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Shaping the focal intensity distribution using
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The intensity and the state of coherence are examined in the focal region of a converging, partially coherent
wave field. In particular, Bessel-correlated fields are studied in detail. It is found that it is possible to change
the intensity distribution and even to produce a local minimum of intensity at the geometrical focus by altering
the coherence length. It is also shown that, even though the original field is partially coherent, in the focal
region there are pairs of points at which the field is fully correlated and pairs of points at which the field is
completely incoherent. The relevance of this work to applications such as optical trapping and beam shaping is
discussed. © 2008 Optical Society of America
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. INTRODUCTION
lthough light encountered under many practical circum-
tances is partially coherent, the intensity near focus of
uch wave fields has been studied in relatively few cases
1–5]. The correlation properties of focused partially co-
erent fields have been examined in [6,7], where it was
hown that the correlation function exhibits phase singu-
arities. In a recent study [8] it was suggested that the
tate of coherence of a field may be used to tailor the
hape of the intensity distribution in the focal region.
ore specifically, it was shown that a minimum of inten-

ity may occur at the geometrical focus.
In the present paper we explore converging, Bessel-

orrelated fields in more detail. Three-dimensional plots
f the intensity distribution, in which the transition from
maximum of intensity to a minimum of intensity at the

ocal point can be seen, are presented. Also, the state of
oherence of the field near focus is examined. It is found
hat there exist pairs of points at which the field is fully
oherent and pairs at which the field is completely uncor-
elated.

. FOCUSING OF PARTIALLY COHERENT
IGHT
onsider first a converging, monochromatic field of fre-
uency � that emanates from a circular aperture with ra-
ius a in a plane screen (see Fig. 1). The origin O of the
oordinate system is taken at the geometrical focus. The
eld at a point Q�r�� on the wavefront A that fills the ap-
rture is denoted by U�0��r� ,��. The field at an observa-
ion point P�r� in the focal region is, according to the
uygens–Fresnel principle and within the paraxial ap-
roximation, given by the expression ([9], Chap. 8.8):
1084-7529/08/030575-7/$15.00 © 2
U�r,�� = −
i

�
�

A

U�0��r�,��
eiks

s
d2r�, �1�

here s= �r−r�� denotes the distance QP and � is the
avelength of the field, and we have suppressed a time-
ependent factor exp�−i�t�.
For a partially coherent wave, instead of just the field,

ne also has to consider the cross-spectral density func-
ion of the field at two points Q�r1�� and Q�r2��, namely,

W�0��r1�,r2�,�� = �U*�r1�,��U�r2�,���, �2�

here the angle brackets denote an ensemble average
nd the superscript (0) indicates fields in the aperture.
his definition, as well as others related to coherence

heory in the space-frequency domain, are discussed in
[10], Chaps. 4 and 5). On substituting from Eq. (1) into
q. (2) we obtain for the cross-spectral density function in

he focal region the formula

W�r1,r2,�� =
1

�2 � �
A

W�0��r1�,r2�,��
eik�s2−s1�

s1s2
d2r1�d

2r2� .

�3�

he distances s1 and s2 are given by the expressions

s1 = �r1 − r1��, �4�

s2 = �r2 − r2��. �5�

f the Fresnel number of the focusing geometry is large
ompared to unity, i.e., if N�a2 /�f�1, with f the radius
f curvature of the field, then the distances s1 and s2 may
e approximated by the expressions
008 Optical Society of America
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s1 � f − q1� · r1, �6�

s2 � f − q2� · r2, �7�

here q1� and q2� are unit vectors in the directions Or1� and
r2�, respectively. The factors s1 and s2 in the denomina-

or of Eq. (3) may be approximated by f, and hence we ob-
ain the expression

W�r1,r2,�� =
1

��f�2 � �
A

W�0��r1�,r2�,��

� eik�q1�·r1−q2�·r2�d2r1�d
2r2� . �8�

he spectral density of the focused field at a point of ob-
ervation P�r� in the focal region is given by the diagonal
lements of the cross-spectral density function, i.e.,

S�r,�� = W�r,r,��. �9�

rom Eqs. (9) and (8) it follows that

S�r,�� =
1

��f�2 � �
A

W�0��r1�,r2�,��eik�q1�−q2��·rd2r1�d
2r2� .

�10�

normalized measure of the field correlations is given by
he spectral degree of coherence, which is defined as

��r1,r2,�� �
W�r1,r2,��

	S�r1,��S�r2,��
1/2 . �11�

t may be shown that 0� ���r1 ,r2 ,����1. The upper
ound represents complete coherence of the field fluctua-
ions at r1 and r2, whereas the lower bound represents
omplete incoherence. For all intermediate values the
eld is said to be partially coherent.

