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A multispectral intensity diffraction tomography (I-DT) reconstruction theory for quasi-nondispersive scatter-
ing objects is developed and investigated. By “quasi-nondispersive” we refer to an object that is characterized
by a refractive index distribution that is approximately nondispersive over a predefined finite temporal fre-
quency interval in which the tomographic measurements are acquired. The scanning requirements and mea-
surement data are shown to be different than in conventional I-DT. Unlike conventional I-DT that requires
intensity measurements on a pair of detector planes for each probing wave field, this new method uses mea-
surements on a single detector plane at two frequencies. Computer simulation studies are conducted to dem-
onstrate the method. © 2006 Optical Society of America

OCIS codes: 290.3200, 110.6960, 120.5050.
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. INTRODUCTION
iffraction tomography1,2 (DT) is a linearized inverse

cattering method for determination of the complex-
alued refractive index distribution of an object. The po-
ential applications of DT are numerous, and include a
ariety of imaging problems in optics,3–5 coherent x-ray
maging,6,7 and acoustics.8,9 DT can be viewed as a gener-
lization of conventional x-ray computed tomography
CT) in which a time-harmonic coherent wave field is used
o probe the object and certain first-order coherent scat-
ering effects are accounted for. However, unlike in x-ray
T where the projection data represent intensity mea-
urements, DT imaging requires knowledge of the phase
nd amplitude of the transmitted wave fields. Although
ave field phase measurements can sometimes be per-

ormed experimentally when imaging with low-frequency
ave fields, they introduce well-known experimental
ifficulties3 in high-frequency imaging applications that
rise in optics.
A new version of DT, which we have termed10,11 inten-

ity DT (I-DT), has been proposed in recent years by Gbur
nd Wolf.12,13 I-DT circumvents the need to measure the
ransmitted wave field phase by requiring two or more
easurements of wave field intensity in different parallel

etector planes at each tomographic view angle. In es-
ence, the I-DT reconstruction theory performs an im-
licit noninterferometric phase retrieval during the pro-
ess of recovering the scattering potential. This is possible
ecause of the extra degree of freedom in the measure-
ent data afforded by the second intensity measurement,

nd is conceptually similar to explicit phase retrieval ap-
roaches based on the transport-of-intensity
quation.14,15

The success of I-DT rests in the ability to extract a pair
1084-7529/06/061359-10/$15.00 © 2
f distinct equations for a pair of Fourier components of
he scattering object by the use of two intensity measure-
ents at different distances from the scatterer. The use of
ultiple measurement planes introduces an additional,

otentially undesirable, degree of complexity to the prob-
em. It is reasonable to expect, however, that any change
n the measurement system that results in two distinct

easurements related to object structure for a single di-
ection of incidence would be similarly successful. One
ossibility is to use multiple temporal frequencies for
ach measurement direction, but this is restricted by the
act that the scattering properties of an object are typi-
ally frequency dependent (i.e., the object is dispersive). If
he scattering properties of the object are effectively con-
tant over the range of frequencies used to probe the ob-
ect, however, useful information can potentially be ex-
racted.

In this paper, a multispectral I-DT reconstruction
heory for quasi-nondispersive, linear, isotropic scattering
bjects is developed and investigated. By quasi-
ondispersive we refer to an object that is characterized
y a refractive index distribution that is approximately
ndependent of temporal frequency over a defined finite
losed interval in which the tomographic measurements
re acquired. If this temporal frequency interval is chosen
hort enough and is placed sufficiently far from resonance
requencies of the medium, a wide class of objects can sat-
sfy this definition. The salient feature of our reconstruc-
ion theory is that it requires two intensity measurements
o be acquired on a single detector plane behind the ob-
ect, where each measurement must correspond to a prob-
ng wave field with distinct frequency that resides within
he quasi-nondispersive temporal frequency interval.
his permits the frequency, or wavelength, of the probing
006 Optical Society of America
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ave field to be varied for acquisition of the necessary
easurement data, rather than the detector placement as

equired in conventional I-DT. In addition to being of the-
retical interest, such a data-acquisition strategy may
ave significant practical advantages in certain imaging
tudies. It is worth noting that a similar strategy has
een used in anomalous x-ray scattering,16 in which the
requency-independent partial structure factors of a mul-
ispecies liquid are extracted by measurements of the
cattered field at multiple frequencies. Similarly, single
pecies structure factors have been extracted using lim-
ted view angles and polychromatic light.17

The paper is organized as follows. In Section 2 we re-
iew the salient features of conventional I-DT reconstruc-
ion theory that provide a basis for our analysis. In Sec-
ion 3, Fourier space data symmetries are identified,
hich are utilized in the development of two novel recon-

truction methods in Section 4. A demonstration of the
ethods that utilizes computer simulation data is pre-

ented in Section 5, and a discussion and summary of the
ork is provided in Section 6.

