially be ex-
tracted.

In this paper, a multispectral I-DT reconstruction
theory for quasi-nondispersive, linear, isotropic scattering
objects is developed and investigated. By quasi-
nondispersive we refer to an object that is characterized
by a refractive index distribution that is approximately
independent of temporal frequency over a defined finite
closed interval in which the tomographic measurements
are acquired. If this temporal frequency interval is chosen
short enough and is placed sufficiently far from resonance
frequencies of the medium, a wide class of objects can sat-
isfy this definition. The salient feature of our reconstruc-
tion theory is that it requires two intensity measurements
to be acquired on a single detector plane behind the ob-
ject, where each measurement must correspond to a prob-
ing wave field with distinct frequency that resides within
the quasi-nondispersive temporal frequency interval.
This permits the frequency, or wavelength, of the probing
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wave field to be varied for acquisition of the necessary
measurement data, rather than the detector placement as
required in conventional I-DT. In addition to being of the-
oretical interest, such a data-acquisition strategy may
have significant practical advantages in certain imaging
studies. It is worth noting that a similar strategy has
been used in anomalous x-ray sca‘ctering,16 in which the
frequency-independent partial structure factors of a mul-
tispecies liquid are extracted by measurements of the
scattered field at multiple frequencies. Similarly, single
species structure factors have been extracted using lim-
ited view angles and polychromatic light.17

The paper is organized as follows. In Section 2 we re-
view the salient features of conventional I-DT reconstruc-
tion theory that provide a basis for our analysis. In Sec-
tion 3, Fourier space data symmetries are identified,
which are utilized in the development of two novel recon-
struction methods in Section 4. A demonstration of the
methods that utilizes computer simulation data is pre-
sented in Section 5, and a discussion and summary of the
work is provided in Section 6.

2. BACKGROUND

The coordinate system given in Fig. 1 is utilized to de-
scribe the tomographic scanning geometry shown in Fig.
2. The rotated Cartesian coordinate system r=(x,y,,z,) is
related to a reference system r=(x,y,z) by a rotation
about the x axis, which represents the axis of tomographic
scanning, such that y,.=y cos ¢+zsin ¢ and z,.=z cos ¢
—y sin ¢. The angle ¢ is measured from the positive y axis
and describes the tomographic view angle. The unit vec-
tors sy, Sy ,(¢) and s (¢) are used to indicate the direc-
tions of the positive x, y, and z, axes, respectively. In
terms of these coordinates, at a given view angle ¢, s¢,
denotes the direction of the optical axis and z,.=d repre-
sents the detector plane that is perpendicular to it. Note
that when the tomographic view angle ¢ is varied, the op-
tical axis and detector plane rotate simultaneously about
the x axis.

We will assume that a plane wave U;(r;o)
=exp(iks(,r) is incident at a view angle ¢ on an object
that is contained within a finite volume V. The time de-
pendence exp(iwt) is assumed, and k= w/cy denotes the
wavenumber where c( is the constant speed of light in the
homogeneous and lossless background medium. Assum-
ing that the scattering is sufficiently weak, the total wave
field behind the object can be expressed by use of the first
Rytov approximation as!

>z
/(;\‘y,
y

Fig. 1. Rotated coordinate system used to describe the tomogra-
phic measurement geometry.
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Fig. 2. In the measurement geometry, a plane wave with wave-
number %, irradiates the object, and the intensity of the forward-
scattered wave field is measured on the plane z,=d. The mea-
surement is repeated using an incident plane wave with
wavenumber £,. Tomographic scanning is achieved by simulta-
neously rotating the source and detector plane about the x axis.

U(r;w) = U(r; w)exp[(r;w)], (1)

where the complex phase is given by

s exp(iklr —r'|)
dr'f)Uix";0)————,

V= w>f r—r

2

and
fo(r) =n’(r;o) - 1. (3)

The scattering potential f“(r) describes the complex-
valued refractive index distribution n(r;w) of the object.
The superscript on f“(r) indicates its functional depen-
dence on the temporal frequency of the probing wave
field. It should be noted that our definition of the scatter-
ing potential in Eq. (3) differs from the conventional
definition™!? by a factor of £%/4, which we have placed
outside the integral in Eq. (2).

