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The combination of an angular spectrum representation (in the space—frequency domain) and the second-order
Rytov perturbation theory is applied for description of the second-order statistical properties of arbitrary (co-
herent and partially coherent) stochastic electromagnetic beamlike fields that propagate in a turbulent atmo-
sphere. In particular, we derive the expressions for the elements of the cross-spectral density matrix of the
beam, from which its spectral, coherence, and polarization properties can be found. We illustrate the method by
applying it to the propagation of several electromagnetic model beams through the atmosphere. © 2007 Op-

tical Society of America
OCIS codes: 010.1300, 260.2110, 260.5430.

1. INTRODUCTION

In a recent publication [1] a new theory was developed for
the calculation of the second-order statistical properties of
random scalar beams, generated by planar secondary
sources with arbitrary spectral density and arbitrary
spectral degree of coherence, which propagate in weak at-
mospheric turbulence. That theory relied on angular spec-
trum representation [2] for description of sources that
generate the beams and on Rytov’s perturbation theory
[3] for characterization of fluctuations of the refractive in-
dex in the atmosphere. The results based on that theory
were found to be in good agreement with those calculated
from the standard methods known for several classes of
beams, e.g., Gaussian beams and Gaussian Schell-model
beams [2]. Moreover, the behavior of statistical properties
of the other previously untreated types of beams, e.g.,
Bessel beams, has been obtained.

Recently, a good deal of research was carried out to de-
scribe the behavior of stochastic electromagnetic beams in
free space [4-6] and in random media, such as the atmo-
sphere [7,8] or human tissue [9,10]. For electromagnetic
fields, in addition to their spectral and coherence proper-
ties, the polarization properties are also of interest. If the
electromagnetic beam is monochromatic, then it may be
described in terms of the two-dimensional Jones vector
and its state of polarization at any point is represented by
the polarization ellipse [2]. If the electromagnetic beam
has a random nature, then it may be characterized by the
2X 2 cross-spectral density matrix [11] and its polariza-
tion properties consist of the degree of polarization and
the state of polarization of its completely polarized part
(i.e., its polarization ellipse) [2]. Especially important re-
sults have been recently found relating to the possible
changes in all polarization properties of electromagnetic
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random beams on propagation, even in free space [4,6].
However, the only model beams that have been used for
such calculations are the so-called electromagnetic
Gaussian Schell-model beams [5].

In the present paper we extend our work in [1] to the
electromagnetic domain; i.e., we develop the technique for
the description of the (second-order) statistical properties
of arbitrary electromagnetic beams that propagate in
weak atmospheric turbulence. We first consider mono-
chromatic electromagnetic beams and then random elec-
tromagnetic beams.

We also demonstrate the usefulness of the new ap-
proach by calculating the polarization properties of sev-
eral model beam classes on propagation through atmo-
spheric turbulence. In particular, we compare the results
based on the new technique with those obtained by the
standard technique [3] relating to propagation of the de-
gree of polarization of electromagnetic Gaussian Schell-
model beams in the atmosphere [7].

2. ANGULAR SPECTRUM REPRESENTATION
OF ELECTROMAGNETIC BEAMLIKE

FIELDS PROPAGATING IN WEAK
ATMOSPHERIC TURBULENCE

A. Monochromatic Fields

We start by considering a monochromatic electric vector
field E(r,w)=[E,(r,w),E,(r,w)] at frequency w at a point
with position vector r=(p,z),p=(x,y) propagating in
vacuum from the plane z=0 into the positive half-space
z>0 (see Fig. 1). Vector E(r,w) is conventionally known
as a Jones vector, with E,(r,») and E,(r, ) being its two
mutually orthogonal components. The space-dependent
part of each of the two components of the Jones vector can

© 2007 Optical Society of America
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Fig. 1. Tllustraton of the notation relating to the propagation of
beams.

