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1. INTRODUCTION

There is much interest in using laser light for point-to-
point communications and for laser radar systems, due to
both the secure nature of highly directional lasers and the
high bandwidth associated with optical frequencies. How-
ever, atmospheric turbulence can significantly degrade an
optical signal over even relatively short distances, and
much work has been done to study the effects of turbu-
lence on the spreading, coherence, and scintillation char-
acteristics of light.

In recent years, there has been an increasing body of
research, which suggests that partially coherent beams
may be less affected by turbulence than their fully coher-
ent counterparts and hence might be better suited to at-
mospheric applications. Earlier work focused on the aver-
age beam width'™® and coherence properties of such
beams, while more recent studies®® have shown that un-
der proper circumstances the scintillation properties
could be superior for partially coherent beams.

The studies mentioned above focus primarily either on
coherent Gaussian beams or on Gaussian Schell-model
beams,9 a broad but special class of optical fields with a
Gaussian intensity profile and a Gaussian correlation
function. There is significant evidence, however, that
other classes of beams might provide even better improve-
ment. Notable among these are nondiffracting beams,’
which have been shown theoretically to be resistant to
amplitude and phase fluctuations!! and therefore possibly
to turbulence,'®!? and also vortex beams,*!® whose in-
herent orbital angular momentum may provide additional
resistance.®
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Due to the complex nature of atmospheric turbulence,
calculations involving beams of arbitrary shape and co-
herence are difficult and must be started over for every
new field. A formalism for studying general beam classes
is therefore desirable but does not currently exist. In
physical optics, however, the angular spectrum
representation’ of wave fields has been extremely suc-
cessful in the study of both coherent and partially coher-
ent fields of arbitrary shape. This representation involves
the decomposition of a general field into a sum of plane
waves of different directions, which can then be individu-
ally propagated through the optical system of interest.
The field at any point throughout the optical system can
be calculated by recombining the contributions of the in-
dividual plane waves. Because the propagation character-
istics of plane waves in turbulence are well known,!” such
an approach seems helpful for atmospheric propagation
problems as well.

In this paper, we introduce an angular spectrum repre-
sentation for partially coherent fields of arbitrary inten-
sity profile and spatial coherence propagating in atmo-
spheric turbulence. In particular, we derive an expression
for the cross-spectral density function of the field (second-
order coherence properties). Also, the method is outlined
for the calculation of the intensity correlations (fourth-
order coherence properties) in this representation. We il-
lustrate the method by applying it to the propagation of
several model beams. We first demonstrate that the tech-
niques lead to the results, which are in good agreement
with ones based on the classic approach, using (coherent)
Gaussian beams and Gaussian Schell-model beams. We
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then show how the method works for (coherent) Bessel
beams.

2. ANGULAR SPECTRUM REPRESENTATION
OF OPTICAL FIELDS PROPAGATING
THROUGH A RANDOM MEDIUM

A. Coherent Fields

We start by considering a monochromatic field U(r, w) at
frequency o at a point with position vector r=(p,z),p
=(x,y) propagating in vacuum from the plane z=0 into a
positive half-space z >0 (see Fig. 1). The space-dependent
part of this field can be expressed in terms of its angular
spectrum of plane waves (see Ref. 9, Subsection 3.2.2),
ie.,

U(ryw) = f f a(u7 w)Pu(r’ w)dzuLv (2'1)

where
P,(r,w) =explik(u-r)] (2.2)

is the plane wave propagating in the direction specified by
unit vector u=(u,,u,,u,), k=w/c is the wavenumber, c is
the speed of light in vacuum, u, =(u,,u,,0), and

u,= +\1-u?. (2.3)

We take the integration in Eq. (2.1) over the region |u | |
=1, which is equivalent to assuming that the evanescent
waves of the angular spectrum can be neglected. In Eq.
(2.1), a(u,w) is the amplitude of a plane wave in the an-
gular spectrum, which can be determined from the field
Uy(r',w) in the source plane by the formula

1
a(u,w)=W f f Uo(r', )P, (r',0)d%', (2.4)

where r'=(p’,0), p’=(x",y’) is a point in the source plane,
and the asterisk denotes complex conjugation.