. GAUSSIAN SCHELL-MODEL FIELDS
e now briefly review the focusing of a Gaussian Schell-
odel field with a uniform spectral density. Such a field is

haracterized by a cross-spectral density function of the
orm

W�0���1,�2,�� = S�0����e−��2 − �1�2/2�g
2
, �12�

here S�0���� is the spectral density and �g a measure of
he coherence length of the field in the aperture. Further-
ore, �= �x ,y� is the two-dimensional transverse vector

hat specifies the position of a point in the aperture plane.
t was shown in [4] that the maximum of intensity always
ccurs at the geometrical focus, irrespective of the value

Fig. 1. Illustration of the notation.
f �g. Furthermore, the spectral density distribution was
ound to be symmetric about the focal plane and about the
xis of propagation. On decreasing �g, the maximum
pectral density decreases, and the secondary maxima
nd minima gradually disappear. In the coherent limit
i.e., �g→	) the classical result [11] is retrieved.

The coherence properties of a focused Gaussian Schell-
odel field were examined in [6]. It was shown that the

oherence length can be either larger or smaller than the
idth of the spectral density distribution. In addition, the

pectral degree of coherence was found to possess phase
ingularities.

. J0-CORRELATED FIELDS

0-correlated fields with a constant spectral density are
haracterized by a cross-spectral density function of the
orm

W�0��r1�,r2�,�� = S�0����J0�
�r2� − r1���, �13�

here J0 denotes the Bessel function of the first kind of
eroth order. The correlation length is roughly given by
−1. In [8] it was shown that the occurrence of a maxi-
um of intensity at the geometrical focus is related to the

ositive definiteness of the cross-spectral density. Since
he cross-spectral density function of Eq. (13) takes on
egative values, another kind of behavior may now be
ossible. In this section we analyze the effect of the state
f coherence on the three-dimensional spectral density
istribution near focus. The cross-spectral density of the
ocused field is, according to Eq. (8), given by

W�r1,r2,�� =
1

��f�2 � �
A

S�0����J0�
�r2� − r1���

� eik�q1�·r1−q2�·r2�d2r1�d
2r2� . �14�

e use scaled polar coordinates to write

ri� = �a�i cos �i,a�i sin �i,zi� �i = 1,2�. �15�

he spectral density is normalized to its value at the geo-
etrical focus for a spatially fully coherent wave, i.e.,

Scoh = lim

→0

W�r1 = r2 = 0,�� =
a4�2S�0����

�2f2 . �16�

o specify the position of an observation point we use the
imensionless Lommel variables, which are defined as

u = k�a

f �
2

z, �17�

v = k�a

f �� = k�a/f�x2 + y2. �18�

he expression for the normalized spectral density distri-
ution is thus given by
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Snorm�u,v,�� =
S�u,v,��

Scoh
=

1

�2�
0

2��
0

1�
0

2��
0

1

�J0�
a	�1
2 + �2

2 − 2�1�2 cos��1 − �2�
1/2�

�cos	v��1 cos �1 − �2 cos �2� + u��1
2 − �2

2�/2


��1�2d�1d�1d�2d�2. �19�

It can be shown that this distribution is symmetric
bout the plane u=0 and the line v=0. To reduce this
our-dimensional integral to a sum of two-dimensional in-
egrals we use a coherent mode expansion, as described in
ppendix A.
The contours and three-dimensional images of the spec-

ral density of a converging J0-correlated Schell-model
eld are shown for several values of the coherence length
−1 in Figs. 2–4. When this length is significantly larger
han the aperture size a, the intensity pattern of the field
n the focal region approaches that of the coherent case of
11]. This is illustrated in Fig. 2, where �
a�−1=2. This
uantity is a measure of the effective coherence of the
eld in the aperture.

ig. 2. (Color online) (a) Three-dimensional normalized spectral
ensity distribution and (b) its contours for the case 
−1

0.02 m, a=0.01 m and hence �
a�−1=2.00. In this example �
500 nm, and f=2 m.
When the correlation length is decreased, a local mini-
um appears at the geometrical focus. This is shown in
ig. 3 for the case �
a�−1=0.35. An intensity minimum
an be seen at u=v=0. Also, the overall intensity has de-
reased.

Figure 4 shows the intensity pattern for the case

a�−1=0.25. The minimum at the geometrical focus is
ow deeper, the focal spot is broadened, and the overall

ntensity has decreased even further.
The behavior of the cross-spectral density function of

he field in the aperture for the cases mentioned above is
hown in Fig. 5. The spectral degree of coherence is plot-
ed as a function of �= �r2−r1�. It is to be noted that for the
wo cases in which the spectral density has a local mini-
um at the geometrical focus, the spectral degree of co-
erence also takes on negative values.

