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An understanding of correlation singularities is fundamentally important in imaging science. Until now spa-
tial coherence studies have examined a two-dimensional projection of the four-dimensional correlation func-
tion, finding so-called correlation vortices or correlation ring dislocations in a given transverse plane. Here we
describe the properties and symmetries of the full four-dimensional correlation function. The general solution
is found to be a hyperbola in two reduced dimensions. For perfect coherence this reduces to crossed straight
lines, whereas in the incoherent limit it reduces to parallel lines. These results elucidate a number of previous
experimental and theoretical observations regarding correlation singularities and suggest other behaviors of
such singularities. © 2008 Optical Society of America
OCIS codes: 030.0030, 260.6042.
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. INTRODUCTION
n recent years there has been increasing interest in the
tudy of phase singularities of coherent wave functions in
ptics, Bose–Einstein condensates, and other wave sys-
ems. These singularities are characterized by lines or
urfaces where the field amplitude vanishes and the
hase is therefore undefined [1,2]. It has been shown that
he structure of the field around such points follows well-
efined and consistent behaviors analogous to crystal dis-
ocations [3]. The study of such “singular behavior” is now
subfield of optics, known as singular optics [4]. In scalar
elds, these singularities may manifest in the form of

ines of zero amplitude in three-dimensional space,
round which the phase has a circulating or helical struc-
ure, and they are consequently referred to as optical vor-
ices.

Beyond purely topological interests, studies in singular
ptics present a new way to look at wave fields and have
ed to a number of actual and prospective applications.
mong these are the use of vortex fields in pattern recog-
ition [5], optical spanners and tweezers [6], spatial co-
erence filtering [7], temporal coherence filtering [8], the
evelopment of an optical vortex coronagraph for astro-
omical planet-finding [9,10], phase contrast microscopy
11], and the use of vortices as information carriers in
ree-space optical communication [12]. The properties of
ortices are also of paramount importance in studies of
hase retrieval [13–15].
Most of these applications of singular optics necessarily

nvolve the use of partially coherent light fields; for in-
tance, light coming from a distant star is partially coher-
nt. In recent years, a number of authors have investi-
ated the phase singularities of the correlation functions
0740-3224/08/091422-8/$15.00 © 2
f wave fields [16–20], and connections have been made
etween these phase singularities and the coherence
roperties of the light field. For instance, the correlation
unction may be used to characterize the coherence of a
eam of light: the area enclosed by a line of zero correla-
ion has been shown to be a measure of the coherence
rea [18]. Inside (outside) this region the field is positively
negatively) correlated. An understanding of correlation
ingularities is therefore fundamentally important in im-
ging science where partially coherent illumination is of-
en desirable. Other theoretical [21] and experimental
22] work has been reported on correlation singularities,
ncluding a study of the propagation of the singularities
23] and the development of coherence conservation laws
24].

Intriguingly, it has been shown that there is a connec-
ion between the optical vortices created by a linear opti-
al system and the correlation singularities produced by
he same system [19,25,26]. A good physical understand-
ng of this connection is still lacking, due at least in part
o the complicated nature of correlation singularities.

Because the correlation function is a measure of the
tatistical correlations between two arbitrary points in a
eld, a complete description of the function in a plane re-
uires the specification of the correlation function in four
ariables (six if one includes the propagation of the field).
wing to experimental considerations, previous work on

orrelation singularities has examined the projections of
his function onto a two-variable manifold. For example, a
avefront folding interferometer reveals a correlation

ing dislocation [18] whereas a Mach–Zehnder interfer-
meter reveals correlation vortices [26]. Other experimen-
al configurations are possible, and hence, a full four-
008 Optical Society of America
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imensional description of correlation singularities is
equired. To our knowledge an analysis of the full un-
rojected transverse correlation function has not yet been
eported.

In this paper we undertake such a theoretical descrip-
ion, using a simple model of a correlation singularity. In
ection 2 we introduce some mathematical preliminaries
oncerning phase singularities and correlation singulari-
ies. In Section 3 we describe the geometric form of corre-
ation singularities in the full four-variable correlation
pace. In Section 4 we look at selected projections of these
orrelation singularities, and Section 5 presents some
oncluding remarks. In an appendix we consider the sim-
ler case of a one-dimensional partially coherent source
with a two-variable correlation function) to identify some
f the main features of correlation singularities.

