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Abstract: Optical coherence theory typically deals with the average
properties of randomly fluctuating fields. However, in soritewnstances
the averaging process can mask important physical aspédtse dield
propagation. We derive a new method of simulating partiaibherent
fields of nearly arbitrary spatial and temporal coherent@s€ simulations
produce the expected coherence properties when averageagudficently
long time intervals. Examples of numerous fields are givad,an analytic
formula for the intensity fluctuations of the field is giverhel method is
applied to the propagation of partially coherent fields tigforandom phase
screens.
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1. Introduction

Optical coherence theory, which has its origins in studiethe coherence of sunlight [1], is
now a well-established discipline in optical science antherous books [2, 3] deal with the
general theory and applications. Optical coherence thgpigally deals with the average prop-
erties of randomly fluctuating fields. However, the avergginocess can in some significant
instances mask important physical aspects of the field @hdor instance, there has been
much evidence that partially coherent fields are less stibtefo turbulence degradation than
their fully coherent counterparts (see, for instance, [4, 3, 8], and earlier references therein).
This has lead to the possibility of using partially coheffegltls as sources in free-space optical
communications. Such problems, however, involve (at Jahste significant time scales: the
coherence time of the field, the rate at which turbulence ggswith time (the Greenwood fre-
quency), and the data communication rate. Coherence tltadnylations involve a long time
average over all three scales, masking any possible isBaemight arise over finite intervals
of time. An example of one such issue is beam wander in tunicel§9].

Other important field properties can be ‘hidden’ by the agirg process. For instance, in
recent years there has been much interest in beams posgsesdsital angular momentum, or
optical vortices [10]. Such vortices are characterized hynéensity null at their center and a
helical phase front, and they are stable under amplitudephade perturbations of the field.
When the vortex field is partially coherent, or its coheresceduced on propagation through
turbulence, the vortex position fluctuates and no point acepon average, possesses an inten-
sity null. It can be said that the vortex is hidden; it has bsleown that some of its behavior is
preserved in the correlation properties of the field [11, A2jany instant of time, however, the
vortex is present in the field.

In this paper we derive a method of numerically generatiadjzations of partially coherent
fields of nearly arbitrary spatial and temporal coherenbe. 9pectral properties, spatial coher-
ence properties, and intensity profile of the field can beyraed independently chosen. The
method is an extension and reimagining of a technique [18] ts study the invariance proper-
ties of random fields in dispersive media; it may also be @®rsid an extension of techniques
for studying random electrical noise [14].

The paper is organized as follows. In section 2 the part@ilyerent field generator is intro-
duced. In section 3 the intensity fluctuations of the geweelréield are determined. In section 4
a number of examples of partially coherent fields are desdriand their propagation through
random phase screens is considered. Section 5 presentsdingaemarks.

2. Generating realizations of fields of arbitrary spatial ard temporal coherence

The partially coherent field generator is introduced as agsization of the technique used
in Ref. [13] to study the propagation of partially cohereetds in dispersive media; in that
reference, only temporal coherence properties were cerexd As the goal of this paper is to
generate a realization of a field with specified spatial antbteal coherence properties, we
first introduce a model of a partially coherent field which benmplemented numerically; we
then determine how the parameters of this model are relatétetaverage properties of the
partially coherent field.

We consider a source of partially coherent radiation in thegz = 0, which emits optical
pulses of fixed spatial and temporal shape at random timesnidly restrict ourselves to a
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time intervalt € [-T/2,T/2]. Assuming that the pulses are emitted independently of one a
other, the probabilityp(N) thatN are emitted in this interval is dictated by Poissonian stias,

i.e.
—N

pIN) = 17 expi N ®

Let us assume thaét pulses are emitted in this interval. The field of thispulses is then given
by

=z

Z (r,t—t;)exp—iKj-r], )

whereA(r,t) is the field amplitude of a single pulse in the plane 0 at transverse position

r = (x,y), aside from a linear phase tertp,s the time of emission of th¢th pulse and; is
the angle of inclination of th¢th pulse. The time of arrival is assumed to be a random variabl
uniformly distributed throughout the interval, and the lengf inclination is a random variable
whose probability distributio?(K) is for now unspecified. This representation of the field is
very similar to that used in Ref. [13]; however, the introtioic of the angle of inclinatiorK
and its probability distribution allows us to control theatipl coherence properties of the field
as well as the temporal properties.