If the field propagates in a random medium, which fills
the half-space z>0, we may write a formula similar to
Eq. (2.1),

Fig. 1. TIllustrating the notation.
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U(r’w)=ffa(u’w)Pg(r’w)d?ul’ (25)

where Pz(r,w) represents a plane wave distorted by the
random medium with direction u and evaluated at a point
r.

The statistical moments of any order of the field at
points with position vectors r; and ry can then be evalu-
ated from Eq. (2.5). For example, the second moment of
the field at a pair of points, also called the cross-spectral
density function, is defined as

W(ry,ry,0) = (U (ry,0)U(rs,0)), (2.6)

where angular brackets denote the ensemble average in
the sense of the coherence theory in the space-frequency
domain.®

When the field propagates in the medium, the cross-
spectral density function then takes the form

W(rl’r2’ (l)) = <U*(r1’ (l)) U(I‘z, (!))>

[ fmen

X<P£j(1'1,w)P‘TIZ(Pz,w)>Td2uud2uu- (2.7

Here, subscript 7' denotes the average taken over the re-
alizations of the fluctuating medium.

The beam intensity I(r) at a point with position vector
r can be calculated from the last expression by taking r;
=r,=r, ie,

Ir) =W(r,r,0) = (U'(r,0) U, o). (2.8)

B. Partially Coherent Fields

Fluctuations in a partially coherent field at a pair of
points r;=(p;,z) and ry=(py,z) may be described in terms
of the cross-spectral density function,

W(rl’r25w) = <U*(r15(1))U(r2’ (())>, (29)

points r; and ry belonging to the positive half-space z
>0. In vacuum, the cross-spectral density function can be
represented in terms of the angular spectrum of the plane
waves of the form®

W(ry,ry,w) = fffA(ubuz,w)Pil(I'bw)PuZ(rz,w)

xd?uq, d%u,, , (2.10)
where
A(ulyuZ’ (1)) = <a*(u17 w)a(U2, (1))> (211)

is the angular correlation function given by the formula

1
A(ul’u2aw) = w f f f f W(O)(ri’réﬂﬂ)

XP, (r}, )Py, (ry,w)d’rid’ry. (2.12)

When a partially coherent field described by Eq. (2.10)
propagates in a random medium, its mutual coherence
function is given by the expression
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W(rl’rZ’w)=JfffA(u1>u2’w)

X<P17;j(r17w)Pz;Z(rz,w))dQUM_dQuzL.

(2.13)

It is to be noted that this formula incorporates two en-
semble averages: the average over the fluctuations of the
field in the source plane and the average over the fluctua-
tions of the random medium. It is assumed here that
these two averages are statistically independent. Also, it
can be seen from Eq. (2.13) that the statistical properties
of the field are contained entirely in the function
A(u;,uy,w), which is completely independent of the sta-
tistical properties of the medium. Hence, once the statis-
tical properties have been calculated for a given medium,
the propagation characteristics of a beam of any type may
be evaluated in a straightforward manner by carrying out
the integral above.

3. SECOND-ORDER RYTOV THEORY FOR
TILTED PLANE WAVES

Consider a wide-sense statistically stationary plane-wave
field Pz(r,w) propagating through a weakly scattering
random medium. At any point with position vector r at
frequency w, the field can be represented by a so-called
Rytov series (cf. Ref. 17, p. 102),

PL(r,0) = Py(r,w)exp[yy (r,0) + Y2 (r,0) + -],
(3.1)

where P,(r, o) is the plane wave in the absence of the me-
dium and ¢S)(r,w), ¢f)(r,w) are the complex phase per-
turbations of the first order and of the second order, re-
spectively.