. PHASE SINGULARITIES AND
ORRELATION SINGULARITIES
complex-valued, quasi-monochromatic scalar wave field
�r , t� of frequency �0 may be expressed in terms of the
roduct of its space-dependent part, U�r ,�0�, and a com-
lex exponential time dependence, exp�−i�0t�. Although
0 is simply a parameter in the spatial dependence of a
onochromatic field, we write it as a functional argument

n anticipation of the discussion of partially coherent
elds to follow.
By use of the Madelung transform the spatially depen-

ent factor can be separated further into the product of a
omplex exponential containing the spatial phase ��r ,�0�
f the field, and a real-valued amplitude A�r ,�0�
�I�r ,�0�, where I�r ,�0� is the instantaneous spectral in-

ensity:

U�r,�0� = A�r,�0�exp�i��r,�0��. �1�

his factorization is well-defined at all spatial points ex-
ept the origin where A�r ,�0�=0. At such points, the defi-

ig. 1. Illustration of the (a) phase and (b) amplitude of a Lag
=2 mm.
0
ition of the phase is ambiguous or singular. Typically the
egion of zero amplitude manifests itself as a line, about
hich the phase takes on a circulating or helical struc-

ure, commonly referred to as an optical vortex. Phase sin-
ularities such as vortices have long been recognized as
oci of zero amplitude in coherent wave functions [27,28].
ater it was recognized that vortices occur not only as
odes of wave equations but also as zeros in coherent

peckle fields [3,29].
An example of a field containing a vortex mode is a

aguerre–Gauss beam [30,31] of order n=0, m=1.
sophase lines and the amplitude profile of the cross-
ection of the beam are illustrated in Fig. 1. The beam
ontains an amplitude zero at the origin, �x ,y�= �0,0�, for
ll propagation distances, z, giving the beam a character-
stic “doughnut-like” profile. The lines of constant phase
re rays that radiate from the origin, meeting at the cen-
ral zero of amplitude. Following a counterclockwise
losed path around the singularity, the phase increases
ontinuously by 2�.

Although amplitude zeros of a monochromatic wave
eld are common, it has been shown that intensity zeros
f a time averaged partially coherent wave field are rare
25]. However, zeros of the two-point correlation functions
f partially coherent wave fields do exist, and the phase of
he correlation function is well defined.

In the time domain, the mutual coherence function of a
tatistically stationary, fluctuating wave field can be writ-
en in the form [[32], Section 4.3]

��r1,r2,�� = �U*�r1,t�U�r2,t + ���, �2�

here the angle brackets represent a time average or,
quivalently, an ensemble average.

It will be more convenient for our purposes to work
ith the temporal Fourier transform of the mutual coher-
nce function, known as the cross-spectral density [[32],
ection 4.3.2]:

Gaussian beam of order m=1, n=0 in the source plane where
uerre–
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W�r1,r2,�� =
1

2�
�

−�

�

��r1,r2,��exp�i���d�. �3�

he cross-spectral density characterizes the intensity and
patial coherence properties of the field at frequency �,
nd it contains all of the information of the mutual coher-
nce function. For a quasi-monochromatic field of fre-
uency �0, the spatial coherence properties are well-
pproximated by the value of the cross-spectral density at
0.
It has been shown that the cross-spectral density of an

rbitrary partially coherent wave field at frequency �
ay always be expressed as the average of an ensemble of
onochromatic realizations of the field [33], i.e.,

W�r1,r2,�� = �U*�r1,��U�r2,����, �4�

here U�r ,�� is a monochromatic realization of the par-
ially coherent field and the subscript � denotes averag-
ng with respect to this special ensemble. The advantage
f this representation is that it allows one to construct
odels of partially coherent fields in the frequency do-
ain directly without resorting first to finding the more

omplicated mutual coherence function. We will use this
elow to construct a model of a quasi-monochromatic, par-
ially coherent field.

