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Abstract: Optical coherence theory typically deals with the average
properties of randomly fluctuating fields. However, in some circumstances
the averaging process can mask important physical aspects of the field
propagation. We derive a new method of simulating partiallycoherent
fields of nearly arbitrary spatial and temporal coherence. These simulations
produce the expected coherence properties when averaged over sufficently
long time intervals. Examples of numerous fields are given, and an analytic
formula for the intensity fluctuations of the field is given. The method is
applied to the propagation of partially coherent fields through random phase
screens.
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1. É Verdet,Leçons d’Optique Physique, vol. 1, (L’Imprimierie Imṕeriale, Paris, 1869).
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1. Introduction

Optical coherence theory, which has its origins in studies of the coherence of sunlight [1], is
now a well-established discipline in optical science and numerous books [2, 3] deal with the
general theory and applications. Optical coherence theorytypically deals with the average prop-
erties of randomly fluctuating fields. However, the averaging process can in some significant
instances mask important physical aspects of the field behavior. For instance, there has been
much evidence that partially coherent fields are less susceptible to turbulence degradation than
their fully coherent counterparts (see, for instance, [4, 5, 6, 7, 8], and earlier references therein).
This has lead to the possibility of using partially coherentfields as sources in free-space optical
communications. Such problems, however, involve (at least) three significant time scales: the
coherence time of the field, the rate at which turbulence changes with time (the Greenwood fre-
quency), and the data communication rate. Coherence theorycalculations involve a long time
average over all three scales, masking any possible issues that might arise over finite intervals
of time. An example of one such issue is beam wander in turbulence [9].

Other important field properties can be ‘hidden’ by the averaging process. For instance, in
recent years there has been much interest in beams possessing orbital angular momentum, or
optical vortices [10]. Such vortices are characterized by an intensity null at their center and a
helical phase front, and they are stable under amplitude andphase perturbations of the field.
When the vortex field is partially coherent, or its coherence is reduced on propagation through
turbulence, the vortex position fluctuates and no point in space, on average, possesses an inten-
sity null. It can be said that the vortex is hidden; it has beenshown that some of its behavior is
preserved in the correlation properties of the field [11, 12]. At any instant of time, however, the
vortex is present in the field.

In this paper we derive a method of numerically generating realizations of partially coherent
fields of nearly arbitrary spatial and temporal coherence. The spectral properties, spatial coher-
ence properties, and intensity profile of the field can be freely and independently chosen. The
method is an extension and reimagining of a technique [13] used to study the invariance proper-
ties of random fields in dispersive media; it may also be considered an extension of techniques
for studying random electrical noise [14].

The paper is organized as follows. In section 2 the partiallycoherent field generator is intro-
duced. In section 3 the intensity fluctuations of the generated field are determined. In section 4
a number of examples of partially coherent fields are described, and their propagation through
random phase screens is considered. Section 5 presents concluding remarks.

2. Generating realizations of fields of arbitrary spatial and temporal coherence

The partially coherent field generator is introduced as a generalization of the technique used
in Ref. [13] to study the propagation of partially coherent fields in dispersive media; in that
reference, only temporal coherence properties were considered. As the goal of this paper is to
generate a realization of a field with specified spatial and temporal coherence properties, we
first introduce a model of a partially coherent field which canbe implemented numerically; we
then determine how the parameters of this model are related to the average properties of the
partially coherent field.

We consider a source of partially coherent radiation in the planez= 0, which emits optical
pulses of fixed spatial and temporal shape at random times. Weinitially restrict ourselves to a
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time intervalt ∈ [−T/2,T/2]. Assuming that the pulses are emitted independently of one an-
other, the probabilityp(N) thatN are emitted in this interval is dictated by Poissonian statistics,
i.e.

p(N) =
N

N

N!
exp[−N]. (1)

Let us assume thatN pulses are emitted in this interval. The field of theseN pulses is then given
by

VN(r , t) =
N

∑
j=1

Λ(r , t − t j)exp[−iK j · r ], (2)

whereΛ(r , t) is the field amplitude of a single pulse in the planez= 0 at transverse position
r = (x,y), aside from a linear phase term,t j is the time of emission of thejth pulse andK j is
the angle of inclination of thejth pulse. The time of arrival is assumed to be a random variable
uniformly distributed throughout the interval, and the angle of inclination is a random variable
whose probability distributionP(K) is for now unspecified. This representation of the field is
very similar to that used in Ref. [13]; however, the introduction of the angle of inclinationK j

and its probability distribution allows us to control the spatial coherence properties of the field
as well as the temporal properties.