be expressed in terms of its angular spectrum of plane
waves [2]. The vector a(u,w)=[a(u,w),a,(ua,w)] is the
electromagnetic generalization of the scalar angular spec-
trum function, and we have

Ei(ry w) = J J ai(u’ w)Pu(ryw)d2uL’ (l =x’y)7

(2.1)
where
P,(r,0) =explik(u-r)] (2.2)

is the plane wave propagating in the direction specified by
unit vector u=(u,,u,,u,), k=w/c is the wavenumber, c is
the speed of light in vacuum, u, =(u,,u,,0), and

u,= +y1-u’. (2.3)

We take the integration in Eq. (2.1) over the region |u ||
=<1, which is equivalent to assuming that the evanescent
waves of the angular spectrum are neglected. The ampli-
tudes of plane waves a;(u, ), (i=x,y) in the angular spec-
trum [see Eq. (2.1)] can be determined from the field
El(-o)(r’ ,w) in the source plane by the formula

1
(2m)?

a;(u,w) =

f f EO@r 0Py (r',0)d%,  (i=xy),

(2.4)

where r'=(p’,0), p’=(x",y’) is a point in the source plane
and the asterisk denotes complex conjugation.

In order to describe one realization of the field that
propagates in a random medium filling the half-space z
>0, we may write a formula similar to Eq. (2.1),

Ei(r7 (1)) = f f ai(u, w)P‘Y;(r,w)dZuL, (L =x,y)7

(2.5)

where Pz(r, w) represents a plane wave propagating
through the random medium along direction u. It is to be
noted that PT(r, w) itself is a random function and that its
exact behavior not known, but its average properties can
be determined, as we shall see.

The statistical moments of any order of the field ran-
domized by the medium in which it propagates can be
evaluated from Eq. (2.5). For example, the second mo-
ment of the field at a pair of points with position vectors
r; and ry, called the cross-spectral density matrix, is de-
fined as [11]
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Wij(rl>r27 (,O) = <Ej(rl,w)Ej(r27w)>T7 (ixj=x)y)7

(2.6)

where angle brackets denote the ensemble average over
the realizations of the medium. For convenience, this ma-
trix will occasionally be referred to by its dyadic form,
W(rl 25 (1)) .

On substituting from Eq. (2.6) into (2.5) we find that

Wij(rbr%w):ffffaj(ulyw)aj(u2rw)

X(PG (1, )Py (r9,))rd%uy, d%us

@y =x.y). (2.7)

B. Random Fields

Fluctuations in a partially coherent electromagnetic field
at a pair of points r;=(p;,z) and ry=(py,z) located in the
half-space z>0 may be described in terms of the 2X2
cross-spectral density matrix with elements [11]

Wij(rl’r23w) = <E;k(r1’w)Ej(r2’w)>y (ixi=x’y)’
(2.8)

where the ensemble average is taken over the realizations
of the random field. In vacuum the elements of the cross-
spectral density matrix can be represented in terms of an
angular spectrum of plane waves of the form [12]

Wij(r1>r2;w)=ffffAij(ul’u2’w)Pil(rl;w)

X PuZ(r2>w)d2u1Ld2u2i: (i,j=xy),

(2.9)
where

Aj(a,uy,0) = <a:(u1,w)aj(u2,a))> (2.10)

are the elements of the 2 X2 angular correlation matrix
given by the formula [12]

1 .
Aij(“huz,w)=wffffWEJQ)(ri,ré,w)Pul(rl,w)

X Puz(ré,w)dzrhdzréi, (i =x9).

(2.11)

Angular brackets in Eq. (2.10) denote averaging over the
ensemble of realizations of the field. This matrix is the
electromagnetic generalization of the well-known angular
correlation function of the scalar coherence theory [2].

When a partially coherent field described by Eq. (2.9)
propagates in a random medium, its mutual coherence
function is given by the expression
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Wij(rl,rz,w)=fffjAij(ul’uz,wxpsj(rl’w)

X P‘T;Z(l‘z,w»szuudzuu, (ij=x).