Keeping terms to only second order in the Rytov ap-
proximation, we may write the cross-spectral density
function Wy 4,(r;,re, w) for two plane waves propagating
in turbulence as

Wul uz(rl’rZ’w) P (rl’ w)PuZ(rZ’ w)<exp[ (1) (rl’ (1))

2" (1, 0) + YL, 0) + Y2, 0))).
(3.2)

This expression can be simplified by using the method of
cumulants; keeping terms to second order, we may ap-
proximate the average of an exponential function as

1
(exp[y]) = eXp{(lﬂ) + §(<¢f>2 - <l!/>2)} . (3.3)

We show in Appendix A that by applying the Rytov ap-
proximation together with the method of cumulants, the
cross-spectral density may be written in the form

(rl’r2a (1)) P (rl’ (!))P (r2’ w)eXP[ZE(l) (rl’rZ’ (1))

u1 Uy u;,uy

E( ) (I‘l,rz,w)], (34)

upuy

where

Vol. 24, No. 3/March 2007/J. Opt. Soc. Am. A 747

Elll)u (r{,ry,w) = —7Tk2J dezxdbn(z K), (3.5)

L
EEIZI)YUZ(rl,rZ,w)=27Tk2 f dz f f d2k®,(z, K)
0

Xexp[-i(L -z)(u; —uy) - K]

Xexp[-i(ry—ry) - K], (3.6)

where ®,,(z, k) is the power spectrum of atmospheric fluc-
tuations, r=(k,,x,,x,) is the spatial frequency vector.
Similar expressions have been derived previously for the
special cases of a single, normally incident plane wave, a
spherical wave, and a Gaussian beam (Ref. 17, Subsection
5.5.3).

In the case when the atmosphere is isotropic, Egs. (3.5)
and (3.6) reduce to the expressions

L 0
EY (rz—rl,w)=—2772k2f dzf kdk®,(z,K),
0 0

u;,uy

(3.7)

up,uy

L 0
E?  (ry-r,0)=41%k? f dz f kdk®,(z, k)
0 0

XJo[kl(ry, —r1,) = (L -2)(ug, —uy )],
(3.8)

where J is the Bessel function of the first kind of zero or-
der and «=|x|.

If the power spectrum of atmospheric fluctuations does
not depend on z, e.g., in the case when the beam propa-
gates along the horizontal path, Egs. (3.7) and (3.8) can be
further reduced. The moment E( ) (rz—rl,w) then takes
the form

0

EW (rz—rl,w)=—2ﬂ2k2Lf kdk®, (k).  (3.9)

Uty
0

The expression for the moment E(l) (ro—rq,w) may be
made more analytically tractable by expandlng the Bessel
function in a familiar series form,

JO[K|(r2L -ry,)-z(uy, - uu)H

= E Jm[K‘I‘ZL - rll']Jm[KZ|u2L - ulil]ei’"("’f"””),

m

(3.10)

where o/, is the Bessel function of the first kind of order
m, ¢, and ¢, are the angles that the vectors ro, —r;, and
uy, —u;, make with the x axis, respectively. We then use
the closed form [Ref. 18, Eqs. (11.1.3) and (11.1.4)] for the
integral over the propagation path z,
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«Llug-u,|
f Jo(t)dt

L 1
f dsz[Kz\uz—uﬂ]:—
0 K|u2 _u1| 0

m-1
-2 E J2k+1(KL|u2 - uﬂ)]
k=0

(3.11)

if m is even and

L 1
f dZJm[KZ|UQ—u1|]=— 1 —J()(KL|u2—ul|)
0 Klug,uy|

-2 Jop(kLuy - uﬂ)] (3.12)

k=0

if m is odd. The integral for Ef)’u (rg—-rq, ) can therefore
be written as a sum of a series of one-dimensional inte-
grals in «.

With these results, the propagation of a general beam-
like field may be calculated by substituting from Eq. (3.4)

into Eq. (2.13), and one finds that

W(rlvrQ’a)) = f f f fA(ulauQ’a))Pi;l(rl9w)PuZ(r27 (1))

X eXp[2E5111),u2(r17r2?a)) + E(2) (r17r2’ (1))]

upuy
xd?u | 1d%u 5. (3.13)

This formula is the main result of our paper. It is an ex-
pression, which can be used to calculate the second-order
characteristics of a general partially coherent beam
propagating in turbulence.