. BACKGROUND
he coordinate system given in Fig. 1 is utilized to de-
cribe the tomographic scanning geometry shown in Fig.
. The rotated Cartesian coordinate system r= �x ,yr ,zr� is
elated to a reference system r= �x ,y ,z� by a rotation
bout the x axis, which represents the axis of tomographic
canning, such that yr=y cos �+z sin � and zr=z cos �
y sin �. The angle � is measured from the positive y axis
nd describes the tomographic view angle. The unit vec-
ors s1, s2,r��� and s0,r��� are used to indicate the direc-
ions of the positive x, yr and zr axes, respectively. In
erms of these coordinates, at a given view angle � , s0,r
enotes the direction of the optical axis and zr=d repre-
ents the detector plane that is perpendicular to it. Note
hat when the tomographic view angle � is varied, the op-
ical axis and detector plane rotate simultaneously about
he x axis.

We will assume that a plane wave Ui�r ;��
exp�iks0,r ·r� is incident at a view angle � on an object

hat is contained within a finite volume V. The time de-
endence exp�i�t� is assumed, and k�� /c0 denotes the
avenumber where c0 is the constant speed of light in the
omogeneous and lossless background medium. Assum-

ng that the scattering is sufficiently weak, the total wave
eld behind the object can be expressed by use of the first
ytov approximation as1

ig. 1. Rotated coordinate system used to describe the tomogra-
hic measurement geometry.
U�r;�� � Ui�r;��exp���r;���, �1�

here the complex phase is given by

��r;�� =
k2

4�Ui�r;���V

d3r�f��r��Ui�r�;��
exp�ik�r − r���

�r − r��
,

�2�

nd

f��r� � n2�r;�� − 1. �3�

he scattering potential f��r� describes the complex-
alued refractive index distribution n�r ;�� of the object.
he superscript on f��r� indicates its functional depen-
ence on the temporal frequency of the probing wave
eld. It should be noted that our definition of the scatter-

ng potential in Eq. (3) differs from the conventional
efinition1,13 by a factor of k2 /4�, which we have placed
utside the integral in Eq. (2).

In I-DT, the measurement data are given by the wave
eld intensities rather than the complex amplitudes,
hich are assumed to be measurable in DT. To make ex-
licit the dependence of the wave field quantities on the
omographic view angle, we will let U�x ,yr ;d ,� ,�� and
�x ,yr ;d ,� ,�� denote the total wave field and complex
hase, respectively, on the detector plane zr=d when the
xperiment is conducted at view angle �. The intensity
easured on the detector plane at this view angle is de-

cribed by

�x,yr;d,�,�� = �U�x,yr;d,�,���2

= exp���x,yr;d,�,�� + �*�x,yr;d,�,���, �4�

here � denotes complex conjugation. It proves useful to
ntroduce the intensity data function

�x,yr;d,�,�� = log�I�x,yr;d,�,���

= ��x,yr;d,�,�� + �*�x,yr;d,�,��. �5�

he quantities

D̂�u,vr;d,�,�� =
1

�2��2�
�

�
�

dxdyr D�x,yr;d,�,��

�exp�− i�ux + vryr��, �6�

nd

ig. 2. In the measurement geometry, a plane wave with wave-
umber k1 irradiates the object, and the intensity of the forward-
cattered wave field is measured on the plane zr=d. The mea-
urement is repeated using an incident plane wave with
avenumber k2. Tomographic scanning is achieved by simulta-
eously rotating the source and detector plane about the x axis.
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F̂��K� =
1

�2��3�
V

d3r f��r�exp�− iK · r� �7�

epresent the two-dimensional (2D) Fourier transform of
�x ,yr ;d ,� ,�� on the plane zr=d and three-dimensional

3D) Fourier transform of f��r�, respectively. Here, the
ariables �u ,vr� represent the spatial frequencies of the
D data function, while the vector K represents the spa-
ial frequencies of the 3D scattering potential. For the re-
ainder of this paper, spatial frequencies will simply be

eferred to as frequencies. It has been demonstrated12,13

hat the intensity data function and scattering potential
re related by the equation