Once the pulse shap€r,t), the average number of pulsdsand the probability distribution
P(K) are specified, realizations of the field can be generated dWeconsider how these quan-
tities are related to the average properties of the fieldy asache mutual coherence function.

The mutual coherence function of a statistically statigrield V(r,t) is defined as

M(ro,ro,7)= <V*(rl,tl)V(r2,t2)>, )

wheret =ty —t; and the angle brackets denote ensemble averaging. It isriotbd that this
ensemble average is equivalent to three independent &getthg average over the arrival times
t; of the pulses, the average over the inclination fadtgrsand the average over the number of
pulses per intervall. The instantaneous form of this function for our field\bpulses is

WX (1, t)Wn(ra,ta) =

N*(ro,te—ti) expliKi - ra]A(ro,to —tj) exp—iKj - ra). (4)
1

™Mz

We first wish to evaluate the functional form of this quantitiyen we average over the arrival
timest;. To do so, we expreds(r,t) in terms of its temporal Fourier transform, i.e.

A1) :/ Alr, w)e “dw. )
0
Our expression (4) may then be written in the form
AV (I’l,tl VN I’2,t2 Z / / /\* I’]_, rz, ’)exp[iKi-rl]exp[—in .I’z]
i,J=1"

x expio(ts —t)]exp—iw (t2 —tj)]dwdw’. (6)

The time average of a function gfandt; over the interval can be written as

T2 T2
(t;t / / F (t,t;)d . )

(F &, T2 ) (t, I
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We may therefore write

_— o sind(w—o)T/2] = f(w— ), i=j,
(exp—i(awt — wty)]) = { sindwT /2Jsindw T /2] = g(w)g(w), i+ ], 8)
(exp—iwt]) = sindwT /2] =9g(w), 9

where sinfx] = sin[x]/x. We may separate our expression (6) into two distinct sums:for
whichi = j and one for which # j. We may then write

<V§(r1,t1)VN(f27t2)>=Z/ / A (r1, )A(r2, o) (expliKi - (r1 —r2)])
expli(wt; — w'ty)] f (w— o')dwdw
+ ;/ / A (r, w)A(r2, ) (expli(Ki-r1—Kj-r2)])

x  expli(wt — w't)]g(w)g(w')dwdw. (10)

At this point, the angle brackets on the exponentials ref@r  averaging over the inclination
factorsK j. We now use our probability density function to evaluats thierage. We have

(expiKi- (r1—r2)]) = /P(Ki)exp[iKi (ry—r2)]d?Ki = (2m)?P(ro —r1),

X

(11)
(expli(Ki-r1—Kj r2)]) = (2m*P*(r1)P(r2), (12)

where|5(r) represents the two-dimensional Fourier transform of tledalility density func-
tion, defined by

B(r) Q;)Z/P(K)exp[—iK-r]de. (13)
The sums may then be evaluated, and we find that
IN(re,r2, 1) = (VR(rst)W(ra,tz))

= (2m) N/ / A (r1, w)A(ra, )P(ra—ryq)

x expli(wt — w'tp)] f(w— )dwdw’

+ o @mNN-D [T TR o)A, )P ) Bre)

x expli(wt — w'tp)]g(w)g(w')dwdw'. (14)

At this point the integrals are completely independent efitidividual realizations of pulses,
i.e. the particular values ¢f andKj for each pulse, and the only random variable remaining
is the number of pulses in the interval. We may average ovemtantity as well, to get the
mutual coherence function as

[oe]

F(ra,rz,7) = ’; P(N)IN(re,r2, 1), (15)
=

wherep(N) is the Poisson distribution. We need the well-establiskesdlts

NZ P(N)N =N, (16)
=0
NZ p(N)N(N — 1) = N°. (17)
=0
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The mutual coherence function may then be written as
F(ri,r2,1) = (2m) N/ / A (r1, w)A(r2,w)P(ra—rq)
x expli(wt; — w't)]f(w w)dwdw
+ (2n)°N / / *(r, w)A(r2,@)P*(r)P(rz)
x expli(wt; — w't)]g(w)g(w')dwdw'. (18)

Defining the average rate of pulse emissiomas N/T, we may rewrite Eq. (18) in the form