. SPATIAL CORRELATION PROPERTIES
e next turn our attention to the spectral degree of coher-

nce in the focal region of a J0-correlated Schell model
eld. We first look at pairs of points on the z-axis, i.e.,

ig. 3. (Color online) (a) Three-dimensional normalized spectral
ensity distribution and (b) its contours for the case 
−1=3.5
10−3 m, a=0.01 m and hence �
a�−1=0.35. The other param-

ters are the same as those of Fig. 2.
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r1 = �0,0,z1�, �20�

r2 = �0,0,z2�. �21�

n using cylindrical coordinates � and � and the expres-
ions in [6] we obtain

q1� · r1 � − z1�1 − �1
2/2f2�, �22�

ig. 4. (Color online) (a) Three-dimensional normalized spectral
ensity distribution and (b) its contours for the case 
−1=2.5
10−3 m, a=0.01 m and hence �
a�−1=0.25. The other param-

ters are the same as those of Fig. 2.

ig. 5. Spectral degree of coherence of the field in the aperture
�0��� ,�� for three different values of �
a�−1, as discussed in the

ext. In this example �=500 nm, a=0.01 m, and f=2 m.
q2� · r2 � − z2�1 − �2
2/2f2�. �23�

ubstituting these approximations in Eq. (14), we obtain
or the cross-spectral density the expression

W�0,0,z1;0,0,z2;�� =
1

��f�2�
0

2��
0

a�
0

2��
0

a

S�0����

�J0�
	�1
2 + �2

2 − 2�1�2 cos��1 − �2�
1/2�

� eik	−z1�1−�1
2/2f2�+z2�1−�2

2/2f2�
�1�2

� d�1d�1d�2d�2. �24�

s shown in Appendix A, the coherent mode expansion for
0 reads

J0�
	�1
2 + �2

2 − 2�1�2 cos��1 − �2�
1/2�

= J0�
�1�J0�
�2� + �
n=1

	

2	Jn�
�1�Jn�
�2�cos	n��1 − �2�

.

�25�

t is to be noted that in the expression for the cross-
pectral density, Eq. (24), the angular dependence resides
xclusively in the correlation function; hence after inte-
ration over �1 and �2 only the zeroth-order term of Eq.
25) remains. We therefore find that

W�0,0,z1;0,0,z2;�� = f*�0,0,z1;��f�0,0,z2;��, �26�

ith

f�0,0,z;�� =
k

f�0

a

J0�
��eikz�1−�2/2f2��d�. �27�

rom this result and Eq. (11) it readily follows that

���0,0,z1;0,0,z2;��� = 1. �28�

his implies that the field is fully coherent for all pairs of
oints along the z axis, even though the field in the aper-
ure is partially coherent. This surprising effect can be
nderstood by noticing that only a single coherent mode
omes into play.

Next we examine pairs of points that lie in the focal
lane. One point is taken to be at the geometrical focus O.
ue to the rotational invariance of the system, we may
ssume, without loss of generality, that the second point
ies on the x axis. Hence we consider pairs of points for
hich

r1 = �0,0,0�, �29�

r2 = �x,0,0�. �30�

he cross-spectral density, Eq. (14), then yields

W�0,0,0;x,0,0;�� =
1

��f�2�
0

2��
0

a�
0

2��
0

a

S�0����

�J0�
	�1
2 + �2

2 − 2�1�2 cos��1 − �2�
1/2�

� e−ik��2x cos �2�/f�1�2d�1d�1d�2d�2.

�31�
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n using the coherent mode expansion of J0 and integrat-
ng over �1, again a single term remains, i.e.,

W�0,0,0;x,0,0;�� =
2�

��f�2�
0

a�
0

2��
0

a

S�0����J0�
�1�J0�
�2�

� cos�k
�2x

f
cos �2��1�2d�1d�2d�2.