D̂�u,vr;d,�,�� = i
�k2

�
	F̂��u,vr;�,��exp�i�� − k�d�

− �F̂��− u,− vr;�,���* exp�− i�� − k�d�
,

�8�

here

F̂��u,vr;�,�� � F̂��us1 + vrs2,r��� + �� − k�s0,r����, �9�

� � �k2 − u2 − vr
2, �10�

nd where we recall that k=� /c0. To clarify this notation,
ote that the superscript � on F̂��u ,vr ;� ,�� denotes that
he definition of the scattering potential depends on � (for
ispersive objects), while the parameter � in the argu-
ent denotes that the set of frequency components at
hich F̂��·� is evaluated also depends on �. Stated other-
ise, for a fixed �, the domain of the 2D function

ˆ ��u ,vr ;� ,�� corresponds to the surface of a shifted
wald hemisphere with radius k=� /c0. In this work, we
ssume that u2+vr

2�k2 and therefore � is real valued.
his is justified because we do not aim to reconstruct fre-
uency components of the object that are carried by eva-
escent wave modes.18

. QUASI-NONDISPERSIVE OBJECTS AND
OURIER SPACE SYMMETRIES
. Quasi-Nondispersive Objects
onsider that at each view angle � the two intensity mea-
urements I�x ,yr ,d ;� ,�1� and I�x ,yr ,d ;� ,�2� are ac-
uired on the detector plane zr=d by use of the probing
ave fields Ui�r ;�1� and Ui�r ;�2�, respectively, where
1	�2. According to Eqs. (5) and (8), I�x ,yr ;d ,� ,�1� and

�x ,yr ;d ,� ,�2� are related to linear combinations of fre-
uency components of the scattering potentials f�1�r� and

�2�r�, respectively. In general, these measurements do
ot permit reconstruction of either f�1�r� or f�2�r�. Let us
ssume that the frequencies �1 and �2 reside within a
emporal frequency interval over which the object can be
egarded as dispersionless. In this case we have

f�r� � f�1�r� = f�2�r�, �11�

F̂�u,v ;�,� � = F̂�1�u,v ;�,� �, �12�
r 1 r 1
F̂�u,vr;�,�2� = F̂�2�u,vr;�,�2�, �13�

here F̂�·� describes the corresponding Fourier compo-
ents of f�r�. Let kj��j /c0 and

�j � �kj
2 − u2 − vr

2�1/2, �14�

here j=1,2 and u2+vr
2�kj

2. By use of Eqs. (5) and (8),
he intensity measurements are found to satisfy

ˆ �u,vr;d,�,�1�

= i
�k1

2

�1
	F̂�u,vr;�,�1�exp�i��1 − k1�d�

− �F̂�− u,− vr;�,�1��*exp�− i��1 − k1�d�
, �15�

or u2+vr
2�k1

2 and

ˆ �u,vr;d,�,�2�

= i
�k2

2

�2
	F̂�u,vr;�,�2�exp�i��2 − k2�d�

− �F̂�− u,− vr;�,�2��*exp�− i��2 − k2�d�
 �16�

or u2+vr
2�k2

2. Equations (15) and (16) constitute a sys-
em of equations that relate the two intensity measure-
ents on the detector plane zr=d at view angle � to four

istinct frequency components of f�r�. We demonstrate in
ection 4 that this 2�4 system provides the basis for the
nique reconstruction of F̂�u ,vr ;� ,�2� for u2+vr

2�k2
2,

rom which an estimate of f�r� can be reconstructed using
xisting DT reconstruction algorithms.19–21

. Fourier Space Symmetries
o facilitate the development of the reconstruction meth-
ds described in Section 4, we identify symmetries that
elate the Fourier components F̂�u ,vr ;� ,�2� and
ˆ �u ,vr ;� ,�1� that reside on the different Ewald surfaces.
he key to achieving this is the observation that, by ro-

ating one of the Ewald surfaces about the u axis (the di-
ection s1), the two surfaces can be made to intersect at
rescribed locations.
It can be verified that