M(ry,rp,7) = (2n) n/ / A (r1, w)A(r2,w)P(ra—rq)
X exp[l(wtl —w't)]f(w— w )wadw’
+ / / A (r1, @)A(r2, )P (r1)B(r2)
X exp[l(wtl—wtz)]g( W) Tg(w)Tdwdw'. (19)

Letting the measurement intervel— oo, the functionsf (w)T andg(w)T reduce to

flw— )T — 2md(w— o), (20)
g(w) — 415 (w), (21)

whered(w) is the Dirac delta function and(® is the even half-delta function, defined such
that

/ 50 dw_f (22)
By use of these results, the mutual coherence function besom
F(ri,ra,1) = (2m°n /()wf\*(rl,w)f\(rz,w)ﬁ(rz—rl)exp[—iwr]dw
+  (2m8n2A*(r1,0)A(r2,0)P* (r1)P(r2). (23)

The latter term is the DC-contribution to the field. If we aomsidering sufficiently narrowband
optical signals, it may be safely neglected.

One more simplification will be convenient. We assume thatspatial and temporal parts
of the field factorize, i.e. that

A(r,t) =0(r)d(t), (24)
so that
A(r,w) = O(r)d(w). (25)
We may then write
F(ri,r2,1) = n(2m>20* (r1)0(r2)P(ra —rq) '/: |P(w)|? exp—iwt]dw. (26)

If we consider this field in the space-frequency domain, aider instead the cross-spectral
densityW(r1,r», w) of the field, we have

W(r1,r2, @) = n(2m?*/®(w)[?0*(r1)0(r2)P(r2 —r1), (27)
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where 1 e
W(rq,rp,w) = ?‘r/ I(rq,rp, 7)expliwr]dr. (28)

Equation (27) is the main result of this paper. It demoneg#that the cross-spectral density of
our realization of pulses will have a spectrud( w)|?, an average field profil®*(r;) and a
spectral degree of coherené&, —r1). These three functions can be chosen independently of
one another, and we may therefore construct a realizati@npafrtially coherent field which
has quite general spatial and temporal coherence.

It is to be noted that our results are not completely geneealthere exist partially coherent
fields which cannot be realized by this random pulse tectmitjuparticular, there exist fields
whose spatial and temporal coherence properties are riotifable, and there also exist fields
whose spectral degree of coherence is frequency depehm@rtheless, our method provides
an excellent tool for creating realizations of quite adiyrspatial and temporal coherence.

3. Intensity fluctuations of partially coherent field realizations

We have as yet only considered the second-order coherenperpies of the optical field.
It is worthwhile, however, to investigate the fourth-or@eherence properties achievable by
our simulation method as well, as intensity fluctuations robatical signal (in particular, its
scintillation index [15]) play an important role in opticedmmunications.

The scintillation index is defined as [15, Sec. 1.7]

o?(r) = Ay (29)

((rn2

wherel (r,t) = (|V(r,t)|?) is the intensity of the field which is on average independétite.
The quantity(I (r,t))? can be derived from the results of the previous section, stoaes on
the quantity(l (r,t)?). Using our collection of pulses over a finite interfahgain, we have

(IN(r )2 = (VG HOVR (VN (T DV (T 1), (30)

whereVy(r,t) is defined by Eg. (2). Looking at the temporal Fourier decositipn of this

equation, we find that
N »00 »00 »00 OO~ ~
Sk ffAweree
/o Jo Jo Jo

<|N(r7t)2>

% A(r, wz)\(r, o) explit(on + wp — w3 — )]
x (exp[—i(wrti + wptj — waty — cuty)])
x (explir - (Kj + Kj — K — Kj)])dew dapdasdows. (31)

There areN* terms to the summation, but most of them result in either a-fr@quency con-
tribution which will be neglected or a negative-frequeneym which is identically zero. The
only non-zero terms are those for which

i=j=k=l=aqa, N terms
a=i=k#£j=1=8 N(N —1) terms
a=i=l#j=k=p N(N —1) terms

These averages can be calculated as in the previous sabttdmve
(exp[—i (w1 + w2 — w3 — wa)ta]) = 27 (w1 + wp — W3 — (wy),
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(32)
(exp[—i(w1 — ws)ta]) (exp[—i(wr — wa)tg]) = (2m1)25(wr — wa)S(wr — @),