Once the pulse shapeΛ(r , t), the average number of pulsesN and the probability distribution
P(K) are specified, realizations of the field can be generated. We now consider how these quan-
tities are related to the average properties of the field, such as the mutual coherence function.

The mutual coherence function of a statistically stationary field V(r , t) is defined as

Γ(r1, r2,τ) ≡ 〈V∗(r1, t1)V(r2, t2)〉, (3)

whereτ ≡ t2− t1 and the angle brackets denote ensemble averaging. It is to benoted that this
ensemble average is equivalent to three independent averages: the average over the arrival times
t j of the pulses, the average over the inclination factorsK j , and the average over the number of
pulses per intervalN. The instantaneous form of this function for our field ofN pulses is

V∗
N(r1, t1)VN(r2, t2) =

N

∑
i, j=1

Λ∗(r1, t1− ti)exp[iK i · r1]Λ(r2, t2− t j)exp[−iK j · r2]. (4)

We first wish to evaluate the functional form of this quantitywhen we average over the arrival
timesti . To do so, we expressΛ(r , t) in terms of its temporal Fourier transform, i.e.

Λ(r , t) =
∫ ∞

0
Λ̃(r ,ω)e−iωtdω. (5)

Our expression (4) may then be written in the form

V∗
N(r1, t1)VN(r2, t2) =

N

∑
i, j=1

∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)exp[iK i · r1]exp[−iK j · r2]

× exp[iω(t1− ti)]exp[−iω ′(t2− t j)]dωdω ′. (6)

The time average of a function ofti andt j over the interval can be written as

〈F(ti , t j)〉 =
1

T2

∫ T/2

−T/2

∫ T/2

−T/2
F(ti , t j)dtidt j . (7)
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We may therefore write

〈exp[−i(ωti −ω ′t j)]〉 =

{

sinc[(ω −ω ′)T/2] ≡ f (ω −ω ′), i = j,
sinc[ωT/2]sinc[ω ′T/2] ≡ g(ω)g(ω ′), i 6= j,

(8)

〈exp[−iωti ]〉 = sinc[ωT/2] ≡ g(ω), (9)

where sinc[x] ≡ sin[x]/x. We may separate our expression (6) into two distinct sums: one for
which i = j and one for whichi 6= j. We may then write

〈V∗
N(r1, t1)VN(r2, t2)〉 =

N

∑
i=1

∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)〈exp[iK i · (r1− r2)]〉

× exp[i(ωt1−ω ′t2)] f (ω −ω ′)dωdω ′

+
N

∑
i 6= j

∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)〈exp[i(K i · r1−K j · r2)]〉

× exp[i(ωt1−ω ′t2)]g(ω)g(ω ′)dωdω ′. (10)

At this point, the angle brackets on the exponentials refer only to averaging over the inclination
factorsK j . We now use our probability density function to evaluate this average. We have

〈exp[iK i · (r1− r2)]〉 =
∫

P(K i)exp[iK i · (r1− r2)]d
2Ki = (2π)2P̃(r2− r1),

(11)

〈exp[i(K i · r1−K j · r2)]〉 = (2π)4P̃∗(r1)P̃(r2), (12)

whereP̃(r) represents the two-dimensional Fourier transform of the probability density func-
tion, defined by

P̃(r) =
1

(2π)2

∫

P(K)exp[−iK · r ]d2K. (13)

