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Abstract

A condition for the complete destructive interference of partially coherent fields emerging from pinholes in an opaque screen is
derived, with the assumption of symmetry in both their geometric positions and coherence properties. We use this condition to theoret-
ically investigate the simultaneous production of phase singularities of the optical field and of the spectral degree of coherence. We find
that in cases where the number of point sources is even, a new type of mixed field/correlation singularity is observed.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

The study of the effects associated with phase singulari-
ties in optical wavefields, being a rich subject in itself, has
developed into a new branch of physical optics, known as
singular optics [1]. Phase singularities of a wavefield exist
at points for which the amplitude of the wavefield is zero,
so that the phase of the field is singular, and such points
that are associated with the optical field itself are com-
monly referred to as optical vortices (an example is illus-
trated in Fig. 1). Recent investigations with various kinds
of wavefields such as partially coherent light fields [2],
bichromatic optical fields [3], vortex waves [4] and focused
fields [5] have revealed that field correlation functions may
possess phase singularities as well. This extension of singu-
lar optics to include field correlation functions has led to
the introduction of a new class of singularities, generally
called coherence vortices [6,7]. These coherence vortices
(pairs of points at which the spectral degree of coherence
identically vanishes) are characterized by a vortex structure
of the phase of the spectral degree of coherence with
respect to one of the observation points (it is to be noted,
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however, that other types of singularities of correlation
functions can exist; see Ref. [8]).

It is noted in Ref. [6] that for pairs of points at which
coherence vortices occur, it is not required for the ampli-
tude of the field to vanish. Furthermore, while zeros of
the correlation function are quite common in partially
coherent fields, zeros of the field amplitude are likely to
occur only for fields that are fully coherent. In fact, the
study of the phase singularities of the coherence function
in Ref. [2] pertains to the case for which phase singularities
of the field amplitude do not occur. It seems interesting
then to consider a scenario for which phase singularities
of both the field amplitude and the correlation function
can simultancously occur, and to study the relationship
between the two distinct types of singularities. This will
be the subject of study for the present work. We will focus
on the phase singularities of fields and correlation func-
tions that arise from the interference of partially coherent,
quasi-monochromatic point sources.

The quantity of interest for this study is the cross-spec-
tral density of an optical field, defined as

W(l'],l'z,w) = <U*(r1,w)U(r2,a))>, (1)
where r; and r, are the position vectors of the two observa-

tion points and U(r,w) is the optical field at position r and
frequency w. The asterisk denotes complex conjugation,
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Fig. 1. A typical example of an optical vortex formed at the center of a Laguerre-Gaussian beam of radial order m = 0, and azimuthal order n = 1. Here
the beam waist is taken to be 1 mm, and the intensity and phase profiles are taken at z = z,, the Rayleigh range of the beam. The wavenumber of the beam
is taken to be 9.9213 x 10> mm~'. Note that because the beam is assumed to be spatially fully coherent, the phase of the field is equal to the phase of the

spectral degree of coherence [13].

and the brackets indicate averaging over an ensemble of
space-frequency realizations [9, Sec. 4.7]. The cross-spectral
density may always be written in the form

W(l'hl'z,a)) = \/](1'1,(,0)\/[(1'2, (l))ﬂ(l'l,l‘z,(,())
= A(ry, 0)A(ry, o) u(r, 1, o), (2)

where I(r.w) is the average spectral intensity of the field at
position r and frequency w, A(r,w) is the corresponding
average spectral amplitude of the field, and u(r,r,w) is
the spectral degree of coherence of the field. The spectral
degree of coherence is a measure of the correlation of the
field between the two points r; and r,, and can be shown
to be constrained by the values 0 < |u| < 1. Eq. (2) illus-
trates that there exist two distinct ways for the cross-spec-
tral density to vanish: the intensity may be equal to zero at
a point or the spectral degree of coherence may be equal to
zero with respect to a pair of points.

In anticipation of our results, we shall refer to phase sin-
gularities associated with zeros of the field amplitude (or,
equivalently, the field intensity) as field singularities, and
those associated with the zeros of the spectral degree of
coherence as coherence singularities. In addition, we reserve
the terms optical vortex and coherence vortex for a singular-
ity that exhibits a screw dislocation in its phase. To create a
situation for which phase singularities of both the ampli-
tude and the spectral degree of coherence are present, we
note it has been demonstrated theoretically and experimen-
tally that under certain conditions, complete destructive
interference can indeed occur for partially coherent fields
[10-12]. Although the results in these references were dem-
onstrated with three partially coherent point sources, we
will also consider the superposition of fields emanating
from a larger number of point sources (e.g. 4, 5, 6,...) that
are partially correlated. While the emphasis in Refs. [10-12]

concerned the observation of zeros in the spectral intensity,
this work involves an investigation into the phase of the
wavefields. As pointed out by Wolf and others [13,14],
however, one may associate a well-defined phase function
with an optical field only if it is spatially fully coherent,
in which case the cross-spectral density may be factorized
into the product of the fields evaluated at the pair of obser-
vation points. Since the fields are partially coherent in this
case, we will study instead the behavior of the phase of the
cross-spectral density to gain insight on the singularities of
the amplitude and correlation function in the region of
superposition.