(33)
(exp[—i(an — wu)ta]) (exp[—i(2 — wa)tg]) = (225 (w1 — 6u)S(wz — ).
(34)
Similarly, for the spatial average, we have
(2m)2P(0) = 1, i=j=k=Il=a,
(expli(Ki+Kj—Kx=Kp)-rl) = 2m*P(0))>=1, a=i=k#j=I=B, (35
(2m*(P(0)2=1, a=i=I1#j=k=8.
Our expression for the intensity fluctuations takes on tienfo
1wy = 2m [C 7 R0 —er o+ @A rw)
x A(r, w3)A(r, ) dopdavsday
+ @mPan? [ [ A e PIAT, @) Pderda. (36)
o Jo

We again factorize our field into a temporal and spatial gddting that the frequency de-
pendence of the first term is a convolution, and the secoridipamply (I(r,t))?, we may
write

(I(r.)?) =n \O(r)l“/ |P(t)|*dt +2(1 (1. 1))%. 37
On substitution into the scintillation index, we readilydithat

, 1 [
o= e e R Tt (38)

In the limit n — o, i.e. a large rate of pulse emission, we find tioat~ 1. This result is
consistent with a light field said to behaotic or Gaussian[16, chapter 3]. Our simulation
method therefore cannot produce a pure coherent laserHieldever, partially coherent fields
derived from laser light, for instance by passing coherighit through a rotating ground glass
plate, are well-known to be chaotic [17] and our simulatiogtimod will reliably simulate many
partially coherent field configurations.

Although o? = 1 is the ideal limit for our simulation method, for small vakiofn (small
rate of pulse emission) the value@f can be much higher. We can estimate how laygeust
be to reach the ideal limit by considering Gaussian pulses,

1
D) = —— exp—t2/0?]. 39
(0) = - exA—t?/ ] (39)
On substitution into our formula (38), we readily find that
1 1
2
of=—=—+1 40
= Vna “o
We can approach the ideal valueat ~ 1 by takingn a; to be sufficiently large.
4. Examples
We now demonstrate the use of the field generator by numeneahples.
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4.1. Gaussian Schell-model fields

We consider fields of Gaussian intensity profile and Gausspetial correlation, known as
Gaussian Schell-model fields [3, Sec. 5.2.2]. The mutuati@ite function of such fields may

be written as
F(ro,r2, 1) = y(1)v/1(r)VI1(r2)p(ra—ra), (41)

wherel (r) is the average field intensity,
|(r) = exp[—r?/20¢), (42)

0y being the beam widthy(r, —r1) is the spatial correlation function (equivalent to the $gzec
degree of coherence in the frequency domain),

p(ra—r1) = exp—(ra—r1)?/20g)], (43)

0y being the correlation length, andr) is the temporal coherence function, to be taken as
Lorentzian or Gaussian. On comparison with Eq. (27), it carséen that our field generator
should generate a Gaussian Schell-model field if we gk@ ) = /n (2m)30(r), P(r) = u(r),

and také ®(w)|? to be the temporal Fourier transformyr). Figure 1 illustrates the intensity
of the field generated by our simulation method for sevemlizations, witho; = 2cm, gg =
1cm, and Gaussian spectrum of center frequeneyl @°Hz and 1% bandwidth. The average
pulse rate is taken to be 5 pulses/cycle. The pictures she\grédual evolution of the field in
time; the frames are each separated by 5 periods at the ¢éetjeency.

Fig. 1. lllustrating several realizations of the intensity of theldi generated by the method with
0| = 2cm,0g = 1cm, and Gaussian spectrum of center frequency @Y°Hz and 1% bandwidth. The
pictures show the gradual evolution of the field in time; ttarfes are each separated by 5 periods at
the center frequency. The window size is 10cm on a side.

To be a valid technique for generating realizations, thel firrlist possess the proper pre-
scribed average properties. Figure 2 illustrates the gedraensity of the field, taken over 50
instantaneous values of the field each separated by 20 pexidbe center frequency. Part (a)
shows the cross-section of the beam, while (b) shows the-s®cion of the beam along the
liney = 0. The ideal Gaussian is shown as a dashed line, and it carebetss there is excel-
lent agreement. Convergence could be further improved tBneding the duration of the time
average.