In I-DT, the measurement data are given by the wave
field intensities rather than the complex amplitudes,
which are assumed to be measurable in DT. To make ex-
plicit the dependence of the wave field quantities on the
tomographic view angle, we will let U(x,y,;d,$,») and
Wx,y,;d,P,0) denote the total wave field and complex
phase, respectively, on the detector plane z,=d when the
experiment is conducted at view angle ¢. The intensity
measured on the detector plane at this view angle is de-
scribed by

I(x,y,;d, $,0) = |Ulx,y,;d, ¢,0)*
=exp[Y(x,y,;d, b,0) + ¥ (x,y,5d,p0)],  (4)

where * denotes complex conjugation. It proves useful to
introduce the intensity data function

D(x,y,;d, ¢, w) =logl(x,y,;d, $,0)]
= Yx,y,3d, b, 0) + ¥ (%,3,;d, ¢, 0). (5)
The quantities

D(u,v,;d, d,0) = Gy J f dxdy, D(x,y,3d, b, )

Xexp[—i(ux +v,y,)], (6)

and
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Feo(K) =

d®r f(r)exp[- iK - r] (7
2m)? JV

represent the two-dimensional (2D) Fourier transform of
D(x,y,;d,$,») on the plane z,=d and three-dimensional
(83D) Fourier transform of f*(r), respectively. Here, the
variables (u,v,) represent the spatial frequencies of the
2D data function, while the vector K represents the spa-
tial frequencies of the 3D scattering potential. For the re-
mainder of this paper, spatial frequencies will simply be
referred to as frequencies. It has been demonstrated®!?
that the intensity data function and scattering potential
are related by the equation

. mh?
D(u,v,;d, ¢, 0) =i—{F“[u,v,; $,wlexpli(v - k)d]
14

— (FT-u,~v,; ¢, )" exp[— i(v - k)d]},
(8)

where
Folu,v,; ¢, 0] = FO(us, +v,85,(¢) + (1= k)so (9), (9)
v= \,kz—uz—vf, (10)

and where we recall that k= w/c(. To clarify this notation,

note that the superscript » on ﬁ'“[u,v,; ¢,w] denotes that
the definition of the scattering potential depends on o (for
dispersive objects), while the parameter w in the argu-
ment denotes that the set of frequency components at

which F¢[-] is evaluated also depends on w. Stated other-
wise, for a fixed ¢, the domain of the 2D function

Folu ,U,; ¢, w] corresponds to the surface of a shifted
Ewald hemisphere with radius 2=w/c(. In this work, we
assume that u?+v?<k? and therefore v is real valued.
This is justified because we do not aim to reconstruct fre-
quency components of the object that are carried by eva-
nescent wave modes.™®

3. QUASI-NONDISPERSIVE OBJECTS AND
FOURIER SPACE SYMMETRIES

A. Quasi-Nondispersive Objects

Consider that at each view angle ¢ the two intensity mea-
surements I(x,y,,d;¢,w;) and I(x,y,,d;¢,wy) are ac-
quired on the detector plane z,.=d by use of the probing
wave fields U;(r;w;) and U;(r;w,), respectively, where
1> wy. According to Eqgs. (5) and (8), I(x,y,;d, ¢, ;) and
I(x,y,;d,d,ws) are related to linear combinations of fre-
quency components of the scattering potentials /“1(r) and
f“2(r), respectively. In general, these measurements do
not permit reconstruction of either f*1(r) or f“2(r). Let us
assume that the frequencies w; and wqy reside within a
temporal frequency interval over which the object can be
regarded as dispersionless. In this case we have

flr) = f1(x) =f2(r), (11)