The sums may then be evaluated, and we find that

ΓN(r1, r2,τ) = 〈V∗
N(r1, t1)VN(r2, t2)〉

= (2π)2N
∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)P̃(r2− r1)

× exp[i(ωt1−ω ′t2)] f (ω −ω ′)dωdω ′

+ (2π)4N(N−1)
∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)P̃∗(r1)P̃(r2)

× exp[i(ωt1−ω ′t2)]g(ω)g(ω ′)dωdω ′. (14)

At this point the integrals are completely independent of the individual realizations of pulses,
i.e. the particular values oft j andK j for each pulse, and the only random variable remaining
is the number of pulses in the interval. We may average over this quantity as well, to get the
mutual coherence function as

Γ(r1, r2,τ) =
∞

∑
N=0

p(N)ΓN(r1, r2,τ), (15)

wherep(N) is the Poisson distribution. We need the well-established results
∞

∑
N=0

p(N)N = N, (16)

∞

∑
N=0

p(N)N(N−1) = N
2
. (17)
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The mutual coherence function may then be written as

Γ(r1, r2,τ) = (2π)2N
∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)P̃(r2− r1)

× exp[i(ωt1−ω ′t2)] f (ω −ω ′)dωdω ′

+ (2π)4N
2
∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)P̃∗(r1)P̃(r2)

× exp[i(ωt1−ω ′t2)]g(ω)g(ω ′)dωdω ′. (18)

Defining the average rate of pulse emission asη = N/T, we may rewrite Eq. (18) in the form

Γ(r1, r2,τ) = (2π)2η
∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)P̃(r2− r1)

× exp[i(ωt1−ω ′t2)] f (ω −ω ′)Tdωdω ′

+ (2π)4η2
∫ ∞

0

∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω ′)P̃∗(r1)P̃(r2)

× exp[i(ωt1−ω ′t2)]g(ω)Tg(ω ′)Tdωdω ′. (19)

Letting the measurement intervalT → ∞, the functionsf (ω)T andg(ω)T reduce to

f (ω −ω ′)T → 2πδ (ω −ω ′), (20)

g(ω) → 4πδ (e)(ω), (21)

whereδ (ω) is the Dirac delta function andδ (e) is the even half-delta function, defined such
that

∫ ε

0
δ (e)(ω)dω =

1
2
. (22)

By use of these results, the mutual coherence function becomes

Γ(r1, r2,τ) = (2π)3η
∫ ∞

0
Λ̃∗(r1,ω)Λ̃(r2,ω)P̃(r2− r1)exp[−iωτ]dω

+ (2π)6η2Λ̃∗(r1,0)Λ̃(r2,0)P̃∗(r1)P̃(r2). (23)

The latter term is the DC-contribution to the field. If we are considering sufficiently narrowband
optical signals, it may be safely neglected.

One more simplification will be convenient. We assume that the spatial and temporal parts
of the field factorize, i.e. that

Λ(r , t) = Θ(r)Φ(t), (24)

so that
Λ̃(r ,ω) = Θ(r)Φ̃(ω). (25)

We may then write

Γ(r1, r2,τ) = η(2π)3Θ∗(r1)Θ(r2)P̃(r2− r1)
∫ ∞

0
|Φ̃(ω)|2exp[−iωτ]dω. (26)

If we consider this field in the space-frequency domain, and consider instead the cross-spectral
densityW(r1, r2,ω) of the field, we have

W(r1, r2,ω) = η(2π)3|Φ̃(ω)|2Θ∗(r1)Θ(r2)P̃(r2− r1), (27)
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where

W(r1, r2,ω) =
1

2π

∫ ∞

−∞
Γ(r1, r2,τ)exp[iωτ]dτ. (28)

Equation (27) is the main result of this paper. It demonstrates that the cross-spectral density of
our realization of pulses will have a spectrum|Φ̃(ω)|2, an average field profileΘ∗(r1) and a
spectral degree of coherenceP̃(r2− r1). These three functions can be chosen independently of
one another, and we may therefore construct a realization ofa partially coherent field which
has quite general spatial and temporal coherence.