The spatial correlation properties can also be numericallgulated to test the technique.
Figure 3 shows the average spatial correlation propettiken over 50 instantaneous values of
the field each separated by 20 periods at the center frequEmegpatial correlation properties
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Intensity (arb. units)

2 4
x (cm)

(2)

Fig. 2. lllustrating the average intensity of the field (a) in the meuplane and (b) through a cross-
section of the source plane. The dots indicate the numeyicaltulated result; the solid line indicates
the expected result of Eq. (41). The average is taken ovend@ritaneous values of the field, each
separated by 20 periods at the center frequency. All oth@npeters are as in Fig. 1.

were calculated at pointsx, —x along the liney = 0. The circles represent the results generated
from our realization, while the dashed line represents deali Gaussian Schell-model case.
Again it can be seen that there is excellent agreement.

spectral deg. of coh. spectral deg. of coh.
1%, 1
0.8 0.8

0.6 0.6

04

o
e
¢
¢
¢
L}
04 1Y
‘\

02 < 02

2 4 6 3 10 2 4 6 8 10
(a) x, -x, (cm) (b) X, -x, (cm)

Fig. 3. lllustrating the spectral degree of coherence of the fieldadsulated using 50 instantaneous
values of the field, each separated by 20 periods at the deatgrency. For (a)gg = 1cm, while for
(b), og = 2cm. The dashed lines indicate the expected result of Eq. (41)

The average temporal correlation properties of the fieldadam be numerically calculated.
Figure 4 shows the complex degree of coherey(ae calculated at the center of a coherent
Gaussian beam, for a Gaussian and Lorentian lineshapen Algatie is excellent agreement
between the results of the simulation and the expected gedrehavior.

¥(T) ¥(v)
I
I
038 08
0.6 06
0.4 04
02 02
0 10 20 30 40 50 60 0 10 20 30 40 50 60
(a) ®, 271 (b) ®,T/21

Fig. 4.1llustrating the temporal coherence function calculatetifog averaging. The solid lines indi-
cate the analytic prediction. For (a), the function is Gamsswhile for (b), the function is Lorentzian.
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4.2. Propagation through random phase screens

We now consider the propagation of our partially coheremd fiealizations through random

phase screens. Such phase screens are extensively usedebtheoeffects of beam propa-
gation through weak turbulence [18]. The field must be prapad)from the source plane to
the plane of the phase screen, and then propagated beyoral detector plane. Though such
Fresnel-type propagation has of course been done many, fisnesncommon to see it in the

time domain, so we briefly summarize the technique. We majuggens’ principle to express

the propagation of the fieM(r’,t) from the plane = 0 in the form

V(r.t) ://Zzovio(r’,tR— RIO) . (44)

whereVy(r',t) is the field in the source plare= 0, R= |r —r’| is the source point-field point
distance, and the integration is carried out over the soplaee. For quasi-monochromatic
fields such as we are considering, we may separate the scelccafo the components

V(r,t) = expliat]Fo(r,t), (45)

whereay is the central frequency of oscillation of the source &g ,t) is the slowly-varying
piece of the source field. We may then write

V(1.0 = exicat] [ /ﬁoexp[—iwoR/c]Mdzr’. (46)

We are also primarily interested in paraxial fields, for vihic

L(x=X)*+(y-Y)*

—r—rl~
R=|r—r’| zt 5 - (47)
The field may then be simplified to the form
i i ERVAYA _ 2
Vit = expli wot] expl mbz/c]// exp[iab(x X+ (y—y)
z =0 2c z
_y\2 _ 2
% Fo[r’,t—i (z+;(x X) er(y Y) ﬂdzr’. (48)

Since the functioriy is assumed to be slowly-varying with respect to time and>pakathe
spatial argument which depends on the tranverse coordindtiebe negligible compared to
the other terms. We may simplify our field calculation to thenf

; _\2 o 2
Vi = ] g /Zoexp[—i‘;f;(x Xy }Fo(r',ﬂdzr', (49)

z

wheref =t — z/c. The field in any plane of constaatis therefore simply the time-shifted
Fresnel transform of the field in the source plane, and carloelated straightforwardly with
a fast Fourier transform.