In the absence of sources, the cross-spectral density is
nown to satisfy a pair of Helmholtz wave equations [32],

.e.,

��i
2 + k2�W�r1,r2,�� = 0, i = 1,2. �5�

rom this, it follows that, with one observation point
xed, the cross-spectral density behaves exactly like a
onochromatic wave field and can possess vortices with

he same topological and phase properties as ordinary
onochromatic fields. Such vortices are now known as

orrelation vortices (or coherence vortices).
Such vortices are distinct from ordinary optical vorti-

es, both in their behaviors and their interpretation. Cor-
elation vortices are phase singularities of the two-point
orrelation function of the field, in contrast to optical vor-
ices, which are phase singularities of a one-point mono-
hromatic wave field. The location of a correlation vortex
s therefore dependent upon the choice of the fixed obser-
ation point.

The formalism described above is, in principle, exact:
orrelation singularities can exist independently at each
requency of a partially coherent wave field. For the re-
ainder of the paper, we will restrict ourselves to a quasi-
onochromatic field of center frequency �, and further

xpression of this frequency will be suppressed.
A simple model for a correlation vortex was proposed in

25]. We imagine a Laguerre–Gauss beam of order n=0,
=1, whose central vortex core is a random function of

osition. The cross-spectral density of such a field may be
ritten as

W�r1,r2� =� f�r0�U*�r1 − r0�U�r2 − r0�d2r0, �6�

ith
U�r� = �2U0 exp�i��
r

w0
exp�− r2/w0

2�. �7�

ere r= �r ,��, and f�r0� is the probability density for the
osition r0 of the central vortex core, taken to be Gauss-
an:

f�r0� =
1

���
exp�− r0

2/�2�. �8�

he quantity � is an arbitrary diffusion scale that repre-
ents the average wander of the vortex core.

In the limit �→0, the beam does not wander at all and
s therefore fully coherent. Increasing � represents de-
reasing spatial coherence. Some examples of this corre-
ation vortex are presented in Fig. 2.

Although we are using a seemingly very specialized
odel source, other research [26] suggests that all generic

orrelation singularities have a similar local form.

. TWO-DIMENSIONAL SOURCES AND
OUR-VARIABLE CORRELATION
INGULARITIES
he integral of Eq. (6) can be evaluated analytically and
as been shown to take the form [25]

W�r1,r2� =
2��	U0	2

w0
6A3�

exp�− �r1 − r2�2/w0
4A�

�exp�− �r1
2 + r2

2�/�2w0
2A�

�
�	2�x1 − iy1� + �x1 − x2� + i�y1 − y2��

��	2�x2 + iy2� − �x1 − x2� + i�y1 − y2�� + w0
4A�,

�9�

here 	�w0 /�, r��x ,y�, and

A �  2

w0
2 +

1

�2� . �10�

he manifold of singular phase is defined by two equa-
ions: the real and imaginary parts of the term in curved
rackets above must vanish, i.e.,

��	2 + 1�x1 − x2���	2 + 1�x2 − x1�

+ ��	2 + 1�y1 − y2���	2 + 1�y2 − y1� + w0
4A = 0, �11�

�	2 + 1�y1 − y2���	2 + 1�x2 − x1�

− ��	2 + 1�x1 − x2���	2 + 1�y2 − y1� = 0. �12�

he first equation is the equation for the real part; the
econd is for the imaginary part. The equation for the
maginary part may be simplified straightforwardly to the
orm

x1

x2
=

y1

y2
. �13�

et us consider a transformation to a modified polar coor-
inate system, so that
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x1 = 
1 cos �1, �14�

y1 = 
1 sin �1, �15�

nd similarly for �x2 ,y2�, but −��
i�� and 0��i��,
ith i=1,2. The modified system is used for later plotting

onvenience. Equation (13) takes on the simple form

tan �2 = tan �1, �16�

hich in turn suggests that zeros exist only for observa-
ion points such that �1=�2. In other words, phase singu-
arities exist only when the observation points are collin-
ar with the central axis of the beam.

In polar coordinates, Eq. (11) simplifies to the form


1
2 − �2 + 1�
1
2 + 
2

2 = w0
4A, �17�

here

 = 	2 + 1, �18�

hich is the equation for a hyperbola whose foci lie along
line rotated −� /4 from the x axis. This can be seen by
aking the coordinate transformation