F̂�u,vr;� + ��,�2� = F̂�u,vr�;�,�1�, �17�

here

vr� = �R2 −
�R2 + u2�

4k1
2 
1/2

sgn�vr�, �18�

ith sgn�vr��1 for vr
0 and −1 otherwise, and

R � �vr
2 + ��2 − k2�2�1/2. �19�

he angle �� is defined as

�� = − arctan� vr�

�1� − k1
� + arctan� vr

�2 − k2
� , �20�

here �� denotes � evaluated at v =v�, i.e.,
1 1 r r
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�1� = �k1
2 − u2 − �vr��

2�1/2. �21�

rom Eq. (9), one finds that the symmetries given in Eq.
17) state simply that the vectors K2

+=us1+vrs2,r��+���
��2−k2�s0,r��+��� and K1

+=us1+vr�s2,r���+ ��1�
k1�s0,r��� describe the same point in the 3D Fourier
pace of the scattering potential (see Appendix A).
quivalently, the symmetries can be understood by con-
ideration of Fig. 3, which displays a plane of constant u
n 3D Fourier space. Equation (17) states that point A on
he Ewald surface of radius k2 can be made to coincide
ith point B on the Ewald surface of radius k1 by rotating

he former Ewald surface by an angle −�� about the u
xis. Equation (17) states also that point C that resides on
he Ewald surface of radius k2 can be made to coincide
ith point D on the Ewald surface of radius k1 by rotating

he former Ewald surface by an angle �� about the u axis.
Similarly, it can be verified that

F̂�u,vr;� − ��,�2� = F̂�u,− vr�;�,�1�, �22�

here

�� = − arctan� vr�

�1� − k1
� − arctan� vr

�2 − k2
� . �23�

he symmetries given in Eq. (22) reflect that the vectors

2
−=us1+vrs2,r��−���+ ��2−k2�s0,r��−��� and K1

−=us1
vr�s2,r���+ ��1�−k1�s0,r��� describe the same point in the
D Fourier space of the scattering potential. Equivalently,
q. (22) states that point C in Fig. 3 on the Ewald surface
f radius k2 can be made to coincide with point B that re-
ides on the Ewald surface of radius k1 by rotating the
ormer Ewald surface by an angle −�� about the u axis.
quation (22) states also that point A on the Ewald sur-

ace of radius k2 can be made to coincide with point D that
esides on the Ewald surface of radius k1 by rotating the
ormer Ewald surface by an angle �� about the u axis.

ig. 3. Intersection of the hemispherical Ewald surfaces of ra-
ius k1 and k2 with a plane of constant u in the 3D Fourier space.
he usefulness of this figure for interpreting Fourier space sym-
etries is explained in Subsection 3.B.
. RECONSTRUCTION METHODS
elow we derive two multispectral I-DT reconstruction
ethods for use with quasi-nondispersive objects. The so-

ution strategy is inspired by our recent study of spherical
ave I-DT.22 It involves exploitation of the Fourier space

ymmetries identified in Subsection 3.B and the rota-
ional invariance of the problem.

. Reconstruction Method 1
he data function D̂�u ,vr ;d ,� ,�1�, which was defined in
q. (15), evaluated at the frequencies �u ,vr�� is given by

ˆ �u,vr�;d,�,�1�

= i
�k1

2

�1�
	F̂�u,vr�;�,�1�exp�i��1� − k1�d�

− �F̂�− u,− vr�;�,�1��*exp�− i��1� − k1�d�
, �24�

here �1� was defined in Eq. (21). On substitution from
q. (17) into Eq. (24), one obtains

ˆ �u,vr�;d,�,�1�

= i
�k1

2

�1�
	F̂�u,vr;� + ���vr�,�2�exp�i��1� − k1�d�

− �F̂�− u,− vr;� − ���vr�,�2��*exp�− i��1� − k1�d�
,

�25�

here the vr dependence of �� has been made explicit and
e have used the fact that ���−vr�=−���vr�. Similar to
qs. (15) and (16), Eqs. (25) and (16) constitute a system
f equations that relate the two intensity measurements
n the detector plane zr=d at view angle � to four distinct
requency components of f�r�. Note that the unknown fre-
uency components in Eqs. (25) and (16) reside on Ewald
urfaces that have a common radius k2. However, due to
he angular shifts ±�� in Eq. (25), the orientation of the
urfaces is different. To circumvent this fact, we must ex-
loit the rotational invariance of the problem.
Because D̂�u ,vr ;d ,� ,�j�, with j=1,2, and F̂�u ,vr ;� ,�2�

re 2� periodic functions of �, they can be expressed as
he Fourier series

D̂�u,vr;d,�,�j� = �
n=−�

�

D̂n�u,vr;d,�j�exp�in��, �26�

F̂�u,vr;�,�2� = �
n=−�

�

F̂n�u,vr;�2�exp�in��, �27�

here

D̂n�u,vr;d,�j� =
1

2�
�

0

2�

d� D̂�u,vr;d,�,�j�exp�− in��,

�28�
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F̂n�u,vr;�2� =
1

2�
�

0

2�

d� F̂�u,vr;�,�2�exp�− in��.