In Section 2 we briefly review the behaviour of partially
coherent light emerging from pinholes. Using a simple
argument and some reasonable physical assumptions, we
derive a sufficiency condition for complete destructive
interference in an N-pinhole system. In Section 3, we theo-
retically analyze the phase of the cross-spectral density for
N=23,4,5, and 6 to study the behavior of the singularities
which arise, and to determine what relations may exist
between the different types of singularities. In Section 4,
we summarize the results and offer concluding remarks.

2. Behavior of partially coherent light emerging from
pinholes

Let us assume partially coherent light that is quasi-
monochromatic, with center frequency w, is incident on a
screen with N pinholes. We will employ the space-fre-
quency representation of a partially coherent field [9, Sec.
4.7] to describe its statistical properties. Under the assump-
tion that the angles of incidence and diffraction are small,
the field emerging from the pinholes is given by the sum
of contributions from the individual pinholes, and the
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spectral density (‘intensity’) at an observation point P is
given by

1(P.w) = <ZU:<P, )Y UP, w>>, G

n=1
where

ka* el
n P; =—i— ns & 4
Up(P,0) = i Un(Q,0) S @

is the field produced by the nth pinhole, Uy(Q,,®) is the va-
lue of the incident field at the nth pinhole, R, is the distance
from the nth pinhole to the point P, and k = w/c is the
wavenumber of the light, ¢ being the speed of light. The
geometry for the case of three pinholes is shown in Fig. 2.

To derive the conditions for which I(P,w) = 0 in Eq. (3),
we first review the case N =2. For brevity, the explicit
dependence on the frequency @ will be dropped from
now on. For 2 pinholes, Eq. (3) reduces to

I(P) = ([U\(P) + Ux(P)]"[U1(P) + Us(P)])
= (|U\(P) + |Ua(P)[* + 2Re[U}(P)U>(P))])
= |UL(P)]* + |U(P)?
+ 2{u||UL(P)]|Ua2(P)| cos(d12 + Bra) (5)

where u;, = |u,|e is the spectral degree of coherence of
the light incident at pinholes 1 and 2, f81, is the phase of y;»,
and 6, =k(R; — R,) is the phase shift arising from the
optical path length difference. If we assume that |U,(P)|* =
|Us(P)|> = | Up|?, then it can be seen from Eq. (5) that com-
plete destructive interference only occurs if |p1,| =1 and

(012 + B1a) = 2m + 1)m, (6)

with m being an integer. We conclude that only a fully
coherent illuminating field, with |u;»| =1, can produce
complete destructive interference in the two-pinhole case.

Let us now turn to the N = 3 case, and consider the case
for which the average amplitudes Uy(Q,,») of the illumi-
nating fields are all equal. If the pinholes are arranged with
geometric symmetry with respect to the origin, and we con-
sider an observation point on the axis of symmetry of the
pinholes, then 6, =0, |UJP)|> = |Up|* and Eq. (3) for
N = 3 reduces to the form

Fig. 2. Illustrating the geometry with N = 3 pinholes.

I(P) = ([Ui(P) + Us(P) + Us(P)]'[U1(P) + Ux(P) + Us(P)])
= UL+ |Uaf + |UsP +2Re(p1,U3U2)
+ 2Re(p3U Us) + 2Re(py3 U3 Us)
= 3|Us|* + 2|12 ||Uo[* cos(B12) + 2| s3] | Uo|* cos(5)
+ 2| s | U cos(Bas), (7)

where g, = |u;;|e.

We observe from Eq. (7) that there are, in principle,
many combinations of values of y; that can satisfy
I(P) = 0. We restrict ourselves to the special case for which
all off-diagonal p;s are equal, i.e., u; = o = |pole™ (i#)).
This reduces Eq. (7) to the form

I(P) = 3|Us|* + 6| |Uo|” cos . (8)

For complete destructive interference in the case of three
pinholes, we thus require that y, = —1, in agreement with
the results of Ref. [10]. Extending our analysis to N pin-
holes, it can be easily seen by extending the derivation of
Eqgs. (5) and (7) that

N
2 2
I(P) = N|Uy|" + Z(N = D|Uo| |:u’ijlcosﬂij' )
i<j
Again restricting ourselves to the case ;= p, (and
Bii= Po), one arrives at the following condition for com-
plete destructive interference, viz.