It is to be noted that our results are not completely general,i.e. there exist partially coherent
fields which cannot be realized by this random pulse technique. In particular, there exist fields
whose spatial and temporal coherence properties are not factorizable, and there also exist fields
whose spectral degree of coherence is frequency dependent.Nevertheless, our method provides
an excellent tool for creating realizations of quite arbitrary spatial and temporal coherence.

3. Intensity fluctuations of partially coherent field realizations

We have as yet only considered the second-order coherence properties of the optical field.
It is worthwhile, however, to investigate the fourth-ordercoherence properties achievable by
our simulation method as well, as intensity fluctuations of an optical signal (in particular, its
scintillation index [15]) play an important role in opticalcommunications.

The scintillation index is defined as [15, Sec. 1.7]

σ2
I (r) =

〈I(r , t)2〉
〈I(r , t)〉2 −1, (29)

whereI(r , t) = 〈|V(r , t)|2〉 is the intensity of the field which is on average independent of time.
The quantity〈I(r , t)〉2 can be derived from the results of the previous section, so wefocus on
the quantity〈I(r , t)2〉. Using our collection of pulses over a finite intervalT again, we have

〈IN(r , t)2〉 = 〈V∗
N(r , t)V∗

N(r , t)VN(r , t)VN(r , t)〉, (30)

whereVN(r , t) is defined by Eq. (2). Looking at the temporal Fourier decomposition of this
equation, we find that

〈IN(r , t)2〉 =
N

∑
i jkl

∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
Λ̃∗(r ,ω1)Λ̃∗(r ,ω2)

× Λ̃(r ,ω3)Λ̃(r ,ω4)exp[it(ω1 +ω2−ω3−ω4)]

× 〈exp[−i(ω1ti +ω2t j −ω3tk−ω4tl )]〉
× 〈exp[ir · (K i +K j −Kk−K l )]〉dω1dω2dω3dω4. (31)

There areN4 terms to the summation, but most of them result in either a zero-frequency con-
tribution which will be neglected or a negative-frequency term which is identically zero. The
only non-zero terms are those for which

i = j = k = l = α, N terms,

α = i = k 6= j = l = β N(N−1) terms,

α = i = l 6= j = k = β N(N−1) terms.

These averages can be calculated as in the previous section.We have

〈exp[−i(ω1 +ω2−ω3−ω4)tα ]〉 = 2πδ (ω1 +ω2−ω3−ω4),
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(32)

〈exp[−i(ω1−ω3)tα ]〉〈exp
[

−i(ω2−ω4)tβ
]

〉 = (2π)2δ (ω1−ω3)δ (ω2−ω4),

(33)

〈exp[−i(ω1−ω4)tα ]〉〈exp
[

−i(ω2−ω3)tβ
]

〉 = (2π)2δ (ω1−ω4)δ (ω2−ω3).

(34)

Similarly, for the spatial average, we have

〈exp[i(K i +K j −Kk−K l ) · r ]〉 =
(2π)2P̃(0) = 1, i = j = k = l = α,
(2π)4(P̃(0))2 = 1, α = i = k 6= j = l = β ,
(2π)4(P̃(0))2 = 1, α = i = l 6= j = k = β .

(35)

Our expression for the intensity fluctuations takes on the form

〈I(r , t)2〉 = 2πη
∫ ∞

0

∫ ∞

0

∫ ∞

0
Λ̃∗(r ,−ω2 +ω3 +ω4)Λ̃∗(r ,ω2)

× Λ̃(r ,ω3)Λ̃(r ,ω4)dω2dω3dω4

+ (2π)22η2
∫ ∞

0

∫ ∞

0
|Λ̃(r ,ω1)|2|Λ̃(r ,ω2)|2dω1dω2. (36)

We again factorize our field into a temporal and spatial part.Noting that the frequency de-
pendence of the first term is a convolution, and the second part is simply 〈I(r , t)〉2, we may
write