�29�

ubstitution from Eq. (25) into Eq. (28) results in

ˆ
n�u,vr�;d,�1�

= i
�k1

2

�1�
	F̂n�u,vr;�2�exp�in���vr� + i��1� − k1�d�

− �F̂n�− u,− vr;�2��* exp�− in���vr� − i��1� − k1�d�
.

�30�
y use of the symmetries given in Eq. (22), Eq. (33) can be

e

D

O

D

E
t
�

r 2 r 2

e
t

imilarly, on substitution from Eq. (16) into Eq. (28), one
btains

D̂n�u,vr;d,�2� = i
�k2

2

�2
	F̂n�u,vr;�2�exp�i��2 − k2�d�

− �F̂n�− u,− vr;�2��* exp�− i��2 − k2�d�
.

�31�

quations (30) and (31) represent a system of two equa-
ions involving the two unknowns F̂n�u ,vr ;�2� and
F̂ �−u ,−v ;� ��*. The solution of this system yields
n r 2
F̂n�u,vr;�2� = − i
�2

�k2
2 exp�− i��2 − k2�d�

D̂n�u,vr;d,�2� − �k2

k1
�2��1�

�2
�D̂n�u,vr�;d,�1�exp�in���vr� + i��1� − k1 − �2 + k2�d�

1 − exp�2in���vr� + 2i��1� − k1 − �2 + k2�d�
.

�32�
quations (32) and (27) together provide the desired
ethod for reconstruction of F̂�u ,vr ;� ,�2� for u2+vr

2�k2
2.

rom knowledge of these Fourier components, an esti-
ate of f�r� can be reconstructed by use of existing DT re-

onstruction algorithms.19–21 Equation (32) contains iso-
ated poles whose locations depend on the values of k1 and

2. Because F̂n�u ,vr ;�2� can be determined up to a set of
easure zero within the region of Fourier space defined

y u2+vr
2�k2

2, these poles pose no mathematical difficul-
ies. However, as discussed in Section 5, an explicit con-
ideration of the poles must be taken when implementing
he method numerically.

. Reconstruction Method 2
n alternative reconstruction formula can be derived by
se of the symmetries described in Eq. (22). Consider the
ata function D̂�u ,vr ;d ,� ,�1� [Eq. (15)] evaluated at the
requencies �u ,−vr��:

D̂�u,− vr�;d,�,�1� = i
�k1

2

�1�
	F̂�u,− vr�;�,�1�exp�i��1� − k1�d�

− �F̂�− u,vr�;�,�1��* exp�− i��1� − k1�d�
.

�33�
xpressed as

ˆ �u,− vr�;d,�,�1�

= i
�k1

2

�1�
	F̂�u,vr;� − ���vr�,�2�exp�i��1� − k1�d�

− �F̂�− u,− vr;� + ���vr�,�2��*exp�− i��1� − k1�d�
.

�34�

n substitution from Eq. (34) into Eq. (28), one obtains

ˆ
n�u,− vr�;d,�1�

= i
�k1

2

�1�
	F̂n�u,vr;�2�exp�− in���vr� + i��1� − k1�d�

− �F̂n�− u,− vr;�2��*exp�in���vr� − i��1� − k1�d�
. �35�

quations (35) and (31) represent a system of two equa-
ions involving the two unknowns F̂n�u ,vr ;�2� and
ˆ *
Fn�−u ,−vr ;�2�� whose solution yields
F̂n�u,vr;�2� = − i
�2

�k2
2 exp�− i��2 − k2�d�

D̂n�u,vr;d,�2� − �k2/k1�2��1�/�2�D̂n�u,− vr�;d,�1�exp�− in���vr� + i��1� − k1 − �2 + k2�d�

1 − exp�− 2in���vr� + 2i��1� − k1 − �2 + k2�d�
.