�32�

t is to be noted that this expression is real-valued.
In order to obtain the spectral degree of coherence, we

se the facts that

S�0,0,0;�� = �k

f �
2�

0

a�
0

a

J0�
�1�J0�
�2��1�2d�1d�2

�33�

nd

S�x,0,0;�� =
1

��f�2�
0

2��
0

a�
0

2��
0

a

S�0����

�J0�
	�1
2 + �2

2 − 2�1�2 cos��1 − �2�
1/2�

�cos	kx��1 cos �1 − �2 cos �2�/f
�1�2

�d�1d�1d�2d�2. �34�

xamples of the spectral degree of coherence
�0,0,0;x ,0 ,0 ;�� are depicted in Figs. 6 and 7 for se-

ig. 6. Spectral degree of coherence ��0,0,0;x ,0 ,0;�� (solid
urve) and spectral density S�x ,0 ,0,�� normalized to its maxi-
um value (dashed curve) for the case (a), �
a�−1=2

nd (b), �
a�−1=0.35. In this example �=0.6328 �m, a=0.01 m,
nd f=0.02 m.
ected values of the coherence parameter �
a�−1. For com-
arison’s sake the normalized spectral density is also
hown. In Fig. 6(a) two regions can be distinguished, re-
ions where the fields are approximately co-phasal [i.e.,
�0,0,0;x ,0 ,0 ;���1] and regions where the fields have
pposite phases [i.e., ��0,0,0;x ,0 ,0 ;���−1]. In between
hese two regions the spectral degree of coherence exhib-
ts phase singularities [i.e., ��0,0,0;x ,0 ,0 ;��=0]. The
atter points coincide with approximate zeros of the field.

When the coherence parameter is decreased, the over-
ll intensity gets lower. This is shown in Fig. 6(b) for the
ase �
a�−1=0.35. An intensity minimum now occurs at
he geometrical focus. The spectral degree of coherence
till possesses a phase singularity; however its position no
onger coincides with a zero of the field.

On further decreasing the coherence, the spectral den-
ity at focus almost reaches zero. This is shown in Fig.
(a) for the case �
a�−1=0.25. The spectral density rises
gain if the correlation parameter is decreased further, as
an been seen in Fig. 7(b). In all cases the spectral degree
f coherence exhibits phase singularities.

. OTHER CORRELATION FUNCTIONS
n this section we examine the spectral density in the fo-
al plane for other Bessel-correlated fields. In particular
e consider a cross-spectral density function of the form

see Section 5.3 of [10])

ig. 7. Spectral degree of coherence ��0,0,0;x ,0 ,0;�� (solid
urve) and the spectral density S�x ,0 ,0,�� normalized to its
aximum value (dashed curve), for the case (a), �
a�−1=0.25

nd (b), �
a�−1=0.2. In this example �=0.6328 �m, a=0.01 m,
nd f=0.02 m.



w
t
p

t
s

T

w

A
f
m

A
=
t
b
t

7
W
c
fi
w
s
o
a

r
i
c
c
d

i
t
i

r
T
t
t
c
a
t
c
l
fi
l

t
t
t
t
fi
w

f
n

A
E
F
p
E
t
[

H
�

w
r

w
g
c
r
f

t

F
f
n

580 J. Opt. Soc. Am. A/Vol. 25, No. 3 /March 2008 van Dijk et al.
Wn
�0���1,�2,�� = S�0����2n/2�1 +

n

2�Jn/2�
��2 − �1��

�
��2 − �1��n/2 ,

�35�

here Jn/2 is a Bessel function of the first kind and  is
he gamma function. The case n=0 was discussed in the
revious sections.
Let us denote a position in the focal plane with the vec-

or �� ,0�. The spectral density is then given by the expres-
ion

Sn��,0,�� =
1

��f�2�
A
�

A

Wn
�0���1,�2,��e−ik��2−�1�·�/fd2�1d2�2.

�36�

his can be simplified to [12]

Sn��,0,�� = 2�ka2

f �2�
0

1

C�b�Wn
�0��2a
b�J0�2ka�b

f �bdb,

�37�

here

C�b� = �2/��	arccos�b� − b�1 − b2�1/2
. �38�

s before, the spectral density is normalized to its value
or a fully coherent field at the geometrical focus. The nor-
alized spectral density is thus given by the formula

Sn��,0,��

Scoh
=

8

S�0�����0

1

C�b�Wn
�0��2a
b�J0�2ka�b

f �bdb.

�39�

n example is shown Fig. 8 for the case n=2 and �
a�−1

0.13. It is seen that the spectral density now has a flat-
opped profile. Fields with such a J1�x� /x correlation can
e synthesized by placing a circular incoherent source in
he first focal plane of a converging lens [13].

. CONCLUSIONS
e have investigated the behavior of selected Bessel-

orrelated, focused fields. It is observed that J0-correlated
elds produce a tunable, local minimum of intensity
ithin a high-intensity shell of light. This observation

uggests that such beams might be useful in a number of
ptical manipulation applications. In particular, it is well
ppreciated that optical trapping of high-index particles

ig. 8. Normalized spectral density, Eq. (39), in the focal plane
or the case �
a�−1=0.13. In this example �=500 nm, a=0.01 m,
=2, and f=2 m.
equires high intensity at focus, while the trapping of low-
ndex particles requires low intensity at focus. The J0 fo-
using configuration allows one to construct a system that
an continuously switch between these two trapping con-
itions [14].
It is also observed that J1�x� /x correlated fields result

n a flat-top intensity distribution. Such an intensity dis-
ribution could be useful in applications where a uniform
ntensity spot is required, such as lithography.