(2.12)

This formula incorporates two ensemble averages: the av-
erage over the fluctuations of the field in the source plane
and the average over the fluctuations of the random me-
dium. It is assumed here that these two averages are sta-
tistically independent. The statistical properties of the
field are contained entirely in the four angular correlation
functions A;(u;,ug,w), (i,j=x,y), which are completely
independent of the statistical properties of the medium.
Hence, once the statistical properties have been calcu-
lated for a given medium, the propagation characteristics
of a beam of any type may be evaluated in a straightfor-
ward manner by carrying out four integrals, one for each
of the components of the cross-spectral density matrix.
The expression for the pair-correlation function of two
tilted plane waves that propagate in the atmosphere was
derived in [1] on the basis of Rytov’s perturbation theory.
When the atmosphere is homogeneous and isotropic and
its power spectrum does not depend on propagation path,
the cross-spectral density function of the two plane waves
propagating in turbulence can be expressed as

<P171W1<(r17 (I))PEZ(I'% (1))> = le(rly w)Puz(r25 (1))
x exp[2Hy ), (0) + HY , ()],

(2.13)

where the statistical moments H" and H® of the pair of
tilted plane waves are given by the formulas

L

Hi}f,uz(w) =—27%k%L f k®,(k,2)dxk, (2.14)
0
L %
HY), (0) =477k f dz j Kkd D, (1,2)
0 0
X JO[K‘(rZL -ry)
- (L-2)(ug, —uy)[]. (2.15)

Here ®,,(x,z) is the power spectrum of atmospheric fluc-
tuations, « is the spatial frequency, and J;, is the Bessel
function of the first kind of order zero. The integral in Eq.
(2.15) can be made computationally tractable using prop-
erties of Bessel functions, as discussed in [1].

On substituting from Egs. (2.13)—(2.15) into Eqgs. (2.7)
and (2.12), we obtain, respectively, the expressions for the
elements of the cross-spectral density matrix of the coher-
ent (monochromatic) and partially coherent electromag-
netic beams propagating in the atmosphere.
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3. STATISTICAL PROPERTIES OF
ELECTROMAGNETIC FIELDS: SPECTRAL
DENSITY, DEGREE OF COHERENCE,
AND DEGREE AND STATE OF
POLARIZATION

A. Monochromatic Fields

In the case when the electromagnetic beam is generated
by a monochromatic source, then the only properties of in-
terest in the source plane are the spectral density and the
spectral polarization ellipse. Assume that the electric vec-
tor field in the source plane is given by the expression

EOr;0)=[EPVr;0),E ' ;0)]. (3.1)

The spectral density of the beam at a point r’ is defined
by the formula

SO ;0) = EV (" ;) EQ(r'; ) + E;O)*(r’;a))E;O)(r’;a)).
(3.2)

The state of polarization of the beam at this point is de-
fined by the parameters of polarization ellipse given by
the equation

(E;°><r’,w>)2 (EL°><r',w>)2 LW B0
+ -_—

a

cos 0

Ay ay as

=sin? 5, (3.3)

where a4, as are the amplitudes of the electric field com-
ponents and 8=, — &; is their phase difference. Since the
beam is deterministic at the source, the degree of polar-
ization and the degree of coherence are unity in this case.

After propagation through atmospheric turbulence, the
monochromatic electromagnetic beam becomes stochastic.
Then its spectral density at any point r within the beam
can be found from the expression [11]

S(r;w) = Tr{W(r,r;w)], (3.4)
where Tr is the trace of the matrix.

The degree of polarization P(r;w) of the beam is de-
fined by the expression [11]

\/ 4 Det[W(r,r;w)]
P(r;w) = 1-—), (3.5)
TrW(r,r; )]

where Det stands for the determinant of the matrix.