ﬁ‘[u7vr;d),wl]:ﬁwl[u’vr;¢9wl]7 (12)
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ﬁ[uyvr;¢yw2] =ﬁw2[uavr;¢yw2]7 (13)

where F[-] describes the corresponding Fourier compo-
nents of f(r). Let k;=w,/c, and

v = [k]2 —u?- vf]m, (14)

where j=1,2 and u2+vfska. By use of Eqgs. (5) and (8),
the intensity measurements are found to satisfy

ﬁ(uavr;d’¢?wl)

ki
= lV_{F[uyvr’ ¢5 wl]exp[i(Vl - kl)d]
1
— (F[-u,~v,5,0,)) exp[— i(vy — ky)d]}, (15)

for u?+v2<k? and

b(u9vr;d’ (f),(x)z)

k3 .
= LV_{F[u’vm ¢7 w2]exp[i(V2 - kZ)d]
2
— (F[= u,~ 0,3 ¢, w5]) ‘exp[— i (v, — ko)d]} (16)

for u?+v2<k2. Equations (15) and (16) constitute a sys-
tem of equations that relate the two intensity measure-
ments on the detector plane z,=d at view angle ¢ to four
distinct frequency components of f(r). We demonstrate in
Section 4 that this 2 X4 system provides the basis for the
unique reconstruction of ﬁ'[u,v,; ¢, wq] for u2+vfsk§,
from which an estimate of f(r) can be reconstructed using
existing DT reconstruction algorithms.1 B

B. Fourier Space Symmetries
To facilitate the development of the reconstruction meth-
ods described in Section 4, we identify symmetries that

relate the Fourier components ﬁ’[u,v,;d:,wQ] and

Flu,v,; $,0,] that reside on the different Ewald surfaces.
The key to achieving this is the observation that, by ro-
tating one of the Ewald surfaces about the u axis (the di-
rection s;), the two surfaces can be made to intersect at
prescribed locations.

It can be verified that

ﬁ‘[u7vr;¢+ ¢/7w2] =ﬁ‘[u7vr";¢7wl:|7 (17)
where
(R2+u2) 1/2
U; = |:R2 - 4—kfj| sgn(vr), (18)

with sgn(v,)=1 for v,=0 and -1 otherwise, and
R=[v}+ (v;— k)", (19)

The angle ¢’ is defined as

U,( Ur
¢' = - arctan + arctan( ) ,  (20)
vy —ky vy —ky

where v] denotes v; evaluated at v,=v,, i.e.,
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vy =[k7 - u®- (v))*"2. (21)

From Eq. (9), one finds that the symmetries given in Eq.
(17) state simply that the vectors Ki=us;+v,85,(¢d+ ')
+(vo—ko)sg (Pp+ ') and KI=US1+U;52,r(¢)+(Vi
—k1)sg(¢p) describe the same point in the 3D Fourier
space of the scattering potential (see Appendix A).
Equivalently, the symmetries can be understood by con-
sideration of Fig. 3, which displays a plane of constant u
in 3D Fourier space. Equation (17) states that point A on
the Ewald surface of radius k5 can be made to coincide
with point B on the Ewald surface of radius %, by rotating
the former Ewald surface by an angle —¢’ about the u
axis. Equation (17) states also that point C that resides on
the Ewald surface of radius k5 can be made to coincide
with point D on the Ewald surface of radius k1 by rotating
the former Ewald surface by an angle ¢’ about the u axis.
Similarly, it can be verified that

F[u’vr;d)_ d)”’wZ] =F[u’_ U;;¢7w1]7 (22)

where

v, v,
¢" = - arctan — arctan
1-k k

) . (23)
h—r Vg = Ra

The symmetries given in Eq. (22) reflect that the vectors
K;=us;+0,85,($- @) +(r-ko)so (¢-¢") and Kj=us
—0,;89 () +(v1—k1)sg (¢) describe the same point in the
3D Fourier space of the scattering potential. Equivalently,
Eq. (22) states that point C in Fig. 3 on the Ewald surface
of radius %9 can be made to coincide with point B that re-
sides on the Ewald surface of radius k; by rotating the
former Ewald surface by an angle —¢” about the u axis.
Equation (22) states also that point A on the Ewald sur-
face of radius k5 can be made to coincide with point D that
resides on the Ewald surface of radius %; by rotating the
former Ewald surface by an angle ¢" about the u axis.