〈I(r , t)2〉 = η |Θ(r)|4
∫ ∞

−∞
|Φ(t)|4dt +2〈I(r , t)〉2. (37)

On substitution into the scintillation index, we readily find that

σ2
I =

1
η

∫ ∞
−∞ |Φ(t)|4dt

|∫ ∞
∞ |Φ(t)|2dt|2 +1. (38)

In the limit η → ∞, i.e. a large rate of pulse emission, we find thatσI ∼ 1. This result is
consistent with a light field said to bechaotic or Gaussian[16, chapter 3]. Our simulation
method therefore cannot produce a pure coherent laser field.However, partially coherent fields
derived from laser light, for instance by passing coherent light through a rotating ground glass
plate, are well-known to be chaotic [17] and our simulation method will reliably simulate many
partially coherent field configurations.

Although σ2
I = 1 is the ideal limit for our simulation method, for small values ofη (small

rate of pulse emission) the value ofσ2
I can be much higher. We can estimate how largeη must

be to reach the ideal limit by considering Gaussian pulses,

Φ(t) =
1√
πσt

exp[−t2/σ2
t ]. (39)

On substitution into our formula (38), we readily find that

σ2
I =

1√
π

1
ησt

+1. (40)

We can approach the ideal value ofσ2
I ∼ 1 by takingησt to be sufficiently large.

4. Examples

We now demonstrate the use of the field generator by numericalexamples.
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4.1. Gaussian Schell-model fields

We consider fields of Gaussian intensity profile and Gaussianspatial correlation, known as
Gaussian Schell-model fields [3, Sec. 5.2.2]. The mutual coherence function of such fields may
be written as

Γ(r1, r2,τ) = γ(τ)
√

I(r1)
√

I(r2)µ(r2− r1), (41)

whereI(r) is the average field intensity,

I(r) = exp[−r2/2σ2
I ], (42)

σI being the beam width,µ(r2−r1) is the spatial correlation function (equivalent to the spectral
degree of coherence in the frequency domain),

µ(r2− r1) = exp[−(r2− r1)
2/2σ2

g ], (43)

σg being the correlation length, andγ(τ) is the temporal coherence function, to be taken as
Lorentzian or Gaussian. On comparison with Eq. (27), it can be seen that our field generator
should generate a Gaussian Schell-model field if we take

√

I(r) =
√

η(2π)3Θ(r), P̃(r) = µ(r),
and take|Φ̃(ω)|2 to be the temporal Fourier transform ofγ(τ). Figure 1 illustrates the intensity
of the field generated by our simulation method for several realizations, withσI = 2cm,σg =
1cm, and Gaussian spectrum of center frequency 1×1015Hz and 1% bandwidth. The average
pulse rate is taken to be 5 pulses/cycle. The pictures show the gradual evolution of the field in
time; the frames are each separated by 5 periods at the centerfrequency.

Fig. 1. Illustrating several realizations of the intensity of the field generated by the method with
σI = 2cm,σg = 1cm, and Gaussian spectrum of center frequency 1×1015Hz and 1% bandwidth. The
pictures show the gradual evolution of the field in time; the frames are each separated by 5 periods at
the center frequency. The window size is 10cm on a side.

To be a valid technique for generating realizations, the field must possess the proper pre-
scribed average properties. Figure 2 illustrates the average intensity of the field, taken over 50
instantaneous values of the field each separated by 20 periods at the center frequency. Part (a)
shows the cross-section of the beam, while (b) shows the cross-section of the beam along the
line y = 0. The ideal Gaussian is shown as a dashed line, and it can be seen that there is excel-
lent agreement. Convergence could be further improved by extending the duration of the time
average.