The state of polarization of the polarized portion of the
beam can be represented in terms of the polarization el-
lipse

C(r;w)el*~2Re D(r;w)e) el + B(r;w)e

=[ImD(r;w)]?, (3.6)

x) and €” are time-independent components of
the “equivalent monochromatic electric field” at point r
and oscillating with frequency w. Here quantities B(r; w),
C(r;w), and D(r;w) are related to the elements of the
cross-spectral density matrix by the formulas [6]

where €
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B(r;0) = 5 (W = Wy + (W = W, )% + 4[W,, ),

C(r;0) = 5 (W = W,y — (W = W,)2 + 4 Re[W,, 1),

Dir;w) =W, (3.7)

where we have dropped the arguments (r;w) of the ele-
ments of the cross-spectral density matrix for brevity. It
will be convenient to characterize the orientation and the
shape of the ellipse by the following two quantities: The
orientation angle 0 < §< 7 defined as the smallest positive
angle between the positive x direction and the direction of
the major axis of the ellipse is given by the formula

2 Re[W,,(r, )] }
. (3.8)
W (r,0) = W, (r,w)

1
o(r,w) = 3 arctan{

The shape of the polarization ellipse can be determined
from the value of the degree of ellipticity 0<e<1, given
by the expression

er,w) = —2 (3.9)

major

where A, and A, are the semiaxes of the ellipse
given by

2

major/minor

= %[\’(Wxx - Wyy)2 + 4|VVacy|2

+ (W, - W,,)% + 4 Re[W,, . (3.10)

The degree of coherence of the beam at a pair of spatial
arguments propagating in the atmosphere can be calcu-
lated by the formula [11]

Tr[W(ry,rs;0)]

VT W(y 14 0) VT W (s r050)]
(3.11)

7(ry,re;0) =

B. Random Fields
For the beams generated by random -electromagnetic
sources, the calculations of the second-order statistical

W(O)(rl7r2 > w) = #
() \

Il(w)eikl-(rz—rl)

Il(W)Iz(w)ei(kl'rZ_kz'l'1)
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properties in the plane of the source and in the field are
the same: They are calculated from the elements of the
cross-spectral density matrix; i.e., formulas (3.4)—(3.6)
and (3.11) can be used.

Unlike for monochromatic beams, for partially coherent
beams the degree of polarization and the state of polariza-
tion of its fully polarized part should be calculated both in
the source plane and in the field, since, as was recently
shown [7,8], these properties of the beam can generally
change on propagation.

4. EXAMPLES

In order to illustrate the usefulness of our method, we will
consider several examples relating to the behavior of
model random electromagnetic fields propagating in an
isotropic and homogeneous atmosphere. The power spec-
trum of atmospheric turbulence is taken to be von Kar-
man, i.e.,

exp(— k¥/k2)
(K2 + K(2))11/6 ’

where Ci: 1074 m=23, «, =5.92/1,, and xy=1/L, with in-
ner scale [,=5 mm and outer scale Ly=10 m.

®, (k) =0.033C?

A. Two Tilted Correlated Plane Waves

Let us first consider the field that consists of two mutu-
ally orthogonal infinite polychromatic plane waves E;(w)
=K1 and E,(w)=e®2™, propagating along directions ki
and k, respectively, i.e., the field of the form

E(0) = E (0)x + Ex(w)y, (4.1)

where X and ¥ are unit vectors in the Cartesian coordinate
system.

Suppose that the average intensities of the plane waves
are (|Ei(w)))?=I1(w), {|Eq(w)))2=I5(w), respectively, and
that the plane waves are mutually correlated, i.e.,
(Ey(0)Ex(w))=u(w)\I1(0)I5(w), where 0<|u(w)|<1 is the
correlation coefficient.