>

Y

°
By

Sor

Fig. 3. Intersection of the hemispherical Ewald surfaces of ra-
dius k; and %, with a plane of constant « in the 3D Fourier space.
The usefulness of this figure for interpreting Fourier space sym-
metries is explained in Subsection 3.B.
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4. RECONSTRUCTION METHODS

Below we derive two multispectral I-DT reconstruction
methods for use with quasi-nondispersive objects. The so-
lution strategy is inspired by our recent study of spherical
wave I-DT.* It involves exploitation of the Fourier space
symmetries identified in Subsection 3.B and the rota-
tional invariance of the problem.

A. Reconstruction Method 1
The data function D(u,v,;d, ¢,w;), which was defined in
Eq. (15), evaluated at the frequencies (u,v,) is given by

D(u,v/;d,¢,wy)

sYro

k]
= i—{FTu,v}; ¢, o1 Jexpli(v] - k1)d]
1
— (F[-u,-v};¢,01]) exp[— i(v} - ky)d]}, (24)

where v was defined in Eq. (21). On substitution from
Eq. (17) into Eq. (24), one obtains

E(u>v;;d’ d)’ (1)1)

ki
=i—{Flu,v,5¢+ ¢'(v,), wzlexpli(vy — ky)d]
41

- (ﬁ‘[_ U,=Up; ¢ - QS’(Ur)an])*eXp[_ I’(Vi - kl)d]}}
(25)

where the v, dependence of ¢’ has been made explicit and
we have used the fact that ¢'(-v,)=-¢’'(v,). Similar to
Egs. (15) and (16), Eqgs. (25) and (16) constitute a system
of equations that relate the two intensity measurements
on the detector plane z,=d at view angle ¢ to four distinct
frequency components of f(r). Note that the unknown fre-
quency components in Egs. (25) and (16) reside on Ewald
surfaces that have a common radius k. However, due to
the angular shifts £¢’ in Eq. (25), the orientation of the
surfaces is different. To circumvent this fact, we must ex-
ploit the rotational invariance of the problem.

Because D(u ,Ur3d, ¢, w)), with j=1,2, and ﬁ‘[u ,U,5 ¢, 9]
are 2 periodic functions of ¢, they can be expressed as
the Fourier series

©

b(u5vr;d’¢’wj)= 2 bn(u’vr’d’wj)exp[l’nqﬂ’ (26)

n=-0o

Fluv,; 09l = >, Folu,v;0.dexplingl,  (27)

n=-—o

where

. e
Dn(u7vr;d7wj) = 2_f d¢D(u7vr;d7 ¢7 wJ)eXpl:_ ln¢]7
T
0

(28)
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. e
Fn[u’vr;w2] = _f d¢F[u’vr;¢’ wZ]eXp[_ ln¢]
2w J,

(29)
Substitution from Eq. (25) into Eq. (28) results in
D,(u,v};d,w)
'n'k% R
=i—{F,[u,v,;w;]expling’ (v,) +i(v} - k1)d]
4]
- (F,[-u,~v,;05)" exp[—ind' (v,) — (v} - ky)d]}.
(30)

., ks
Dn(uyvr;d’ (1)2) -
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Similarly, on substitution from Eq. (16) into Eq. (28), one
obtains

) L
Dn(uavr;d, w2) = i_{Fn[u’Ur; w2]eXp[i(V2 - k2)d]
Vo
— (B[~ u,~v,;05))" expl— i(vy - ky)d]}.
(31

Equations (30) and (31) represent a system of two equa-
tions involving the two unknowns ff’n[u,vr;wg] and
(ﬁ'n[—u,—v,;wQ])*. The solution of this system yields

2Vi

) (—)bn(u,v;;d,a)l)exp[in(f)’(v,) +i(V) = ki — vy + ko)d]