It is to be noted that the results described here can be
extended to calculate the fourth-order characteristics of a
partially coherent field propagating in turbulence, as
would be needed in studies of intensity fluctuations. The
needed turbulence characteristic is the average (over the
turbulence) of the product of four plane-wave fields, and it
can be shown in a manner similar to that used above that
this quantity has the form

(PP ()P, (ry) P (ry)
=P, ()P, (r3)P,, (r3)P, (ry)
xexp[4EW + EP)(1,1) + EP(1,2) + EF)(2,1)
+E$)(2,2) + EPY(1,2) + EY) (1,2)], (3.14)

where

L
E®(1,2) = - 2mk? J dz f f d%kd,,(z, K)e 2x (a1
0
X gl #(x1=To) pizilh

and E® and E® are defined as above. These calculations
will, in general, be difficult, due to the eightfold angular
spectrum integral required as well as known challenges
in defining higher-order coherence functions in the space-
frequency domain.'® Fourth-order propagation character-
istics will be considered in more detail in future work.
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4. EXAMPLES

We illustrate the effectiveness of our theory by consider-
ing the propagation of several well-known classes of
beams. In all cases, the turbulence is modeled by the von
Karman spectrum,17 given by the relation

exp[— k¥/k%]

@, (k) = 0.33C> ,
n ) (K2+ Kg)ll/ﬁ

(4.1)

where C,21=10‘14 m28 k,=5.92/1,, with inner scale [,
=1mm, and ko=1/1(, with outer scale ;=10 m.

A. Coherent Gaussian Beams
A fully coherent Gaussian beam in the source plane is
given by the expression

2
Uy(r,w) = U, eXP<—ﬁ>, (4.2)

where U is the amplitude and o is the width of the beam,;
it is to be noted that both parameters may, in general, de-
pend on frequency w. On substituting from Eq. (4.2) into

I(r, 1000 m)
I,

0.1

081
0.6¢
04

021

0.02 0.04 0.06 0.08 0.1

Fig. 2. Intensity profile of a typical coherent Gaussian beam,
with o=3cm, at propagation distances L=1000m and L
=1500 m. The solid curve is the angular spectrum result, while
the dashed curve is based on a standard method. The dashed—
dotted curve shows the profile of the beam in the absence of
turbulence.
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Eq. (2.4), the angular spectrum is readily found to be
given by the formula

k2u202>
. (4.3)

’ =—U -
a(u,w) o 0exp< B

This formula may be substituted into Eq. (2.7) and nu-
merically evaluated to determine the cross-spectral den-
sity of the field at any propagation distance L through the
atmosphere. Figure 2 shows the radial intensity profile of
the Gaussian beam at distances L=1000m and L
=1500 m from the source plane, with 0=2 cm. The solid
curve is based on our angular spectrum calculation, while
the dashed curve is based on a standard approximate
method of calculating Gaussian beam propaga‘cion.16 Ex-
cellent agreement can be seen between the curves. The
dashed-dotted curve shows the profile of the beam in the
absence of turbulence.

B. Gaussian Schell-Model Beams

The cross-spectral density function of a Gaussian Schell-
model beam (Ref. 9, Subsection 5.6.4) in the source plane
is given by

riyr: (ry+1)?
Wy(ry,re,w) =1 exp| - ——— |[exp| - —— |,
o(r1,r,0) =1 exp 20_% P 20%

(4.4)
where [ is the on-axis intensity, oy is the rms width of the
intensity, and o, is the correlation length of the field. On

substituting from Eq. (4.4) into Eq. (2.12), one obtains for
the angular correlation function the expression

1 kz(u2 + u1)20'?
A(uy,uy,0) = 9100%0'2 exp| - —
{ k2(ul- u%)(rzl
Xexp| - ———— |, (4.5)
8
where
2 1/ 1 1\

We may substitute from Eq. (4.5) into Eq. (3.13) and nu-
merically evaluate the resulting integral to determine the
cross-spectral density of the field at any propagation dis-
tance through the atmosphere. Figure 3 shows the radial
intensity profile of a Gaussian Schell-model beam at L
=500m and L=1000m from the source plane, with oy
=2cm and 0,=2 mm. The labeling of the curves is the
same as in Fig. 2. It can be seen that there is excellent
agreement again between the angular spectrum method
and the standard method of calculation. Also, it is to be
noted that there is less difference between the beam pro-
file in free space and turbulence as compared to the coher-
ent case, a rough indication that partially coherent beams
are less affected by the turbulence.