On substituting from Eq. (4.1) into Eq. (2.6), we find
that the cross-spectral density matrix of this model field
at any two points in space is given by the expression

(o) \r’me“kz"”z‘kf””] _ (4.2)

Iz(w)eikz-(rz—rl)

On substituting the elements of the matrix (4.2) into Eqgs. (3.5), (3.8), and (3.9), we find that the polarization properties

of this field are given by the formulas

V1 (@) = Iy())® + 4] w(@)PI (@) [5(w)

PO(y) = , 4.3
@ Ii(w) +15(w) (4:3)
1 2 Ri w)\I{(w)\Is(w
0(0)(w)=—arctan el u( )\ 1( )\ 2(w)] ’ (4.4)
2 I(w) = Iy(w)
(o) V1 = Ip)* + 4| () PT (o) y(w) = \(I1 - I5)* + 4 Re w(w) PT; (0)Iy(w) 5)
e (w) = .

VI - )% + 4] () P (0)Iy() + (T - I)* + 4 Re[ () PLy(0)I5(0)

When the field propagates through the turbulent atmosphere, its cross-spectral density matrix has the form [see Eq. (2.9)]
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L @ m)(PT(r) PT" (ry))
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LI k(P () PT (1))

W(r o) =| . —— . " . - s 4.6
o002 | Tt Pl Py Lm0y PL () (46
where we have dropped o dependence on the right-hand side and
(P(xy)PT" (1)) = P} (x1) Py (ry)exp[2HY + HY],
<Pf*(r1)P§*(rz)> =Pi(1‘1)P2(P2)eXP[2H§12) +H (2)],
(P} (x))P] (ry)) = Py(r))Py(ro)exp[2HY + HY],
(PT(r)PL(ry)) = Py(r))Py(ry)exp[ 2HY) + HY). (4.7)

Here subscripts 1 and 2 of the statistical moments HV and H® refer to the plane waves E;(w) and Ey(w), respectively.
For the equal spatial arguments, i.e., in the case r{=ry=r, the cross-spectral density matrix (4.6) reduces to the form

side again.

sphere:

W Il /,L\/I_I i(ley~ky)r eXp[ZH(l) (2)] 48
(I‘, r, (D) = P ‘\1'111291(1(1 Kky)r eXp[ZH(l) (2)] 12 ) ( . )
[
where we omitted the o dependence on the right-hand \/( 1, - I,)? + 4| w11, expl4 H(112) +9 H(122>]
Plw) = , (4.9)
On substituting from Eq. (4.8) into Egs. (3.5), (3.8), and ILi+1,
(3.9), we obtain the following expressions for the polariza-
tion properties of the field propagating through the atmo- 1 2 Re[,u\,l 1 \rl 5 exp[4HY + 2H2)]
0(w) = — arctan s
2 I,-1,
(4.10)
|
V(1= 15)? + 4| exp[4H + 2HGIPT T, — (I — 1) + 4 Rel  exp[4HY + 2H YL I, )

In particular, if the intensities of the two plane waves are
the same, i.e., if I;(w)=I5(w), we then have

Pw) = 2|u(w)|exp[2HY + HZ]. (4.12)

Figure 2 shows the behavior of the degree of polarization
of two plane waves of equal intensity as the distance z
from the source increases. It can be seen that, regardless
of the initial degree of polarization of the two-plane-wave
system, the degree of polarization decreases continuously
to zero on propagation. Furthermore, the rate of decrease
grows as the directional separation of the plane waves Ak
increases. This is physically reasonable, as plane waves
propagating in different directions “see” different realiza-
tions of the turbulence.