We study the response of the partially coherent field on mrafien through a Gaussian
random phase screen with power spectrum

S(K) = @ exp[—k?L3/4], (50)

wherelg is the outer scale of the phase screen. Such a screen is a pdef for quantitative
studies of atmospheric turbulence (in such cases morestagatted spectral models exist [9]),
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but will suffice for a brief illustration of partially cohené field propagation through random
media. The screens are generated by the method describeef.ifilB]. We take as screen
parameterﬁpg =1,Lo=15cm and the screen is locateczat 1.0km. A spatially coherent field
with oy = 2cm is propagated through this screen and to a detecter 2km; the intensity at the
detector is shown in Fig. 5(a). It can be seen that the spdidmsaberrated by the phase screen
and, perhaps more important, is no longer centered on therogithe detector plane. This is
an example of beam wander; it is to be noted that if the beanderarsufficiently from the
axis, it may not illuminate the detector at all, resultingriformation loss (a ‘miss’). Temporal
fluctuations of the coherent field do not fix the problem; asstllated in Fig. 5(b), over a 200
cycle time average of the field, the spot shape and positimaireessentially unchanged.

(@) (b)

Fig. 5.lllustrating (a) the instantaneous intensity and (b) therage intensity of a spatially coherent
field after propagating through a Gaussian random phasersate= 1.0 km, with the detector plane
atz=2km. HereLo = 15cm andgg = 1.

We now consider the propagation of a partially coherent figlth oy = 1cm through the
same phase screen. As illustrated in Fig. 6(a), this fieldsis significantly distorted by the
phase screen. However, some field intensity is still preisetiite center of the detector plane.
When a long time average is taken, as shown in Fig. 6(b), wens¢&iere is still a tendency for
the field to ‘wander’ from the center of the screen, but an egipble amount of field intensity
remains near the center of the detector plane.

These results suggest the following picture for the impdopeopagation characteristics of
partially coherent fields in turbulence, as illustratedig. 7. A coherent laser essentially prop-
agates its energy through a single coherent mode, whiclbjsdito distortion on propagation
through the inhomogeneous medium. The signal may or mayrniet &ully at the detector, and
will have suffered degradation due to diffraction. The jadlst coherent beam sends its energy
through multiple (independent) modes, each of which praegdifferently in the turbulent
medium. Although any individual mode may not arrive cleaatlyhe detector, it is likely that at
least one will make the journey. For our particular methodeaferating realizations, the modes
are the individual pulses, each of which has a different g attack’ (value oK) into the
phase screen.

5. Conclusions

We have derived a new method of generating realizations rbiaig coherent fields of nearly

arbitrary spatial and temporal coherence. The method wa®astrated for Gaussian Schell-
model fields of different degrees of spatial and temporakosaiice, and the numerically calcu-
lated average properties agree well with the predictedytioal results. The method was also
used to gain some insight into the propagation of partiatlgezent beams through random
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(a) (b)

Fig. 6. lllustrating (a) the instantaneous intensity and (b) therage intensity of a partially coherent
field with og = 1 cm after propagating through a Gaussian random phasensatiee 1.0km, with the
detector plane at= 2km. HereLo = 15cm andg = 1.
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Fig. 7.A qualitative explanation of the behavior of partially cobet beams in turbulence. A coherent
laser essentially propagates its energy through a sindglereat mode, which is subject to distortion
on propagation through the inhomogeneous medium. The partiaierent beam sends its energy
through multiple (independent) modes, each of which progagdifferently in the turbulent medium.

phase screens, which could be used as a rough model for dterasfurbulence. It is expected
that the ability to study the behavior of fluctuating fieldsroany time scales (center frequency,
bandwidth, rate of turbulence fluctuations, detector rasppwill provide useful insight into
the behaviors of many coherence-related phenomena.

It is to be noted that this method can also be used as an eoluahttbol. Coherence theory
is often difficult for the beginner to understand. This mektlud generating realizations can
be used as an additional visual/conceptual aid for the studfeoptical coherence, as well
as a technique for generating unique homework assignmegdsh-student could be given a
realization of a field and asked to determine its spatial antgpbral properties.

Acknowledgements

The research was supported by the US Air Force Office of SfieResearch under grant FA
9550-05-1-0288.

#72209 - $15.00 USD Received 20 June 2006; revised 21 July 2006; accepted 25 July 2006
(C) 2006 OSA 21 August 2006/ Vol. 14, No. 17/ OPTICS EXPRESS 7578