Vo

. Vv
F\[1,0,509] = — i—s expl— i(vy - ky)d]
7Tk2

Equations (32) and (27) together provide the desired

method for reconstruction of ﬁ’[u,vr; ¢, wq] for u2+vf skg.
From knowledge of these Fourier components, an esti-
mate of f(r) can be reconstructed by use of existing DT re-
construction algorithms.'®?! Equation (32) contains iso-
lated poles whose locations depend on the values of 2 and
ky. Because F,[u,v,;ws] can be determined up to a set of
measure zero within the region of Fourier space defined
by u2+vakg, these poles pose no mathematical difficul-
ties. However, as discussed in Section 5, an explicit con-
sideration of the poles must be taken when implementing
the method numerically.

B. Reconstruction Method 2
An alternative reconstruction formula can be derived by
use of the symmetries described in Eq. (22). Consider the

data function f)(u,v,;d, ¢,w1) [Eq. (15)] evaluated at the
frequencies (u,-v,):

) ki
D(ua_ Ur";da d): wl) = l_,{F[ua_ vr";d)’ wl]exp[i(”i - kl)d]
L6t
— (FT-u,v)56,01])" exp[- (v} - ky)d]}.
(33)

By use of the symmetries given in Eq. (22), Eq. (33) can be

1-exp[2ing’(v,) + 2i(v; — ki — vy + ko)d]

(32)
[
expressed as
ﬁ(ur_ U,C ,d’ ¢’ wl)
ki
= lT{F[u,vrv ¢ - ¢”(Ur)7 wZ]eXp[i(Vi - kl)d]
1
— (F-u,- 0,3+ ¢'(0v,), wp)) "expl— i(v] - ky)d]}.
(34)

On substitution from Eq. (34) into Eq. (28), one obtains

bn(u>_ U;;d’wl)

ke
= i_,{Fn[U,Ur;wZJeXP[_ in‘ﬁ”(vr) + l(Vi - kl)d]
o'

— (F,[- u,- v,;00)) expling(v,) - i(v) - ky)d]}. (35)

Equations (35) and (31) represent a system of two equa-
tions involving the two unknowns ﬁ'n[u,vr;wQ] and
(F,[-u,-v,;ws])* whose solution yields

. 2
Fo1,0,300] = — i—s expl—i(vy — Eo)d]
k5

Equations (36) and (27) provide an alternative method for
reconstruction of Flu ,Up; ¢, wg] for u2+vf $k§. In a math-

D, (w,v0,;d,wy) — (ko/k1)2(¥)/v9)D,(u,— v ;d, w))exp[— ind"(v,) + i(v| — k1 — vy + ko)d]
1-exp[-2in¢"(v,) + 2i(v] — k1 — vy + ko)d] '

(36)

ematical sense, the two reconstruction methods derived in
this section are equivalent. Similar to Eq. (32), Eq. (36)
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contains isolated poles whose locations depend on the val-
ues of k; and k5. However, other than the pole at the ori-
gin of Fourier space, their locations are generally differ-
ent. This indicates that the two reconstruction methods
will generally propagate noise differently when applied to
discretely sampled and inconsistent measurement data. A
detailed investigation of the statistical properties of the
reconstruction methods remains an interesting topic for
future investigation. In the next section, a preliminary
numerical investigation of the methods is provided.

5. NUMERICAL RESULTS

To demonstrate the proposed reconstruction methods, a
computer simulation study for the 2D problem was con-
ducted.

ot
e\“e‘o
e gt
7 z
1~ Object
14
00«2‘6 /
NV © >
X oV z

9
Yy y,

Fig. 4. Two-dimensional scanning geometry utilized in the com-
puter simulation studies.
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A. Scanning Geometry and Simulation Data

The assumed 2D tomographic scanning geometry is
shown in Fig. 4. A probing plane wave propagates in the
direction of the positive z, axis, and the intensity of the
forward-scattered wave field is recorded on a detector ar-
ray placed a distance d=1 cm from the center of rotation.
The detector array had a length of 1.024 cm and con-
tained 1024 discrete elements. This corresponded to a de-
tector pixel size of Ay,=1.0X 1075 m. At each view angle
¢, two intensity measurements are recorded that corre-
spond to different probing plane waves that have wave-
lengths \;=0.5X 107" m and Ay=0.68 X 10~® m, or equiva-
lently, wavenumbers k;=1.26X10°m=' and k,=0.92
% 108 m~L. The angular scanning consisted of sampling ¢
at 360 view angles that were evenly spaced over the in-
terval [0,2).