�36�
quations (36) and (27) provide an alternative method for
econstruction of F̂�u ,v ;� ,� � for u2+v2�k2. In a math-
matical sense, the two reconstruction methods derived in
his section are equivalent. Similar to Eq. (32), Eq. (36)
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ontains isolated poles whose locations depend on the val-
es of k1 and k2. However, other than the pole at the ori-
in of Fourier space, their locations are generally differ-
nt. This indicates that the two reconstruction methods
ill generally propagate noise differently when applied to
iscretely sampled and inconsistent measurement data. A
etailed investigation of the statistical properties of the
econstruction methods remains an interesting topic for
uture investigation. In the next section, a preliminary
umerical investigation of the methods is provided.

. NUMERICAL RESULTS
o demonstrate the proposed reconstruction methods, a
omputer simulation study for the 2D problem was con-
ucted.

ig. 4. Two-dimensional scanning geometry utilized in the com-
uter simulation studies.

ig. 5. Mathematical phantom object that represents (a) Re	n�r
rofile through the central row in (b).
. Scanning Geometry and Simulation Data
he assumed 2D tomographic scanning geometry is
hown in Fig. 4. A probing plane wave propagates in the
irection of the positive zr axis, and the intensity of the
orward-scattered wave field is recorded on a detector ar-
ay placed a distance d=1 cm from the center of rotation.
he detector array had a length of 1.024 cm and con-

ained 1024 discrete elements. This corresponded to a de-
ector pixel size of �yr=1.0�10−5 m. At each view angle
, two intensity measurements are recorded that corre-
pond to different probing plane waves that have wave-
engths �1=0.5�10−5 m and �2=0.68�10−5 m, or equiva-
ently, wavenumbers k1=1.26�106 m−1 and k2=0.92

106 m−1. The angular scanning consisted of sampling �
t 360 view angles that were evenly spaced over the in-
erval �0,2��.

The real and imaginary components of the object’s
omplex-valued refractive index distribution were repre-
ented by the mathematical phantom shown in Figs. 5(a)
nd 5(b), respectively. The length of the major and minor
xes of the largest ellipse (i.e., the background ellipse)
as 0.92 and 0.62 mm, respectively. The refractive index
alues in the phantom are indicated in the profile plots in
igs. 5(c) and 5(d). From knowledge of n�r�, the complex
hases ��yr ;d ,� ,�1� and ��yr ;d ,� ,�2� were calculated
nalytically22 and the measured intensity data
�yr ;d ,� ,�1� and I�yr ;d ,� ,�2� were formed according to
q. (4) (with the x dependence omitted). In generating the
ata in this manner, we assumed that the first Rytov ap-
roximation is valid23 and that n�r ,�1�=n�r ,�2�. The po-
ential effects of violating the latter assumption are dis-
ussed in Section 6. Noisy versions of the intensity data

nd (b) and Im	n�r�
. (c) Profile through the central row in (a). (d)
�
−1 a
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ere generated as realizations of uncorrelated Gaussian
tochastic processes that were characterized by their
eans 
 and standard deviations �. When generating the

oisy data, 
 was set equal to the noiseless value of
�yr ;d ,� ,�j=1,2� at a given detector location and � was
hosen to satisfy � /
=0.4%.

. Reconstruction Procedure
econstruction methods 1 and 2 described in Section 4
ere implemented numerically as follows. The logarithm
f the intensity data I�yr ;d ,� ,�1� and I�yr ;d ,� ,�2� was
omputed to form the intensity data functions
�yr ;d ,� ,�1� and D�yr ;d ,� ,�2� as prescribed by Eq. (5),
nd their one-dimensional (1D) Fourier transforms

ˆ �vr ;d ,� ,�1� and D̂�vr ;d ,� ,�2� were computed by use of
he fast-Fourier-transform (FFT) algorithm. (Here and
lsewhere, the u dependence of the equations will be
mitted in this 2D example.) From the set of uniformly
paced values of vr at which these functions were evalu-
ted, the set of nonuniformly spaced values vr� was com-
uted by use of Eq. (18). The values of D̂�vr� ;d ,� ,�1� and

ˆ �−vr� ;d ,� ,�1� were determined by first increasing the
ampling density of the uniformly spaced data
ˆ �vr ;d ,� ,�1� by a factor of 16 via zero padding in the spa-
ial domain,24 followed by a linear interpolation opera-
ion. The Fourier series expansion coefficients
ˆ

n�vr� ;d ,�1�, D̂n�−vr� ;d ,�1�, and D̂n�vr ;d ,�2� were calcu-
ated subsequently by use of the 1D FFT algorithm.