1 =
w1 + w2

�2
, 
2 =

w2 − w1

�2
. �19�

n terms of the rotated coordinates w1 and w2, Eq. (17) re-
uces to

ig. 2. Illustrating the evolution of a coherence vortex to an opt
0=2 mm. The phase of the cross-spectral density and the inten
0. The observation point r1 is taken to be �x1 ,y1�= �0.1 mm,−0
� + 1�2

w0
4A

w1
2 −

� − 1�2

w0
4A

w2
2 = 1. �20�

e can compare this to the standard form of a hyperbola,

X2

a2 −
Y2

c2 − a2 = 1, �21�

here a is the intercept of the hyperbola and c is the focal
istance. Our zero manifold in 
1 ,
2-space (with r1 and r2
ollinear with the origin) is a hyperbola with intercept

a �� w0
4A

� + 1�2 = 1/�A. �22�

n the limit as �→0 (i.e., the field becomes fully coherent),
→� and a→0. The hyperbola becomes a pair of crossed

traight lines on the 
1 and 
2 axes. The behavior of the
ero manifold in 
1 ,
2-space for various values of � is
hown in Fig. 3.

Equations (17) and (16) completely define the zero
anifold of a correlation singularity for a two-

imensional source.

. PROJECTIONS OF THE CORRELATION
INGULARITIES
e first demonstrate that the results here produce the

orrelation vortex of [25] and the ring dislocation of [18].
correlation screw dislocation is observed by studying

he phase of the cross-spectral density with one observa-
ion point fixed. Let us fix x =x , y =y , and 
 =�x2+y2.

rtex, for the partially coherent field defined by Eqs. (6)–(8), with
the field are plotted for (a) �=0.8 mm, (b) �=0.3 mm, and (c) �

�.
ical vo
sity of
.1 mm
1 0 1 0 0 0 0
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nd Eq. (17) can be written entirely in terms of 
2. The
oots of this quadratic equation can be immediately found
o be


2 = 2 + 1

22 �
0 ±�2 + 1

22 �2


0
2 − 
0

2 +
w0

4A

2 . �23�

In agreement with the results of [25], we find that a
air of correlation singularities are present for a fixed
alue of r1. This is not surprising, since we are starting
ith the same model for a correlation singularity. What is
ore useful is that we are able to quantify the location of

hese singularities: their locations are always on a line
onnecting the origin to the point r1, and they are sym-
etrically located around a central point r� defined by the

ormula

r� � r02 + 1

22 � . �24�

In [18], a projection of the general four-variable corre-
ation function is taken by considering cross-correlations
f the vector field, i.e., r1=−r2. We therefore take x1=
x2, y1=−y2. In this case Eq. (13) is automatically satis-
ed. We are left with a single equation defining the zero
anifold for this projection; from Eq. (17),


1
2 + �2 + 1�
1

2 + 
1
2 = w0

4A, �25�

hich may be written in terms of 
1 as


1
2 =

w0
4A

� + 1�2 =
1

A
. �26�

his is clearly the equation of a circle; the cross-
orrelation of the cross-spectral density automatically re-
ults in a ring dislocation of radius

r0
2 =

1

A
=

1

2/w0
2 + 1/�2

. �27�

or w0��, the radius may be written in the approximate
orm

ig. 3. Plot of the zero manifolds of the four-variable correlation
ter �. In all plots, w0=2 mm. The zero manifolds are plotted for
r0 �
�

�2
. �28�

s � is effectively proportional to the inverse of the corre-
ation length, we find that the radius of the ring disloca-
ion is inversely related to the correlation length of the
eld, in agreement with the observations of [18].
We can illustrate these projections on the zero manifold

efined by Eqs. (17) and (16); this is done in Fig. 4. The
ross-correlation function is defined by taking �1=�2 and
ooking at 
2=−
1. It can be seen that this results in a
air of zero points in 
1, 
2 space, which become a ring
hen all angles are taken into account. The correlation
ortex projection involves a fixed value of 
1. The vertical
ine will intersect the manifold at two points.

The asymptotes of the hyperbola of Fig. 4 are given by
he equations


2 = 
1, 
2 =

1


, �29�

here � is an arbitrary diffusion parameter. It is to be
oted that no correlation singularities exist at all when

ion defined by Eq. (9), for various values of the diffusion param-
0.1 mm, (b) �=0.5 mm, (c) �=1.0 mm.

ig. 4. Illustrating the standard projections of a correlation vor-
ex and their relationship to the full zero manifold. Here w0
2 mm and �=0.1 mm. The thick dashed lines represent the as-
mptotes of the hyperbola.
funct
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oints 
1 and 
2 are chosen between the two asymptotes.
n the coherent limit, →� and the asymptotes coincide
ith the axes of the 
1, 
2 coordinate system. In the inco-
erent limit, →1 and the asymptotes both lie along the

ine 
1=
2. In this case the hyperbola reduces to a pair of
ines parallel to the asymptotes, separated by perpendicu-
ar distance �2w0. A pair of correlation singularities will,
n this limit, be separated by a distance 2w0.