The spatial correlation properties can also be numericallycalculated to test the technique.
Figure 3 shows the average spatial correlation properties,taken over 50 instantaneous values of
the field each separated by 20 periods at the center frequency. The spatial correlation properties
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Fig. 2. Illustrating the average intensity of the field (a) in the source plane and (b) through a cross-
section of the source plane. The dots indicate the numerically calculated result; the solid line indicates
the expected result of Eq. (41). The average is taken over 50 instantaneous values of the field, each
separated by 20 periods at the center frequency. All other parameters are as in Fig. 1.

were calculated at points+x,−x along the liney= 0. The circles represent the results generated
from our realization, while the dashed line represents the ideal Gaussian Schell-model case.
Again it can be seen that there is excellent agreement.
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Fig. 3. Illustrating the spectral degree of coherence of the field ascalculated using 50 instantaneous
values of the field, each separated by 20 periods at the centerfrequency. For (a),σg = 1cm, while for
(b), σg = 2cm. The dashed lines indicate the expected result of Eq. (41).

The average temporal correlation properties of the field canalso be numerically calculated.
Figure 4 shows the complex degree of coherenceγ(τ) calculated at the center of a coherent
Gaussian beam, for a Gaussian and Lorentian lineshape. Again there is excellent agreement
between the results of the simulation and the expected average behavior.
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Fig. 4.Illustrating the temporal coherence function calculated bytime averaging. The solid lines indi-
cate the analytic prediction. For (a), the function is Gaussian, while for (b), the function is Lorentzian.
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4.2. Propagation through random phase screens

We now consider the propagation of our partially coherent field realizations through random
phase screens. Such phase screens are extensively used to model the effects of beam propa-
gation through weak turbulence [18]. The field must be propagated from the source plane to
the plane of the phase screen, and then propagated beyond it to a detector plane. Though such
Fresnel-type propagation has of course been done many times, is it uncommon to see it in the
time domain, so we briefly summarize the technique. We may useHuygens’ principle to express
the propagation of the fieldV(r ′, t) from the planez= 0 in the form

V(r , t) =
∫ ∫

z=0

V0(r ′, t −R/c)
R

d2r ′, (44)

whereV0(r ′, t) is the field in the source planez= 0, R= |r − r ′| is the source point-field point
distance, and the integration is carried out over the sourceplane. For quasi-monochromatic
fields such as we are considering, we may separate the source field into the components

V(r , t) = exp[iω0t]F0(r , t), (45)

whereω0 is the central frequency of oscillation of the source andF0(r , t) is the slowly-varying
piece of the source field. We may then write

V(r , t) = exp[iω0t]
∫ ∫

z=0
exp[−iω0R/c]

F0(r ′, t −R/c)
R

d2r ′. (46)

We are also primarily interested in paraxial fields, for which

R= |r − r ′| ≈ z+
1
2

(x−x′)2 +(y−y′)2

z
. (47)

The field may then be simplified to the form

V(r , t) =
exp[iω0t]exp[−iω0z/c]

z

∫ ∫

z=0
exp

[

−i
ω0

2c
(x−x′)2 +(y−y′)2

z

]

× F0

[

r ′, t − 1
c

(

z+
1
2

(x−x′)2 +(y−y′)2

z

)]

d2r ′. (48)

Since the functionF0 is assumed to be slowly-varying with respect to time and paraxial, the
spatial argument which depends on the tranverse coordinates will be negligible compared to
the other terms. We may simplify our field calculation to the form

V(r , t) =
exp[iω0t̂]

z

∫ ∫

z=0
exp

[

−i
ω0

2c
(x−x′)2 +(y−y′)2

z

]

F0(r ′, t̂)d2r ′, (49)

where t̂ ≡ t − z/c. The field in any plane of constantz is therefore simply the time-shifted
Fresnel transform of the field in the source plane, and can be calculated straightforwardly with
a fast Fourier transform.