These intensity distributions, and others, can be
oughly predicted using straightforward Fourier optics.
he image that appears in the focal plane is essentially

he Fourier transform of the aperture-truncated correla-
ion function in the lens plane. This correlation function
an in turn be generated by an incoherent source whose
perture is given by the Fourier transform of the correla-
ion function. One such example is using an annular in-
oherent source to produce a J0-correlated field at the
ens. The detailed three-dimensional structure of the light
eld in the focal region, however, requires a numerical so-

ution of the diffraction problem.
It is important to note that this method of generating

he necessary correlations is by no means unique. Any
echnique that produces the desired Bessel correlation in
he lens plane will result in the same intensity distribu-
ion at focus. For instance, one could use a coherent laser
eld transmitted through a rotating ground-glass plate
ith the desired correlations.
This coherence shaping of the intensity distribution at

ocus holds promise as a new technique for optical ma-
ipulation [c.f. [15]].

PPENDIX A: COHERENT-MODE
XPANSION OF A J0-CORRELATED FIELD
ollowing Gori et al. [16], we use the coherent mode ex-
ansion for the cross-spectral density function given by
q. (13) to evaluate expression (19). Since it belongs to

he Hilbert–Schmidt class, it can be expressed in the form
17]

W�0���1,�2,�� = �
n

�n����n
*��1,���n��2,��. �A.1�

ere �n�� ,�� are the orthonormal eigenfunctions and
n��� the eigenvalues of the integral equation

�
D

W�0���1,�2,���n�r1,��d2�1 = �n����n��2,��, �A.2�

here the integral extends over the aperture plane D. We
ewrite the expansion (A.1) as

W�0���1,�2,�� = �
n

�n���Wn��1,�2,��, �A.3�

here Wn��1 ,�2 ,��=�n
*��1 ,���n��2 ,��. The spectral de-

ree of coherence corresponding to a single term, Wn, is
learly unimodular. Hence the expansion in Eq. (A.3) rep-
esents the cross-spectral density as a superposition of
ully coherent modes.

In the case of a J0-correlated field the expression for
he eigenfunctions � �� ,�� reads [16]
n
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n��,�� = CnS�0����	anJn�
��e−in� + bnJ−n�
��ein�
, �A.4�

here Cn is a suitable normalization factor and the ratio
n /bn is arbitrary. On substituting from Eq. (A.4) into Eq.
A.2) and using Neumann’s addition theorem

J0�
	�1
2 + �2

2 − 2�1�2 cos��1 − �2�
1/2�

= �
k=−	

	

Jk�
�1�Jk�
�2�eik��1−�2�, �A.5�

e find that the eigenvalues �n are given by the formulas

�n = �a2S�0����	Jn
2�
a� − Jn−1�
a�Jn+1�
a�
,

�n = 0,1,2, . . . �. �A.6�

o ensure that all the functions �n�� ,�� are orthonormal,
e may choose

Cn =
1

�n

�n = 0,1,2, . . . �. �A.7�

his choice implies that

�a0 + b0�2 = 1 �A.8�

an
2 + bn

2 = 1 �n = 1,2,3, . . . �. �A.9�

ence we find a twofold degeneracy for the eigenfunctions
n except for the case that n=0. We thus obtain the ex-
ansion

J0�
	�1
2 + �2

2 − 2�1�2 cos��1 − �2�
1/2�

= J0�
�1�J0�
�2� + �
n=1

	

2�Jn�
�1�Jn�
�2�

�cos	n�� − � �
�, �A.10�

ig. 9. Eigenvalues �n versus n for a J0-correlated field with a
niform spectral density across the plane of the aperture. Only
he points corresponding to integer values of n are meaningful;
he connecting lines are drawn to aid the eye.
1 2
here we have used the fact that the functions Jn and J−n
re related by [18]

J−n�x� = �− 1�nJn�x� �n � N�. �A.11�

he behavior of the eigenvalues �n versus n is shown in
ig. 9. Although the decreasing behavior of the eigenval-
es is not strictly monotonic it can be seen that as soon n
xceeds 
a the eigenvalues become very small. In other
ords, only those modes whose index n is smaller than 
a

ontribute effectively to the cross-spectral density.
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