As can be seen from Eq. (4.10), the angle of orientation
is trivially constant for plane waves of equal intensity;
similarly, it can be seen from Eq. (4.11) that the ellipticity
will be identically zero for a real-valued degree of coher-
ence wu. Figure 3 shows the behavior of the degree of po-
larization, the angle of orientation, and the ellipticity of a
pair of plane waves of unequal intensity and complex de-

V{Iy - 1)% + 4| exp[4HY + 2HZ 21,1, + \[(I; - 1) + 4 Re[  exp[4H 'Y + 2H P11,

[

gree of coherence. All three behaviors can be explained by
considering the limiting form of the cross-spectral density
matrix on propagation,

- [11 o}
lim W(r,r,0) = . (4.13)
L 0 I

With I;=1 and I3=2, this matrix can be decomposed into
an unpolarized part (diagonal matrix) and a part pre-
dominantly polarized along the y axis. This leads to a
nonzero degree of polarization and a definite angle of ori-
entation for the polarized part of the field. With u
=0.5 exp[in/4], the polarized part of the field starts with a
slight degree of ellipticity, but as the coherence between
the plane waves is degraded, the field evolves into a lin-
early polarized state (e=0).

B. Electromagnetic Gaussian Schell-Model Beam

Recently, the so-called electromagnetic Gaussian Schell-
model beam was employed [7] in order to demonstrate the
complicated behavior of the degree of polarization of ran-
dom beams propagating in the atmosphere. The analysis
in that paper was carried out with the help of the ex-
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o 1 Ak =0
0.8
Ak = 0,001k
0.6
04 Ak = 0.002k
02 Ak = 0.1k
ol
100 200 300 400 500
(a) L (m)
A
0.8
0.6
Ak =0
04 Ak =0.001k
Ak = 0.002k
02
Ak = 0.1k
<

100 200 300 400 500
(b) L (m)
Fig. 2. Evolution of the degree of polarization for a pair of tilted,

partially correlated plane waves of equal intensity. (a) u=1; (b)
u=0.5. Here A=1 um, C2=10""* m%2, and Ak=kluy-u,|.

tended Huygens—Fresnel integral. We will now show that
this phenomenon can also be illustrated with the help of
our approach, i.e., on the basis of Rytov’s perturbation
technique.

We consider for simplicity an electromagnetic Gaussian
Schell-model beam ([6], Section 5.6.4) whose cross-
spectral density matrix in the source plane has diagonal
form, viz.,

0
WE_] )(rl’r27 w)

ri+ry (ry—ry)? .
T | e
= 7 1 >

0, i1#J
(4.14)

where I; is the ith component of the on-axis intensity, o7 is
the rms. width of the intensity, and §; is the correlation
length of the ith component of the field. On substituting
from Eq. (4.14) into Eq. (2.11), one obtains for the angular
correlation functions the expression

1 kZ(UQ - ul)QO'?
Aj(ug,uy,0) = —lof0 exp| - ———

812 4

kz(u§+u%)0'i2i
Xexp| - ——m|,

3 (4.15)

where
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o 1
038
0.6 (i)
oall GiD (i)
02 (v}
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w
—
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w
= 300 400 500
@ L (m)
»
-30
€ o ey
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0.06
0.04
0.02
0 100 200 300 400 500
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Fig. 3. Evolution of the degree of polarization for a pair of tilted,
partially correlated plane waves with I;=1, I,=2, and u
=0.5exp[iw/4]. Here (i) represents Ak=0, (ii) represents Ak
=0.001%, (iii) represents Ak=0.002k, and (iv) represents Ak
=0.1%. All other parameters are as in Fig. 2.

2 1/ 1 1\
iy 4_0;;-'-2—6121 . (4.16)

We now can substitute from Egs. (4.15) and (4.16) into
Eqgs. (2.12)—(2.15) and numerically evaluate the resulting
integrals to determine the elements of the cross-spectral
density matrix of the field propagating in the atmosphere
at a point r, i.e., W(r,r,w). Then, using Eq. (3.5), we find
the degree of polarization of the beam at that point.
Figure 4 shows the behavior of the degree of polariza-
tion along the optical axis of several typical electromag-
netic Gaussian Schell model beams, generated by the
source with cross-spectral density matrix given by Eq.
(4.14). Comparison shows that the results pertaining to
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& 1 I=1
3 =2.0mm
0.8 »
0.6
04
0.2
0 10° 10° 106 10°
L (m)
o9 1 1=
0.8
0.6
04
0.2
0 10? 10* 10¢ 108
L (m)
o7 1 I =

0 10? 10* 106 108
L (m)
Fig. 4. On-axis degree of polarization of a Gaussian Schell-
model beam as a function of propagation distance L for different
values of spatial coherence and source degree of polarization. In
all cases, I,=1, 8,,=0.1 mm, 0;=5 cm, and C2=10"* m~23.

our new method (solid curves) and the extended
Huygens—Fresnel integral (dashed curves) (see [7]) are in
very good agreement.