C. Nondiffracting Beams

In recent years, so-called nondiffracting beams (so named
because an ideal example will not spread on propagation;
also referred to as Bessel beams) have been studied exten-
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I(r, 1000 m)
1.

0.8}
0.6
04}
02}
0.05 0.1 0.15 02
]

I(r, 1500 m)
1.

0.8}
0.6
04F
02}
0.1
]

Fig. 3. Intensity profile of a typical Gaussian Schell-model
beam, with ;=3 cm and o,=1cm, at propagation distances L
=1000 m and L=1500 m. The solid curve is the angular spectrum
result, while the dashed curve is based on a standard method.
The dashed—dotted curve shows the profile of the beam in the ab-
sence of turbulence.

sively and hold promise for a number of applications.’
Among the intriguing properties of such beams is their
ability to self-reconstruct after diffraction by a semitrans-
parent obstacle.!! This property has led a number of
authors'>! to suggest that nondiffracting beams are less
affected by turbulence than Gaussian beams and plane
waves.

We have applied the angular spectrum method to study
the intensity profile of ideal nondiffracting beams on
propagation. The field of such a beam in the source plane
is given by

Uy(r,0) = Ao (k,x]), (4.7)
where J is the Bessel function of the first kind and order
zero and ry=2.40/k, is the radius of the center lobe of the
beam.

The angular spectrum of such a beam can be found us-
ing Eq. (2.4) to be given by the formula,

a(u,w) =A05(k|u| _ka)7 (48)

where 6 is a delta function.
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Figure 4 shows the radial intensity profile of a beam
with ro=1cm for various propagation distances. This
beam is much more influenced by turbulence than the co-
herent Gaussian beam considered earlier; the on-axis in-
tensity of the Gaussian beam is reduced to roughly 70% of
its initial value by 1500 m, while the on-axis intensity of
the Bessel beam is reduced to roughly 35% by 1500 m.

For a beam with ry=3 cm, however, the propagation be-
havior is significantly improved. Figure 5 shows the ra-
dial intensity profile of the beam at various distances. The
on-axis intensity of the beam is reduced to only 75% by
1500 m, a significant improvement over the Gaussian
case.

This behavior is markedly different from that of a co-
herent Gaussian beam, for which a wider beam corre-
sponds to a shorter degradation-free path. In contrast, for
an ideal Bessel beam, a wider beam corresponds to a
longer degradation-free path. Our results suggest that a
Bessel beam can show resistance in turbulence, but that
this resistance is highly dependent on the beam width.

The results shown here are for an ideal Bessel beam,
which is unrealizable in practice due to its infinite

I(r,L)
It 1=250m
081 1=750m

0.6 L=1000 m

L=1250m
0.4\

L=1500m
0.2
0.02 0.04 0.06 0.08 0.1
¥
Fig. 4. Intensity profile of a nondiffracting beam, with r,

=1 cm, for different propagation distances L.

I(r,L)
1

L=250m
L=750m
L= I?SOOm
L=1250m
0.8 L=1500 m
0.6
04
0.2
0.02 0.04 0.06 0.08 0.1
x|
Fig. 5. Intensity profile of a nondiffracting beam, with r

=3 cm, for different propagation distances L.
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energy—it is expected that the performance of a realistic
Bessel beam will be limited also by its finite free-space
spreading.

5. CONCLUDING REMARKS

We have developed a technique based on the angular
spectrum representation of the fields and on the Rytov ap-
proximation for the calculation of the second-order statis-
tical properties of arbitrary coherent and partially coher-
ent beamlike fields. Our method is valid in the regime of
weak atmospheric fluctuations; however, it can be, in
principle, applied for any model of the atmospheric power
spectrum. Moreover, for a chosen model of power spec-
trum and for the fixed propagation path, the basic quan-
tities of the Rytov theory [i.e., the statistical moments E
and E® for a pair of plane waves] are calculated only once
and can be tabulated. The cross-spectral density of the
beam (and, hence, various beam characteristics of inter-
est, e.g., the intensity, the beam spread, the degree of co-
herence) can then be evaluated for different classes of
beams. We have suggested that the same method also
works for the calculation of the higher-order moments of
the beam, subject to the additional evaluation of the sta-
tistical moment E® (see Ref. 17, p. 106).