0 =N|Uo> + N(N — 1)|Uo[*|to| cos By
N(N = 1)|po| cos fy = =N

1

|1l cos By = N1

1

Re(ji) = ——. (10)
It is to be noted that condition (10) presents a solution for
the special case of geometric symmetry in the position of
the pinholes and equal values of yu; We have therefore
found a sufficiency condition for the complete destructive
interference of partially correlated fields emanating from
N pinholes, though it is important to note that it is not a
necessary condition. The general condition for complete
destructive interference, det(M) =0, where det denotes
determinant, and M is the N x N matrix containing the
W;i’s, has been derived in Ref. [10, Appendix A].

With the condition (10), we can readily simulate the
simultaneous occurrences of phase singularities of both
the optical field and correlation function through the inter-
ference of fields from multiple pinholes. For a pair of
points P; and P, in the region of superposition, the coher-
ence vortices are related to the zeros of the spectral degree
of coherence u(Py,P;), which may be derived from the
cross-spectral density (2) by the relation

W(Pi,P>)
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Eq. (11) is well-defined as long as I(P;),I(P;,) #0. If condi-
tion (10) is satisfied and the pinholes are arranged in a sym-
metric geometry, a field singularity is expected along the
axis of symmetry. By taking P, as a fixed point not at
the origin, the phase of u(P;,P,) as a function of P; can
be readily computed from Eq. (11).

It is worth considering briefly the construction of a
source which satisfies Eq. (10). In Ref. [10] it was demon-
strated that for 3 pinholes this correlation can be achieved
with a pair of counter-rotating Laguerre-Gauss beams, but
the construction for N pinholes requires a bit more sub-
tlety. We consider a system of X independent (uncorre-
lated) lasers, each of which produces a field U, where
i=1,...,X ie.

0 i#j
<U,-*Uj>={ - fj’ (12)

‘U0| y L=
Because the laser fields are uncorrelated, their cross-corre-
lations vanish. By the use of fiber splitters and delay lines,
we may add these fields together in any combination with
any phase delay we choose. At each pinhole, we combine
equal contributions from N — 1 independent lasers, which
in Eq. (11) will produce a denominator of (N — 1) |Uy|*.
However, we require that each pinhole only have one con-
tribution which is present at any other pinhole; this will re-
sult in a numerator for Eq. (11) of |Up|>. At the first
pinhole, we therefore add together the contributions of
N — 1 independent lasers, at the second pinhole, we intro-
duce an additional N — 2 independent lasers, at the third,
an additional N — 3, and so on. We therefore require a
total number of independent lasers for an N-pinhole system
equal to the result

XEZ?:ﬂ%il (13)

Because each independent laser only makes contributions
to two pinholes, we can select one of these contributions
to be n-phase delayed from the other; this results in the
negative sign in the numerator of Eq. (11).

This rather tricky construction is illustrated in Fig. 3 for
N = 4. Using the fields in this figure, one can readily show
that the spectral degree of coherence between pinholes A
and D, for instance, is given by

input fields fields output at pinholes
U —
! U=U+U,+U,
v, splitters U =eé"U+U+U
(]3 & B~ ¢ 1 4 5
U delays . . .
4 — i i i
U, U.=e"Ute™Ute™ U,
U, U,=e"Ute™UAU,

Fig. 3. Illustrating the technique for experimentally realizing the condi-
tion (10) for N = 4. The fields U; (i=1, ..., 6) from six independent lasers
are mixed using fiber splitters and delay lines into the combinations U,
(x= 4, ...,D). These combinations are fed into the pinholes.

(U + U, + U3)(=Us — Us + Uy))

(UyUp) = 5 ;
VAU + U2+ U = Us = Us + U
—|Us|* 1
_ S 14
3|U0|2 3 ( )

This construction demonstrates that the correlations of Eq.
(10) can be experimentally generated, at least in principle.

3. Phase singularities of the cross-spectral density for
N-pinhole system

We have studied the phase of the cross-spectral density
in the region of superposition of fields from multiple pin-
holes for N =3, 4, 5, and 6. The condition (10) was applied
to ensure that, in addition to the coherence singularities, a
field singularity will occur at least at the point x =y =0 in
the region of superposition. We have made the choice in all
cases that uo=—1/(N — 1).

The behaviour of the phase of W(Py, P,) at a plane for
which z = 2000 mm is shown in Fig. 4. The reference point
P, has been taken to lie at x =y =1 mm. In general, the
phase structure is quite complicated, and numerous singu-
larities appear in every figure. We examine the N =3 and
N =4 (diamond) cases in detail in Fig. 5.

For N = 3, we find, as expected, optical vortices at loca-
tions «, b, and ¢, characterized by their evident intensity
null and vortex-like phase structure (recall Fig. 1).
However, we also see numerous vortices at locations for
which the intensity is non-zero, marked as d, e and f. These
are coherence vortices, and one is very closely associated
with each optical vortex. This behavior is similar to what
has been observed in other studies of coherence vortices
[6,15,16].