The real and imaginary components of the object’s
complex-valued refractive index distribution were repre-
sented by the mathematical phantom shown in Figs. 5(a)
and 5(b), respectively. The length of the major and minor
axes of the largest ellipse (i.e., the background ellipse)
was 0.92 and 0.62 mm, respectively. The refractive index
values in the phantom are indicated in the profile plots in
Figs. 5(c) and 5(d). From knowledge of n(r), the complex
phases ¥(y,;d,d,w1) and y,;d,d,ws) were calculated
analy‘cically22 and the measured intensity data
I(y,;d,¢,w1) and I(y,;d, p,wy) were formed according to
Eq. (4) (with the x dependence omitted). In generating the
data in this manner, we assumed that the first Rytov ap-
proximation is valid®® and that n(r,w;)=n(r,wy). The po-
tential effects of violating the latter assumption are dis-
cussed in Section 6. Noisy versions of the intensity data

(a) (b)
oX 10_4 7X 10'4
il )
71
5t
6_
T8 =1
—_ (=
=4 F ~ L
£ E'd
T 3t ol
2.
1,
1t
0 0 e
T 20 40 60 80 100 20 o 20 40 60 80 100 120
Pixels Pixels
(c) (@)

Fig. 5. Mathematical phantom object that represents (a) Re{n(r)}-1 and (b) and Im{n(r)}. (c) Profile through the central row in (a). (d)

Profile through the central row in (b).
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were generated as realizations of uncorrelated Gaussian
stochastic processes that were characterized by their
means u and standard deviations o. When generating the
noisy data, u was set equal to the noiseless value of
I(y,;d,¢,0j-12) at a given detector location and o was
chosen to satisfy o/u=0.4%.

B. Reconstruction Procedure

Reconstruction methods 1 and 2 described in Section 4
were implemented numerically as follows. The logarithm
of the intensity data I(y,;d, ¢,w;) and I(y,;d, ,w;) was
computed to form the intensity data functions
D(y,;d,¢,w;) and D(y,;d, ¢,ws) as prescribed by Eq. (5),
and their one-dimensional (1D) Fourier transforms
ﬁ(v,;d,q&,wﬂ and ﬁ(vr;d, ¢, w9) were computed by use of
the fast-Fourier-transform (FFT) algorithm. (Here and
elsewhere, the u dependence of the equations will be
omitted in this 2D example.) From the set of uniformly
spaced values of v, at which these functions were evalu-
ated, the set of nonuniformly spaced values v, was com-

puted by use of Eq. (18). The values of ﬁ(v;;d, ¢,w1) and

D(-v,;d, ¢, ;) were determined by first increasing the
sampling density of the uniformly spaced data

D(v,;d, $,w;) by a factor of 16 via zero padding in the spa-
tial domain,?* followed by a linear interpolation opera-
tion. The Fourier series expansion coefficients
bn(vr’;d,wl), ﬁn(—v;;d,wl), and D, (v,;d,w,) were calcu-
lated subsequently by use of the 1D FFT algorithm.
Reconstruction method 1 described in Subsection 4.A
was implemented, where Eq. (32) was employed for esti-

mation of ﬁ‘n[u,v,;wz]. A simple regularization strategy
was utilized to mitigate the effects of the singularities in
the reconstruction formula. Let D,(v,) denote the denomi-
nator of Eq. (32). Equation (32) was utilized to estimate
F,[v,; wy] only for the frequency components v, such that
ID,,(v,)| =€, where € is a threshold parameter that was set
at the value of 0.001. For the frequency components
where |D,(v,)|<§, i.e., at or near the locations of singu-
larities in Eq. (32), the value of F,[v,; wy] was set to zero.