Reconstruction method 1 described in Subsection 4.A
as implemented, where Eq. (32) was employed for esti-
ation of F̂n�u ,vr ;�2�. A simple regularization strategy
as utilized to mitigate the effects of the singularities in

he reconstruction formula. Let Dn�vr� denote the denomi-
ator of Eq. (32). Equation (32) was utilized to estimate
n�vr ;�2� only for the frequency components vr such that

Dn�vr��
�, where � is a threshold parameter that was set
t the value of 0.001. For the frequency components
here �Dn�vr����, i.e., at or near the locations of singu-

arities in Eq. (32), the value of Fn�vr ;�2� was set to zero.
he Fourier data F̂�vr ;� ,�2� were then computed by ap-
lication of the 1D inverse FFT algorithm to Fn�vr ;�2�. Fi-
ally, from F̂�vr ;� ,�2�, an estimate of f�r� was obtained
y use of the DT reconstruction algorithm that is de-
cribed in Refs. 20 and 25. Reconstruction method 2 given
n Subsection 4.B was implemented in an analogous fash-
on. In that case, Eq. (36) was employed for estimation of
n�vr ;�2�. Both reconstruction methods were utilized for
econstruction of images from the noiseless and noisy
ata sets described in Subsection 5.A. The matrix size of
he reconstructed images was 120�120 pixels.

. Reconstructed Images
igure 6 contains images of the refractive index distribu-
ion reconstructed from the noiseless simulation data by
se of reconstruction methods 1 and 2. The images in
igs. 6(a) and 6(b) correspond to Re	n�r�
−1 and Im	n�r�
,
espectively, reconstructed by use of method 1. Here, Re	·

nd Im	·
 denote the real and imaginary components, re-
pectively, of a complex-valued function. Image profiles
hrough the central rows of Figs. 6(a) and 6(b) are dis-
layed in Figs. 7(a) and 7(b), respectively, which are su-
erimposed on the true phantom profiles. These profiles
onfirm that the phantom is reconstructed with high fi-

ig. 6. Images of (a) Re	n�r�
−1 and (b) Im	n�r�
 reconstructed
rom the noiseless simulation data by use of method 1. The cor-
esponding images reconstructed by use of method 2 are shown
n (c) and (d).

ig. 7. Dashed curves in (a) and (b) display profiles through the
entral rows of Figs. 6(a) and 6(b), respectively. In each case, the
rofile through the true phantom is represented by a solid line.
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elity from the noiseless data. Noiseless images recon-
tructed by use of method 2 are shown in Figs. 6(c) and
(d), and are virtually identical to the images recon-
tructed by use of method 1.

ig. 8. Images of (a) Re	n�r�
−1 and (b) Im	n�r�
 reconstructed
rom the noisy simulation data by use of method 1. The corre-
ponding images reconstructed by use of method 2 are shown in
c) and (d).

ig. 9. (a) Profiles through the central rows of Figs. 8(a) and 8(c)
re represented by the solid and dashed curves, respectively. (b)
rofiles through the central rows of Figs. 8(b) and 8(d) are rep-
esented by the solid and dashed curves, respectively.
Figure 8 contains images of the refractive index distri-
ution reconstructed from the noisy simulation data by
se of reconstruction methods 1 and 2. The images in
igs. 8(a) and 8(b) correspond to Re	n�r�
−1 and Im	n�r�
,
espectively, reconstructed by use of method 1. The corre-
ponding images reconstructed by use of method 2 are
hown in Figs. 8(c) and 8(d). The image profiles through
he central rows of Figs. 8(a) and 8(c) are represented by
he solid and dashed curves, respectively, in Fig. 9(a),
hile the corresponding profiles through the central rows
f Figs. 8(b) and 8(d) are contained in Fig. 9(b). The fact
hat the noisy images reconstructed by use of the differ-
nt methods are distinct is to be expected. It is well
nown that, even if equivalent mathematically, different
omographic reconstruction algorithms will generally
ropagate noise and other data inconsistencies in differ-
nt ways.20,26