The N =4 (diamond) case, however, illustrates previ-
ously unobserved structures. There is an intensity null at
the center of the pattern, at point a, but there is not an opti-
cal vortex in the phase at this point. Instead, we see that a
line of phase discontinuity (a © phase jump) intersects the
intensity null. This line discontinuity is not associated with
any intensity null, and therefore must be a coherence singu-
larity. Though line discontinuities have been predicted pre-
viously in the context of Young’s double slit experiment [2],
no such mixed field/coherence singularity has yet been pre-
dicted or observed.

As noted in the introduction, a coherence singularity is a
singularity of a two-point correlation function, and there-
fore its behavior should depend on the choice of reference
point. In Fig. 6 we evaluate the behavior of the phase of the
cross-spectral density as the location of the reference point
is changed. It can be readily seen that the location of the
line singularities depend strongly on the location of the ref-
erence point; however, they are always ‘pinned’ to the field
singularities whose locations are independent of the choice
of reference.

To gain further insight on the relationship between the
field and coherence singularities, we study the behavior of



C.H. Gan, G. Gbur | Optics Communications 280 (2007) 249-255 253

N=4 (diamond)

N =4 (Square)

-150  -100

Fig. 4. Phase plots of the cross-spectral density, and field intensity plots (bottom row) when condition (10) is satisfied. From left to right: N =3, 4
(diamond), 4 (square), 5, and 6. For all cases, the plots extend from the region bounded by x = —2 to 2 mm and y = —2 to 2 mm, z = 2000 mm, and the
cross on the leftmost figure corresponds to the location of the reference point, which is taken to be x = y = I mm. The grayscale intensity plots are plotted
using arbitrary units, hence the scale of the respective plots have been omitted.

Fig. 5. Detail plots of the phase structure of the cross-spectral density (top row) and intensity structure of the field (bottom row). (a) and (b) represent the
N = 3 case, while (c) and (d) represent the N =4 (diamond) case. All other parameters are as in Fig. 4.

W(P1,P>) when condition (10) is not satisfied. We note that
there are numerous ways in which condition (10) can be
modified so that the optical vortex in each case ceases to
exist: (a) change the value of g for all the fields emanating
from the pinholes; (b) change the value of y, for all but one
of the pinhole fields; (c) change the position of one of the

pinholes while keeping p, unchanged. Topological reac-
tions in the vortices and singularities were observed in
the phase plots of W(Py,P,) with each of the three methods
mentioned above.

In Fig. 7, we consider the effect of changing the value of
Lo equally for all pairs of pinholes. As expected, in all cases
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Fig. 6. Behavior of the cross-spectral density in the N =4 (diamond) case when the reference point is changed. The reference point is taken to be (a)
(x,y) = (L,1), (b) (x,y) =(0,1), and (c) (x,y) = (—1,1). The cross indicates the position of an off-axis zero of intensity.

Fig. 7. Phase plots as the value of y changes so that condition (10) ceases to be satisfied. From top to bottom, left to right: (a) N = 3, gp = —0.5, —0.3, 0.2,
0.5; (b) N =4 (diamond), po = —0.33, —0.05, 0.23, 0.93; (c) N = 4 (square), o = —0.33, —0.05, 0.51, 0.93; (d) N =6, o = —0.2, —0.12, 0, 0.2. R indicates

the location of the reference point.

once the condition (10) is not satisfied, the intensity nulls in
the field are no longer present. For the N =3 case, this
corresponds to the field singularity becoming a coherence
singularity, and moving down and to the right as pq is
changed. For N = 4 and 6, the mixed field/coherence singu-
larities become pure coherence singularities. For N = 4, for
instance, the line singularity which intersects the axis of
symmetry moves up and to the right.

4. Conclusion

A condition for complete destructive interference of par-
tially coherent fields emerging from pinholes that have
symmetric geometric and coherence properties has been
derived. This condition was used to generate phase singu-
larities of both the optical field and correlation function
simultaneously in the region of superposition of partially
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coherent fields. In addition to the expected field singulari-
ties and coherence singularities, a new mixed form of phase
singularity was observed for the N =4 and N = 6 cases. By
breaking the requirement for complete destructive interfer-
ence, the field and mixed singularities were demonstrated to
convert directly into pure coherence singularities.

The observation that field singularities can convert to
coherence singularities, along with the observation of
mixed singularities, supports the somewhat philosophical
contention in Ref. [16] that traditional field singularities
may be considered a special case of the broader class of
coherence singularities. The newfound existence of mixed
singularities suggests that more remains to be learned
about the properties of phase singularities of two-point
correlation functions.
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