We study the response of the partially coherent field on propagation through a Gaussian
random phase screen with power spectrum

S(K) = φ2
0 exp

[

−k2L2
0/4

]

, (50)

whereL0 is the outer scale of the phase screen. Such a screen is a poor model for quantitative
studies of atmospheric turbulence (in such cases more sophisticated spectral models exist [9]),

#72209 - $15.00 USD Received 20 June 2006; revised 21 July 2006; accepted 25 July 2006

(C) 2006 OSA 21 August 2006 / Vol. 14,  No. 17 / OPTICS EXPRESS  7576



but will suffice for a brief illustration of partially coherent field propagation through random
media. The screens are generated by the method described in Ref. [18]. We take as screen
parametersφ2

0 = 1,L0 = 15cm and the screen is located atz= 1.0km. A spatially coherent field
with σI = 2cm is propagated through this screen and to a detector atz= 2km; the intensity at the
detector is shown in Fig. 5(a). It can be seen that the spot hasbeen aberrated by the phase screen
and, perhaps more important, is no longer centered on the center of the detector plane. This is
an example of beam wander; it is to be noted that if the beam wanders sufficiently from the
axis, it may not illuminate the detector at all, resulting ininformation loss (a ‘miss’). Temporal
fluctuations of the coherent field do not fix the problem; as illustrated in Fig. 5(b), over a 200
cycle time average of the field, the spot shape and position remain essentially unchanged.

(a) (b)

Fig. 5. Illustrating (a) the instantaneous intensity and (b) the average intensity of a spatially coherent
field after propagating through a Gaussian random phase screen atz= 1.0km, with the detector plane
atz= 2km. HereL0 = 15cm andφ2

0 = 1.

We now consider the propagation of a partially coherent fieldwith σg = 1cm through the
same phase screen. As illustrated in Fig. 6(a), this field is also significantly distorted by the
phase screen. However, some field intensity is still presentin the center of the detector plane.
When a long time average is taken, as shown in Fig. 6(b), we see that there is still a tendency for
the field to ‘wander’ from the center of the screen, but an appreciable amount of field intensity
remains near the center of the detector plane.

These results suggest the following picture for the improved propagation characteristics of
partially coherent fields in turbulence, as illustrated in Fig. 7. A coherent laser essentially prop-
agates its energy through a single coherent mode, which is subject to distortion on propagation
through the inhomogeneous medium. The signal may or may not arrive fully at the detector, and
will have suffered degradation due to diffraction. The partially coherent beam sends its energy
through multiple (independent) modes, each of which propagates differently in the turbulent
medium. Although any individual mode may not arrive cleanlyat the detector, it is likely that at
least one will make the journey. For our particular method ofgenerating realizations, the modes
are the individual pulses, each of which has a different ‘angle of attack’ (value ofK j ) into the
phase screen.

5. Conclusions

We have derived a new method of generating realizations of partially coherent fields of nearly
arbitrary spatial and temporal coherence. The method was demonstrated for Gaussian Schell-
model fields of different degrees of spatial and temporal coherence, and the numerically calcu-
lated average properties agree well with the predicted analytical results. The method was also
used to gain some insight into the propagation of partially coherent beams through random
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(a) (b)

Fig. 6. Illustrating (a) the instantaneous intensity and (b) the average intensity of a partially coherent
field with σg = 1cm after propagating through a Gaussian random phase screen atz= 1.0km, with the
detector plane atz= 2km. HereL0 = 15cm andφ2

0 = 1.

coherent

partially

coherent

Fig. 7.A qualitative explanation of the behavior of partially coherent beams in turbulence. A coherent
laser essentially propagates its energy through a single coherent mode, which is subject to distortion
on propagation through the inhomogeneous medium. The partially coherent beam sends its energy
through multiple (independent) modes, each of which propagates differently in the turbulent medium.

phase screens, which could be used as a rough model for atmospheric turbulence. It is expected
that the ability to study the behavior of fluctuating fields onmany time scales (center frequency,
bandwidth, rate of turbulence fluctuations, detector response) will provide useful insight into
the behaviors of many coherence-related phenomena.

It is to be noted that this method can also be used as an educational tool. Coherence theory
is often difficult for the beginner to understand. This method of generating realizations can
be used as an additional visual/conceptual aid for the student of optical coherence, as well
as a technique for generating unique homework assignments –each student could be given a
realization of a field and asked to determine its spatial and temporal properties.
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