C. Electromagnetic Exponentially Correlated Beam and
Mixed-Correlation Beam

As a final example, we consider a field with Gaussian in-
tensity profile and exponential correlation,

) =
;exp| — exp| —-— |, =
WEJQ)(rl,rz,w) = P 207 P 265;

0, i1#J
(4.17)

Figure 5 shows the evolution of the degree of polarization
for several typical configurations; the dashed curve indi-
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Q)
Q

0 10 10* 10¢ 108

Q)
9

0 10? 10* 106 108
L (m)
72
=5
08 3yy= 0.2 mm

0 10° 10* 10¢ 108

L (m)
Fig. 5. On-axis degree of polarization of an exponentially corre-
lated beam as a function of propagation distance L for different
values of spatial coherence and source degree of polarization. In
all cases, I,=1, 3,=0.1 mm, 0;=5 cm, and C2=10"* m~%3. The
dashed curve indicates the results for a Gaussian Schell-model
beam with the same parameters.

cates the result for a Gaussian Schell-model beam with
the same parameters. It can be seen that the qualitative
behavior of the fields is the same; however, the quantita-
tive behavior in the transition regions (L~102m and L
~107 m) is appreciably different. The first of these re-
gions results from the different free-space diffraction be-
haviors of the x and y components of the field, while the
second of these regions results from the influence of tur-
bulence on the different field components. It is clear that
the behavior in both of these regions will depend on the
specific forms of the correlation function.

We may also consider a “mixed” beam, for which the x
component of the field is the Gaussian Schell-model and
the y component of the field is exponentially correlated.
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Fig. 6. On-axis degree of polarization of a beam of mixed-
correlation type as a function of propagation distance L for dif-
ferent values of spatial coherence and source degree of polariza-
tion. In all cases, I,=1, §,=0.1mm, o;=5cm, and C?L
— 10—14 m—2/3.

The results are shown in Fig. 6. The middle and bottom
plots illustrate that even when the length scales of the x
and y components of the field are the same (i.e., 6,,=9,,),
one can still see significant polarization changes in the
transition regions. These changes can be attributed to the
functional differences between the correlation functions,
rather than to the widths of the correlation functions.

5. CONCLUSIONS

In this paper we have developed an angular spectrum
technique for the propagation of general partially coher-
ent electromagnetic beams in weak atmospheric turbu-
lence. We have demonstrated how various polarization
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properties of the electromagnetic field, the degree of po-
larization, the angle of orientation of the polarization el-
lipse, and the ellipticity of the polarization ellipse may be
calculated once the effect of turbulence on a pair of par-
tially correlated plane waves is known.

We note here that our results do not contradict well-
established estimates relating to depolarization of beams
propagating in atmospheric turbulence due to refractive
index irregularities (see [13-15]). In those works the
analysis was made for fields generated by completely co-
herent sources, and it was shown that in this case the de-
polarization is negligible. Our theory also predicts practi-
cally no changes in the polarization properties in the
limiting case of a fully coherent field.

This technique has been applied to study the behavior
of a pair of correlated plane waves, as well as Gaussian
Schell-model beams, exponentially correlated beams, and
mixed-correlation beams. The Gaussian Schell-model re-
sults agree well with results calculated using well-
established methods.

It is expected that this angular spectrum technique will
prove useful in the study of new and nontrivial beam
classes and their propagation in turbulent atmosphere.
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