The Fourier data ff’[v,; ¢, we] were then computed by ap-
plication of the 1D inverse FFT algorithm to F,[v,; wy]. Fi-

nally, from ﬁ’[vr;gb,wQ], an estimate of f(r) was obtained
by use of the DT reconstruction algorithm that is de-
scribed in Refs. 20 and 25. Reconstruction method 2 given
in Subsection 4.B was implemented in an analogous fash-
ion. In that case, Eq. (36) was employed for estimation of
F,[v,;wy]. Both reconstruction methods were utilized for
reconstruction of images from the noiseless and noisy
data sets described in Subsection 5.A. The matrix size of
the reconstructed images was 120 X 120 pixels.

C. Reconstructed Images

Figure 6 contains images of the refractive index distribu-
tion reconstructed from the noiseless simulation data by
use of reconstruction methods 1 and 2. The images in
Figs. 6(a) and 6(b) correspond to Re{n(r)}-1 and Im{n(r)},
respectively, reconstructed by use of method 1. Here, Re{-}
and Im{-} denote the real and imaginary components, re-
spectively, of a complex-valued function. Image profiles
through the central rows of Figs. 6(a) and 6(b) are dis-
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(a) (b)
(c) (d)

Fig. 6. Images of (a) Re{n(r)}-1 and (b) Im{n(r)} reconstructed
from the noiseless simulation data by use of method 1. The cor-
responding images reconstructed by use of method 2 are shown
in (¢) and (d).
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Fig. 7. Dashed curves in (a) and (b) display profiles through the
central rows of Figs. 6(a) and 6(b), respectively. In each case, the
profile through the true phantom is represented by a solid line.

played in Figs. 7(a) and 7(b), respectively, which are su-
perimposed on the true phantom profiles. These profiles
confirm that the phantom is reconstructed with high fi-
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delity from the noiseless data. Noiseless images recon-
structed by use of method 2 are shown in Figs. 6(c) and
6(d), and are virtually identical to the images recon-
structed by use of method 1.

(a) (b)
(© (d)

Fig. 8. Images of (a) Re{n(r)}-1 and (b) Im{n(r)} reconstructed
from the noisy simulation data by use of method 1. The corre-
sponding images reconstructed by use of method 2 are shown in

(c) and (d).
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Fig. 9. (a) Profiles through the central rows of Figs. 8(a) and 8(c)
are represented by the solid and dashed curves, respectively. (b)
Profiles through the central rows of Figs. 8(b) and 8(d) are rep-
resented by the solid and dashed curves, respectively.
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Figure 8 contains images of the refractive index distri-
bution reconstructed from the noisy simulation data by
use of reconstruction methods 1 and 2. The images in
Figs. 8(a) and 8(b) correspond to Re{n(r)}-1 and Im{n(r)},
respectively, reconstructed by use of method 1. The corre-
sponding images reconstructed by use of method 2 are
shown in Figs. 8(c) and 8(d). The image profiles through
the central rows of Figs. 8(a) and 8(c) are represented by
the solid and dashed curves, respectively, in Fig. 9(a),
while the corresponding profiles through the central rows
of Figs. 8(b) and 8(d) are contained in Fig. 9(b). The fact
that the noisy images reconstructed by use of the differ-
ent methods are distinct is to be expected. It is well
known that, even if equivalent mathematically, different
tomographic reconstruction algorithms will generally
propagate noise and other data inconsistencies in differ-
ent ways.zo’26

6. DISCUSSION AND SUMMARY

Conventional I-DT requires measurements of the wave
field intensities on two different parallel detector planes
at each tomographic view angle. In this work, a multi-
spectral I-DT reconstruction theory for quasi-
nondispersive scattering objects was developed and inves-
tigated. By quasi-nondispersive, we refer to an object that
is characterized by a refractive index distribution that is
approximately independent of temporal frequency over a
defined finite closed interval. For such objects, we demon-
strated that two intensity measurements acquired on a
single detector plane at each view angle can provide suf-
ficient information for image reconstruction. This re-
quires a scanning geometry in which the two intensity
measurements are generated by probing plane waves that
have distinct temporal frequencies that reside within an
interval where object dispersion can be neglected. Accord-
ingly, the frequency of the probing wave field can be var-
ied for acquisition of the necessary measurement data
rather than the detector position as required in conven-
tional I-DT. This alternative data-acquisition strategy
may have significant practical advantages in certain im-
aging studies.