. CONCLUSIONS
n this paper we have derived the complete mathematical
epresentation of a correlation singularity in four vari-
bles. This structure is surprisingly simple, considering
he four-variable space it resides in. The general solution
s found to be a hyperbola in two reduced dimensions, 
1
nd 
2, with correlation singularities existing only for ob-
ervation points collinear with the origin of the field. In
he limit of complete coherence this hyperbola reduces to
rossed straight lines, whereas in the incoherent limit it
educes to parallel lines. In all cases, a region completely
evoid of correlation singularities is defined by the as-
mptotes of the hyperbola.

This new understanding of coherence singularities will
rovide experimentalists with new insights for generating
eams with designed coherence structures. Further work
n this area could include polarization considerations,
on-Gaussian beam profiles, complex vortex patterns,
nd vortices having multiple charges.

PPENDIX A: ONE-DIMENSIONAL
OURCES AND TWO-VARIABLE
ORRELATION SINGULARITIES
he general four-variable correlation function considered

n this paper is potentially difficult to visualize and inter-
ret. In this appendix, we consider the simpler case of a
ne-dimensional scalar source U�x�, illustrated in Fig. 5.
his source is taken to have a phase singularity in its cen-
er,

U�x� = U0 exp�− x2/2w0
2�x/w0, �A1�

ut is assumed to have a singularity core that is a random
unction of position, resulting in a cross-spectral density
f the form

ig. 5. Plot of the one-dimensional source function defined by
q. (A1) with a phase singularity at the origin.
W�x1,x2� =�
−�

�

f�x0�U*�x1 − x0�U�x2 − x0�, �A2�

here

f�x0� =
1

���
exp�− x0

2/�2�. �A3�

t is to be noted that there is no such thing as a vortex for
he one-dimensional source described here. This integral
ay be readily evaluated to find a specific form for the

ross-spectral density,

W�x1,x2� =
U0

2A

w0
3 exp�− x1

2/2w0
2�exp�− x2

2/2w0
2�

�exp��x1 + x2�2A2/4w0
4�

��x1x2 + B�x1 + x2�2 +
1

2
A2� , �A4�

here

1

A2 =
1

�2 +
1

w0
2 �A5�

nd

B = � A4

4w0
4 −

A2

2w0
2� . �A6�

rom this equation, it is clear that zeros of the correlation
unction satisfy the formula

��2B + 1�x1x2 + Bx1
2 + Bx2

2 +
1

2
A2� = 0. �A7�

his is a standard quadratic form, whose determinant
ay be shown to be

4D + 1 = 4 A2

2w0
2 −

1

2�2

� 0, �A8�

hich indicates that the zeros of the correlation function
orm a hyperbola. By making the coordinate transforma-
ion,

x1 = y2 − y1, �A9�

x2 = y2 + y1, �A10�

e may write the hyperbola in a standard form:

y1
2

�A2/2�
−

�4B + 1�y2
2

�A2/2�
= 1. �A11�

he equation for a hyperbola is

x2

a2 −
y2

c2 − a2 = 1, �A12�

here a is the intercept of the hyperbola and c is the focal
istance. These quantities may be written as
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a = A, �A13�

c = 4D + 2

4D + 1�
1/2

A. �A14�

he correlation singularity of a one-dimensional partially
oherent source therefore manifests itself as a hyperbola
n x1,x2 space. Several of these hyperbolas are illustrated
n Fig. 6 for various values of �. In the coherent limit, it
an be seen that the hyperbolas “press against” the x1 and
2 axes and reduce to the expected field singularities.

The asymptotes of a hyperbola are defined by

y = ±
�c2 − a2

a
x = ±

1

4D + 1
x = ±

1

1 + �2/w0
2x. �A15�

his simpler one-dimensional source with a correlation
ingularity illustrates what to look for in the case of a
wo-dimensional source containing a correlation singular-
ty.
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