. DISCUSSION AND SUMMARY
onventional I-DT requires measurements of the wave
eld intensities on two different parallel detector planes
t each tomographic view angle. In this work, a multi-
pectral I-DT reconstruction theory for quasi-
ondispersive scattering objects was developed and inves-
igated. By quasi-nondispersive, we refer to an object that
s characterized by a refractive index distribution that is
pproximately independent of temporal frequency over a
efined finite closed interval. For such objects, we demon-
trated that two intensity measurements acquired on a
ingle detector plane at each view angle can provide suf-
cient information for image reconstruction. This re-
uires a scanning geometry in which the two intensity
easurements are generated by probing plane waves that
ave distinct temporal frequencies that reside within an

nterval where object dispersion can be neglected. Accord-
ngly, the frequency of the probing wave field can be var-
ed for acquisition of the necessary measurement data
ather than the detector position as required in conven-
ional I-DT. This alternative data-acquisition strategy
ay have significant practical advantages in certain im-

ging studies.
It is interesting to note that the general mathematical

tructure of our analysis and reconstruction methods is
he same as employed in our previous study of spherical
ave I-DT.22 Although the scanning geometries and
hysical assumptions employed in these works differ,
heir interpretations from a Fourier space perspective are
emarkably similar. In both cases, the measurement data
t each tomographic view angle are found to specify sys-
ems of two equations with four unknowns, where the un-
nowns represent distinct Fourier components of the
cattering potential. In both cases, the development of re-
onstruction methods is facilitated by the identification of
ourier space data symmetries and the use of Fourier se-
ies expansions to exploit the rotational invariance of the
maging models.

There remain several important topics for future inves-
igations. A key assumption of our methods is that the ob-
ect can be regarded as dispersionless over the temporal
requency window in which the intensity measurements
re acquired. In cases where this assumption is not valid,
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he measurement data will necessarily be inconsistent
ith the assumed imaging model. The degree to which ar-

ifacts due to data inconsistencies can be mitigated by the
roposed reconstruction methods requires further study.
nother important topic of investigation is the extension
f the methods to utilize measurements corresponding to
ore than two temporal frequencies. When such addi-

ional measurements are available, they can, in principle,
e utilized to improve the noise characteristics of the re-
onstructed images. It would also be useful to generalize
he methods for use with dispersive objects with known
ispersion laws.

PPENDIX A
n this appendix we establish the Fourier space symmetry
roperties described by Eqs. (17) and (22). Consider Fig.
, which shows the intersection of Ewald surfaces of radii
1 and k2 with a plane of constant u. The 3D locations of
oints A and C that reside on the surface with radius k2
re given by

KA��� = us1 − vrs2,r��� + ��2 − k2�s0,r���,

KC��� = us1 + vrs2,r��� + ��2 − k2�s0,r���.

he argument � in KA��� and KB��� denotes that the vec-
ors KA and KB are expressed in the rotated coordinate
ystem. The distance between these points and the origin
f the plane of constant u is given by

R = �KC − �KC · s1�s1� = �vrs2,r��� + ��2 − k2�s0,r����

= �vr
2 + ��2 − k2�2�1/2,

hich coincides with Eq. (19).
The locations of points B and D in Fig. 3 that reside on

he Ewald surface with radius k1 are given by

KB��� = us1 − vr�s2,r��� + ��1� − k1�s0,r���,

KD��� = us1 + vr�s2,r��� + ��1� − k1�s0,r���,

here vr�
0. Because points A, B, C, and D all reside on
he same circle of radius R in the plane of constant u, the
oordinate vr� must satisfy

R2 = vr�
2 + ��1� − k1�2 = vr�

2 + ��k1
2 − u2 − vr�

2 − k1�2. �A1�

quation (A1) can be simplified as

�R2 + u2�2 + 4k1
2�vr�

2 − R2� = 0,

hose solution indicates that

vr� = �R2 −
�R2 + u2�2

4k1
2 
1/2

.

ince we assume k1	k2, it can be verified that for u2

vr
2�k2

2 the solution is real valued.

From the definition of �� in Eq. (20), one finds that
KA�� + ��� = KB���, KC�� + ��� = KD���, �A2�

hich establishes the symmetries given in Eq. (17). Note
hat from Eq. (20), ���0 in the former identity in Eqs.
A2), while ��	0 in the latter. From the definition of �� in
q. (23), one finds that

KA�� − ��� = KD���, KC�� − ��� = KB���, �A3�

hich establishes the symmetries given in Eq. (22). Note
hat from Eq. (23), ���0 in the former identity in Eqs.
A3), while ��	0 in the latter.
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