The results presented in this paper might result in the
improvement of the quality of the imaging systems and
communication systems operating over turbulent chan-
nels, as the suggested method provides a fast tool for se-
lecting and/or adjusting a beam source optimal for the
chosen atmospheric path.

APPENDIX A: DERIVATION OF E® AND E®
FOR A PAIR OF TILTED PLANE WAVES

In this appendix, we derive the expressions for EV and
E® given in the paper. We first note that the first-order
Rytov approximation for a tilted plane wave has been de-
rived previously.QO’21 This expression is given by the for-
mula

L
E})(r,w)z—ikJ dzJfdzkgn(z,lc)exp[—i(L—z)u-K]
0

) i(L-2) ,
Xexplik-rlexp| — o K|, (A1)

where k=27/\ is the wavenumber, \ is the wavelength,
and g,(z,k) is the two-dimensional Fourier transform of
the fluctuating part n(r,z) of the refractive index n(r,z),
ie.,

1
&n(z, ) = yy] f f n,(r,z)exp[-ix-r]. (A2)
The fluctuating part of the refractive index n; is assumed
to have zero mean; this implies that
(dP(r,w))=0. (A3)

We now apply the method of cumulants to the phase
factor in Eq. (3.2), and it is straightforward to show that



G. Gbur and O. Korotkova
(explyny) (r1,0) + Y (r1,0) + Y (ra, ) + Y3 (ra, 0)])

= exp[wi?f*(rl,w) + Y (rp, )

+o ((l/f“) (rw)+ ¢(1)(r2,w))2>] (A4)

where only terms of second order in the refractive index
have been retained. The terms of this formula may be re-
arranged into the form

<exp[¢(1) (rl’ ) ¢(2) (r17 (1)) + lp(l)(rZ’ (1)) + ¢(2)(r2’ w)]>

=exp[ Y (rg,0) + = (wm (r1,©)% + Y (rp, 0)

( Y (12, 0))* }eXpR ) (01, 0) Y (2, 0))].

(A5)

The average of the right-most term may be determined
in a straightforward way, using Eq. (A1) and the defini-
tion of the refractive index power spectrum,

21D, (2,100 8z —2') 8 (1 — 1) = (g, (2", 1) (2, 1)),

(A6)

and takes on the form

(Y] <1) (rl,w)w(l)(rz,w» 47hk? f f f d2k®,(z, k)

Xexpliz(u; —uy) - kK+ik: (ry—1ry)].

(A7)

This expression is exactly E?, as given in Eq. (3.5). To
evaluate the left-most term of Eq. (A5), we need to deter-
mine the second-order Rytov approximation for a tilted
plane wave. It can be shown that the first- and second-
order Rytov approximations, ¥/ and 2, are related to
the first- and second-order Born approximations ¢ and
¢? by the formulas

PP, 0) = P (r,v), (A8)

1
P2 (r,w) ¢ (r,w) - 5¢53>2<r,w>. (A9)

This latter equation can then be written as
(2) (2) 1 (1)2
by (r,0) =y (r,0) + 3t (r,), (A10)

which is exactly the left-most term of Eq. (A5). The
second-order Born approximation can be shown to have
the expression
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ik3 L z
e af ] furf o] [
2m J, o

ikls — |

m} expliu,(z - L)]

Xexplik(L - z)]exp[

Xexpliku- (s—r)]

Xexpli(k+ k') - slg,(2,0)g8,(z", k')

-i(z-2") ,2:|

Xexp[— i(z —z’)u-x’]exp|:— o

(A11)

The ensemble average of this quantity can be evaluated
using the complementary formula for the refractive index
power spectrum,

27D, (z, k) (z -2k + k') = (g, (2", K")g,(z,K),
(A12)

and by evaluating the integral of the spatial variable s.
We are left with the expression

L ©
& (r,w) = - 4k f dz f kdk®,(z,k).
0 0

We define this expression as 2E) and we have completed
the derivation of Eq. (3.4).
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