It is interesting to note that the general mathematical
structure of our analysis and reconstruction methods is
the same as employed in our previous study of spherical
wave I-DT.?2 Although the scanning geometries and
physical assumptions employed in these works differ,
their interpretations from a Fourier space perspective are
remarkably similar. In both cases, the measurement data
at each tomographic view angle are found to specify sys-
tems of two equations with four unknowns, where the un-
knowns represent distinct Fourier components of the
scattering potential. In both cases, the development of re-
construction methods is facilitated by the identification of
Fourier space data symmetries and the use of Fourier se-
ries expansions to exploit the rotational invariance of the
imaging models.

There remain several important topics for future inves-
tigations. A key assumption of our methods is that the ob-
ject can be regarded as dispersionless over the temporal
frequency window in which the intensity measurements
are acquired. In cases where this assumption is not valid,
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the measurement data will necessarily be inconsistent
with the assumed imaging model. The degree to which ar-
tifacts due to data inconsistencies can be mitigated by the
proposed reconstruction methods requires further study.
Another important topic of investigation is the extension
of the methods to utilize measurements corresponding to
more than two temporal frequencies. When such addi-
tional measurements are available, they can, in principle,
be utilized to improve the noise characteristics of the re-
constructed images. It would also be useful to generalize
the methods for use with dispersive objects with known
dispersion laws.

APPENDIX A

In this appendix we establish the Fourier space symmetry
properties described by Egs. (17) and (22). Consider Fig.
3, which shows the intersection of Ewald surfaces of radii
k1 and ko with a plane of constant u. The 3D locations of
points A and C that reside on the surface with radius k5
are given by

Ka(¢) =us; — 0,85 ,(h) + (vo = ko)sg (H),

Ke(p) = usq +v,89,(d) + (v2 — kg)sg (h).

The argument ¢ in K,(¢) and Kg(¢) denotes that the vec-
tors K4 and Kp are expressed in the rotated coordinate
system. The distance between these points and the origin
of the plane of constant u is given by

R= |KC - (K¢ 51)Sl| = |Ur52,r(¢) + (v - kz)so,r(¢)|
= [Uf +(vg— k2)2]1/2,

which coincides with Eq. (19).
The locations of points B and D in Fig. 3 that reside on
the Ewald surface with radius %, are given by

Kp(¢) =usy —v/sy () + (V) —k1)sg (),

Kp(¢) =us; +v/89,(¢) + (V] —k1)sg (&),

where v, =0. Because points A, B, C, and D all reside on
the same circle of radius R in the plane of constant u, the
coordinate v, must satisfy

R?2=0%+(vj—k)?=v2+ (Vk]-u® -0/~ ky)?. (A1)
Equation (A1) can be simplified as
(R? +u?)? + 4k3(v/* - R?») =0,
whose solution indicates that
(R2 + u2)2 1/2
4k7

Since we assume k;>k,, it can be verified that for u2
+v2<F3 the solution is real valued.
From the definition of ¢’ in Eq. (20), one finds that
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Ki(o+¢')=Kp(¢), Kc(d+e')=Kp(d), (A2)

which establishes the symmetries given in Eq. (17). Note
that from Eq. (20), ¢’ <0 in the former identity in Eqgs.
(A2), while ¢’ >0 in the latter. From the definition of ¢" in
Eq. (23), one finds that

Ki(d-¢")=Kp(¢), Kc(d-¢")=Kp($), (A3)

which establishes the symmetries given in Eq. (22). Note
that from Eq. (23), ¢"<0 in the former identity in Eqgs.
(A3), while ¢">0 in the latter.
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